Modelling of blood flow and thrombus formation

Marek Čapek

Mathematical Institute of Charles University Faculty of Mathematics and Physics Charles University

Wednesday / 1.11.2017 / 1st Users Conference of IT4Innovations

- 2 Blood coagulation process
- Blood coagulation process motivation of the mathematical modelling

4 Models

5 Numerical treatment

- elasticity because of membrane elasticity
- shear thinning viscosity because of rouleaux formation

Blood rheological properties Blood coagulation process Blood coagulation process - motivation of the mathematical modelling Models Numerical treatment Summary	
Introduction - hemostasis	

primary task of coagulation - hemostasis in order to seal the vessel wall injury

э

Blood rheological properties Blood coagulation process Blood coagulation process - motivation of the mathematical modelling Models Numerical treatment Summary	
Two seemingly disparate trigger mechanisms of blood coagulation	

high shear rate thrombosis

・ロト ・聞 ト ・ヨト ・ヨト

Э.

Blood rheological properties Blood coagulation process Blood coagulation process - motivation of the mathematical modelling Models Numerical treatment Summary	
Material properties artificial surfaces - stents	

- restenosis can occur due to the reacting surface of stents
- how to choose the material and the shape of stents properly?

くぼう くほう くほう

Blood rheological properties Blood coagulation process Blood coagulation process - motivation of the mathematical modelling Models Numerical treatment Summary	
Material properties of artificial surfaces - artificial heart valves	

normally working heart valves

Marek Čapek Modelling of blood flow and thrombus formation

<ロト < 四ト < 三ト < 三ト

2

heart valve prostheses

• how to choose the material and the shape of halves properly?

A microstructure based viscoelastic model of blood flow

Iinear-momentum equations

$$Re \frac{D\mathbf{u}}{Dt} - 2\eta_s \nabla \cdot \mathbf{D} - \nabla \cdot \tau + \nabla p = 0,$$
$$\nabla \cdot \mathbf{u} = 0.$$

reaction-convection equation for the size of average rouleaux size

$$\frac{D\hat{N}}{Dt} + \frac{1}{2}b(\dot{\gamma})(\hat{N} - \hat{N}_{st})(\hat{N} + \hat{N}_{st} - 1) = 0,$$
(1)

$$\tau + De(\dot{\gamma}, \hat{N}) (\left(\frac{\partial \tau}{\partial t} + (\mathbf{u} \cdot \nabla)\tau - \nabla \mathbf{u} \cdot \tau - \tau \cdot \nabla \mathbf{u}^T\right) = De(\dot{\gamma}, \hat{N}) D$$

Re - Reynolds number

D(u) - symmetric velocity gradient

 \hat{N} - average rouleaux size $b(\dot{\gamma})$ - fragmentation rate of rouleaux dependent on the shear rate $\dot{\gamma}$

 $\hat{N}_{st}(\dot{\gamma})$ - the value of \hat{N} given a steady simple shear flow with shear rate $\dot{\gamma}$

 $De(\dot{\gamma},\hat{N})$ - Deborah number depending on the value of average rouleaux size \hat{N}

イロト イポト イヨト イヨト

э

A phase-field model of blood clot

Inear-momentum equations

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla \rho + \nabla \cdot (\mathbf{v}(c)\mathbf{D}(\mathbf{u})) + \mathbf{f} \quad \text{in } \Omega$$
$$\nabla \cdot \mathbf{u} = 0 \quad \text{in } \Omega.$$

phase-field equation

$$\frac{\partial c}{\partial t} - \nabla \cdot M \nabla \mu = k w |grad \varphi_{\mathcal{E}}|$$
$$\mu - \frac{1}{\varepsilon^2} W'(c) + \Delta c = 0,$$

transport equation for platelets

$$\frac{\partial(\phi w)}{\partial t} - D\nabla \cdot (\phi \nabla w) + \nabla \cdot (\phi w \mathbf{u}) + \frac{1}{\varepsilon} B(\phi) k w = 0 \quad \text{in} \quad \Omega,$$

 $\begin{array}{l} \Omega = \Omega_t \cup \Omega_s(t) \\ v(c) \cdot viscosity function dependent on the phase field c(supposed to be large in the area of the clot) \\ D(u) - symmetric velocity gradient \end{array}$

M - mobility constant

k = k(s) -adhesion rate of platelets dependent on the wall shear rate s

 ϕ - characteristic function of the time-dependent domain Ω_t

 $B(\phi) = \phi^2 (1-\phi)^2$ - function for handling of Neumann boundary condition

