
Software tool for cranial orthosis design

Alena Vasatova Milan Jaros Tomas Karasek Petr Strakos

VSB - Technical University of Ostrava
National Supercomputing Center IT4Innovations

alena.vasatova@vsb.cz

November 1, 2017

Introduction

I Treatment of skull deformities of children by cranial orthosis
has been increasingly used since it was first documented in
1979.

Introduction

I Treatment of skull deformities of children by cranial orthosis
has been increasingly used since it was first documented in
1979.

I Increasing number of the cranial deformities due to the
recommended sleeping supine position (to reduce sudden
death syndrome) and keeping infant too long in one position.

Introduction
I Treatment of skull deformities of children by cranial orthosis

has been increasingly used since it was first documented in
1979.

I Increasing number of the cranial deformities due to the
recommended sleeping supine position (to reduce sudden
death syndrome) and keeping infant too long in one position.

I Need to be designed individually.

Introduction

I Currently fully manual task. Tool should make
this process semi-automatic with only small
intervention from user and as such speed up
whole process.

Introduction

I Currently fully manual task. Tool should make
this process semi-automatic with only small
intervention from user and as such speed up
whole process.

I In future it will be part of whole process from
3D scanning patient to 3D printing and it will
allow product the orthosis anywhere, without
expensive devices on place through web services.

Introduction

I Currently fully manual task. Tool should make
this process semi-automatic with only small
intervention from user and as such speed up
whole process.

I In future it will be part of whole process from
3D scanning patient to 3D printing and it will
allow product the orthosis anywhere, without
expensive devices on place through web services.

I Contractual research HS7831610 conducted in
collaboration with ING corporation spol. s.r.o..

Cranial orthosis model

I The model itself is composed of two parts: a helmet and a
locking mechanism. Each part is represented by
high-resolution mesh.

Cranial orthosis model

I The model itself is composed of two parts: a helmet and a
locking mechanism. Each part is represented by
high-resolution mesh.

I The locking mechanism can only translate and rotate to
preserve its functionality.

Cranial orthosis model
I The model itself is composed of two parts: a helmet and a

locking mechanism. Each part is represented by
high-resolution mesh.

I The locking mechanism can only translate and rotate to
preserve its functionality.

I Beside that, we also need auxiliary meshes, so-called cages.

Cranial orthosis model

I The model is modified to individual patient based on 3D scan
of the head. The scan of head is cropped afterwards by
outlines specified by the medical technician.

Cranial orthosis model
I The model is modified to individual patient based on 3D scan

of the head. The scan of head is cropped afterwards by
outlines specified by the medical technician.

I The goal of the transformation is a non-rigid deformation of
the orthosis body to fit the cropped scan and a rigid
transformation of the locking mechanism to its specified
position.

Morphing algorithm

1. Modification and enhancement of Blender for rapid testing of
proposed methodology - MeshDeform modifier + Shrinkwrap
modifier.

Morphing algorithm

1. Modification and enhancement of Blender for rapid testing of
proposed methodology - MeshDeform modifier + Shrinkwrap
modifier.

2. MeshDeform modifier was parallelized using MPI technology
to improve its speed and to allow handling of large data sets.

Morphing algorithm

1. Modification and enhancement of Blender for rapid testing of
proposed methodology - MeshDeform modifier + Shrinkwrap
modifier.

2. MeshDeform modifier was parallelized using MPI technology
to improve its speed and to allow handling of large data sets.

3. MeshDeform modifier replaced by transformation using radial
basis function (RBF), which is computationally less expensive.

Morphing algorithm

1. Modification and enhancement of Blender for rapid testing of
proposed methodology - MeshDeform modifier + Shrinkwrap
modifier.

2. MeshDeform modifier was parallelized using MPI technology
to improve its speed and to allow handling of large data sets.

3. MeshDeform modifier replaced by transformation using radial
basis function (RBF), which is computationally less expensive.

4. Transformation by RBF also allows easy incorporation of the
rigid parts, which MeshDeform modifier cannot implicitly do.

Morphing algorithm

Morphing algorithm

Morphing algorithm

Morphing algorithm

Radial basis function

I Function ϕ : R3 → R3 that
I exactly interpolates the displacement uj ∈ R3 of given control

points xj ∈ R3, j = 1, ...,m,
I smoothly interpolates this displacement into the mesh.