A splitting method for the linear-momentum equations and continuum equation

- the incompressible Navier-Stokes equations are a saddle point problem, its corresponding matrix (arising from FEM discretization) is indefinite → difficult to solve
- we use a projection method to avoid solving this problem
- we solve instead in each timestep a convection-diffusion equation for the velocity and a Poisson problem for the
 pressure
- we use incremental pressure correction scheme (IPCS):

For
$$k = 0...N$$

$$\frac{\mathbf{u}_{*}^{k+1} - \mathbf{u}^{k}}{\delta t} + N(\mathbf{u}_{*}^{k+1}) + \nabla p^{k} - L(\mathbf{u}_{*}^{k+1}) = 0$$

$$\Delta(p^{k+1} - p^{k}) = \frac{1}{\delta t} div \mathbf{u}_{*}^{k+1}$$

$$\mathbf{u}_{*}^{k+1} = \mathbf{u}_{*}^{k+1} - \delta t(\nabla p^{k+1} - \nabla p^{k})$$

where

$$L(\mathbf{u}) = div(v\mathbf{D}) = div(2v(\nabla \mathbf{u} + (\nabla \mathbf{u})^T))$$

and

$$N(\mathbf{u}) = [\nabla \mathbf{u}]\mathbf{u}$$

where the nonlinearity is resolved using Picard iteration

イロト イポト イヨト イヨト

э

• Our aim: reach the prescribed tolerance TOL: $\|u - u_{\Delta t}\| \approx TOL$

Local truncation error

• 1.
$$u_{\Delta t} = u + \Delta t^2 e(u) + \mathcal{O}(\Delta t^4)$$

• 2.
$$u_{m\Delta t} = u + m^2 \Delta t^2 e(u) + \mathcal{O}(\Delta t^4)$$

Estimate of the relative error

•
$$\|u - u_{\Delta t_*}\| \approx \left(\frac{\Delta t_*}{\Delta t}\right)^2 \frac{\|u_{\Delta t} - u_{m\Delta t}\|}{m^2 - 1} = TOL$$

Heuristic error analysis

$$-e(u) \approx rac{u_{m\Delta t} - u_{\Delta t}}{\Delta t^2(m^2 - 1)}$$

Adaptive time stepping

(*)
$$\Delta t_*^2 = TOL \frac{\Delta t^2 (m^2 - 1)}{\|u_{\Delta t} - u_{m\Delta t}\|}$$

3

Blood rheological properties Blood coagulation process Blood coagulation process - motivation of the mathematical modelling Models Numerical treatment Summary An heuristic adaptive time stepping method

Algorithm: Algorithm for one adaptive time step

Data: u^n **Result:** u^{n+1} Given the old solution u^n do:

begin

- 1. Make m small timesteps of size Δt to compute $u_{\Delta t}$
- 2. Make one large step of size of size $m\Delta t$ to compute $u_{m\Delta t}$
- 3. Evaluate the relative solution changes $||u_{\Delta t} u_{m\Delta t}||$
- 4. Calculate the 'optimal' value Δt_* using (*) for the next time step
- 5. If $\Delta t_* << \Delta t$, reset the solution and go back to step 1, using
 - Δt_* as new timestep
- 6. Set $u^{n+1} = u_{\Delta t}$

different time scales of processes in the equations
 -> we take the minimum of the proposed times Δt_{*} from the previous algorithm,

 $e.g.\Delta t_{*FUTURE} = min\{\Delta t_{*NAVIERSTOKES}, \Delta t_{*PHASE}, \Delta t_{*TRANSPORT}\}$

• we solve equations as decoupled, however in reality they are coupled

-> at the end of each time iteration we check the residual of the whole system and reiterate when necessary

< ロ > < 同 > < 回 > < 回 > < 回 >

- 🔹 deal.ii FEM library 🚺 deal.II

 - (almost) dimension independent programming dimension dependent on an integer C++ template parameter
 - enables fully distributed programming using MPI, wherein the mesh is not stored on any single core
 - support of threading from Threading Building Blocks
 - live open source community
 - support of automatic space adaptivity
- Trilinos and Petsc linear solvers, however Trilinos distributed solvers better integrate with deal.ii Trilinos

< < >> < </p>

イロト イポト イヨト イヨト

ъ.

- Outlook
 - merge the viscoelastic model with the phase field model of blood clot
 - implement functional space adaptivity for the problem finer mesh near the interface
 - find the proper configuration of iterative solvers with preconditioners for better scaling up
 - perform computations in realistic geometries obtained from the medical imaging methods

< □ > < 同 > < 回 > < 回 > < 回 >