Radial basis function

I Function ϕ : R3 → R3 that
I exactly interpolates the displacement uj ∈ R3 of given control

points xj ∈ R3, j = 1, ...,m,
I smoothly interpolates this displacement into the mesh.

I The displacement function is then represented as

ϕl(x) =
np∑

i=1
βl ,ipi(x) +

m∑
j=1

θl ,jρxj (x),

where np is dimension of used polynomials, we choose linear,
thus np = 4.

Radial basis function

I Function ϕ : R3 → R3 that
I exactly interpolates the displacement uj ∈ R3 of given control

points xj ∈ R3, j = 1, ...,m,
I smoothly interpolates this displacement into the mesh.

I The displacement function is then represented as

ϕl(x) =
np∑

i=1
βl ,ipi(x) +

m∑
j=1

θl ,jρxj (x),

where np is dimension of used polynomials, we choose linear,
thus np = 4.

Radial basis function

I The coefficients βl ∈ Rnp and θl ∈ Rm are defined by(
K B>
B 0

)(
θl
βl

)
=
(

ul
0

)
,

where
K := (ρ(‖xj − xk‖R3))j,k=1,...,m ∈ Rm×m,

B := (pi(xk)) i=1,...,np
k=1,...m

∈ Rnp×m

and
ul := (u1,l , ..., uj,l) ∈ Rm.

Radial basis function

I The coefficients βl ∈ Rnp and θl ∈ Rm are defined by(
K B>
B 0

)(
θl
βl

)
=
(

ul
0

)
,

where
K := (ρ(‖xj − xk‖R3))j,k=1,...,m ∈ Rm×m,

B := (pi(xk)) i=1,...,np
k=1,...m

∈ Rnp×m

and
ul := (u1,l , ..., uj,l) ∈ Rm.

I We use triharmonic or thin plate spline (TPS)

ρ(r) = r3, ρ(r) := Γ (3/2− q)
22qπ3/2(q − 1)!

r2q−3.

Radial basis function with rigid transformation

I n rigid objects.

Radial basis function with rigid transformation

I n rigid objects.
I Predefined linear transformations Lq ∈ R3×np , q = 1, .., n.

Radial basis function with rigid transformation

I n rigid objects.
I Predefined linear transformations Lq ∈ R3×np , q = 1, .., n.
I Distance between given point and closest point of the mesh

using octree-based spatial algorithm, which can search the
mesh to quickly locate the point on the mesh face:

I D0(x) represents the distance from a point x to the closest
object,

I Dq(x), q = 1, ..., n to q-th object.

Radial basis function with rigid transformation

I n rigid objects.
I Predefined linear transformations Lq ∈ R3×np , q = 1, .., n.
I Distance between given point and closest point of the mesh

using octree-based spatial algorithm, which can search the
mesh to quickly locate the point on the mesh face:

I D0(x) represents the distance from a point x to the closest
object,

I Dq(x), q = 1, ..., n to q-th object.
I These functions ensure that the non-linear part of the

transformation and the linear transformations Lq, q 6= r tends
to zero as we move towards the r -th rigid object.

Radial basis function with rigid transformation

I The coefficients βl for polynomial corrections are replaced by
weighted sum of the individual object linear transformations

L(x) =
n∑

q=1
wq(x)Lq, wq(x) = vq(x)∑n

r=1 vr (x) , vq(x) = 1
Dq(x)µ

Radial basis function with rigid transformation

I The coefficients βl for polynomial corrections are replaced by
weighted sum of the individual object linear transformations

L(x) =
n∑

q=1
wq(x)Lq, wq(x) = vq(x)∑n

r=1 vr (x) , vq(x) = 1
Dq(x)µ

I The kernels are also weighted

ρ̃xj (x) = |D0(x)| |D0(xj)| ρxj (x).

Radial basis function with rigid transformation
I The coefficients βl for polynomial corrections are replaced by

weighted sum of the individual object linear transformations

L(x) =
n∑

q=1
wq(x)Lq, wq(x) = vq(x)∑n

r=1 vr (x) , vq(x) = 1
Dq(x)µ

I The kernels are also weighted

ρ̃xj (x) = |D0(x)| |D0(xj)| ρxj (x).
I Thus we get transformation function and rewritten equation

system

ϕl(x) =
np∑

i=1
L(x)pi(x) +

m∑
j=1

θl ,j ρ̃xj (x),

Kθl + T = ul , l = 1, 2, 3, T =


p(x1)TL(x1)T

p(x2)TL(x2)T

...
p(xm)TL(xm)T

 .

Radial basis function with rigid transformation
I The coefficients βl for polynomial corrections are replaced by

weighted sum of the individual object linear transformations

L(x) =
n∑

q=1
wq(x)Lq, wq(x) = vq(x)∑n

r=1 vr (x) , vq(x) = 1
Dq(x)µ

I The kernels are also weighted

ρ̃xj (x) = |D0(x)| |D0(xj)| ρxj (x).
I Thus we get transformation function and rewritten equation

system

ϕl(x) =
np∑

i=1
L(x)pi(x) +

m∑
j=1

θl ,j ρ̃xj (x),

Kθl + T = ul , l = 1, 2, 3, T =


p(x1)TL(x1)T

p(x2)TL(x2)T

...
p(xm)TL(xm)T

 .

Rigid transformation

I Linear transformation matrix Lq consists of 12 coefficients,
and we need 4 points in space to determine them.

Rigid transformation

I Linear transformation matrix Lq consists of 12 coefficients,
and we need 4 points in space to determine them.

I The easy way is to take these points from principal axes of the
rigid cage, Principal axes are obtained through the principal
component analysis (PCA).

Rigid transformation

I Linear transformation matrix Lq consists of 12 coefficients,
and we need 4 points in space to determine them.

I The easy way is to take these points from principal axes of the
rigid cage, Principal axes are obtained through the principal
component analysis (PCA).

I PCA is statistical method used to estimate the necessary
information from the measured data.

Rigid transformation

I Linear transformation matrix Lq consists of 12 coefficients,
and we need 4 points in space to determine them.

I The easy way is to take these points from principal axes of the
rigid cage, Principal axes are obtained through the principal
component analysis (PCA).

I PCA is statistical method used to estimate the necessary
information from the measured data.

I We are able to determine the axes through the use of
eigenvalues and eigenvectors of the covariance matrix
consisting of a small group of neighboring points.

Rigid transformation

Implementation

I VTK library to work with 3D geometry and mesh models.

Implementation

I VTK library to work with 3D geometry and mesh models.
I Intel MKL library to solve large systems of linear equations.

Implementation

I VTK library to work with 3D geometry and mesh models.
I Intel MKL library to solve large systems of linear equations.
I OpenMP technology to parallelize transformation.

Results

I We have performed measurements focusing on algorithm
speed and its possible speed-up by utilizing OpenMP
framework on multiple cores.

Results

I We have performed measurements focusing on algorithm
speed and its possible speed-up by utilizing OpenMP
framework on multiple cores.

I We have also measured computational demands of the
algorithm based on the model size.

Results

I We have performed measurements focusing on algorithm
speed and its possible speed-up by utilizing OpenMP
framework on multiple cores.

I We have also measured computational demands of the
algorithm based on the model size.

I For all the tests, configuration of the RBF and the solver was
as follows:

I Thin plate spline (TPS) as a kernel function ρ(r).
I Bunch-Kaufman factorization of a symmetric matrix using

packed storage has been used as a solver.

Algorithm speed and possible speed-up by OpenMP on
multiple CPU cores

CPU cores [-] 1 2 4 8 16 24
Shrink [s] 0.80 0.75 0.73 0.72 0.73 0.72
Prepare [s] 85.36 46.44 23.32 12.30 7.96 5.63
Solve [s] 3.94 2.65 2.18 1.96 1.88 1.88
Transform [s] 248.07 124.19 62.29 32.56 15.75 10.87
Total [s] 338.16 174.03 88.51 47.54 26.33 19.09

Computation times for different sizes of the model
Model size [vertices] (1d) 243897 494826 1033902
Shrink [s] (2) 0.24 0.72 2.61
Prepare [s] (3)-(4) 1.65 4.83 18.54
Solve [s] (5) 0.44 1.89 10.19
Transform [s] (6) 2.76 8.79 38.91
Total [s] (2)-(6) 5.09 16.23 70.25

Result model

