
Blood rheological properties
Blood coagulation process

Blood coagulation process - motivation of the mathematical modelling
Models

Numerical treatment
Summary

Modelling of blood flow and thrombus formation

Marek Čapek
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elasticity because of membrane elasticity

shear thinning viscosity because of rouleaux formation
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Introduction - hemostasis

primary task of coagulation - hemostasis in order to seal the
vessel wall injury
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Two seemingly disparate trigger mechanisms of blood coagulation

stasis flow conditions

VS.

high shear rate
thrombosis
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Material properties artificial surfaces - stents

angioplasty

restenosis can occur due to the reacting surface of stents

how to choose the material and the shape of stents properly?
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Material properties of artificial surfaces - artificial heart valves

normally working heart valves
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heart valve prostheses

how to choose the material and the shape of halves properly?
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A microstructure based viscoelastic model of blood flow

linear-momentum equations

Re
Du
Dt
−2ηs∇ ·D−∇ · τ + ∇p = 0,

∇ ·u = 0,

reaction-convection equation for the size of average rouleaux size

DN̂
Dt

+
1
2

b(γ̇)(N̂− N̂st )(N̂ + N̂st −1) = 0, (1)

equation for the development of the elastic part of the stress tensor

τ + De(γ̇, N̂)(

(
∂τ

∂ t
+ (u ·∇)τ−∇u · τ− τ ·∇uT

)
= De(γ̇, N̂)D,

Re - Reynolds number
D(u) - symmetric velocity gradient
N̂ - average rouleaux size b(γ̇) - fragmentation rate of rouleaux dependent on the shear rate γ̇

N̂st (γ̇)- the value of N̂ given a steady simple shear flow with shear rate γ̇

De(γ̇, N̂) - Deborah number depending on the value of average rouleaux size N̂
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A phase-field model of blood clot

linear-momentum equations
∂u
∂ t

+ u ·∇u =−∇p + ∇ · (ν(c)D(u)) + f in Ω

∇ ·u = 0 in Ω,

phase-field equation
∂c
∂ t
−∇ ·M∇µ = kw |gradϕε |

µ− 1
ε2 W ′(c) + ∆c = 0,

transport equation for platelets
∂ (φw)

∂ t
−D∇ · (φ∇w) + ∇ · (φwu) +

1
ε

B(φ)kw = 0 in Ω,

Ω = Ωt ∪Ωs(t)
ν(c) - viscosity function dependent on the phase field c(supposed to be large
in the area of the clot)
D(u) - symmetric velocity gradient
M - mobility constant
k = k(s) -adhesion rate of platelets dependent on the wall shear rate s
φ - characteristic function of the time-dependent domain Ωt
B(φ) = φ2(1−φ)2 - function for handling of Neumann boundary condition
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A splitting method for the linear-momentum equations and continuum equation

the incompressible Navier-Stokes equations are a saddle point problem, its corresponding matrix (arising from FEM
discretization) is indefinite→ difficult to solve

we use a projection method to avoid solving this problem

we solve instead in each timestep a convection-diffusion equation for the velocity and a Poisson problem for the
pressure

we use incremental pressure correction scheme (IPCS):

For k = 0 . . .N

1
uk+1
∗ −uk

δ t
+ N(uk+1

∗ ) + ∇pk −L(uk+1
∗ ) = 0

2

∆(pk+1−pk ) =
1
δ t

divuk+1
∗

3
uk+1 = uk+1

∗ −δ t(∇pk+1−∇pk )

where
L(u) = div(νD) = div(2ν(∇u + (∇u)T )

and
N(u) = [∇u]u

where the nonlinearity is resolved using Picard iteration
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An heuristic adaptive time stepping method

Our aim: reach the prescribed tolerance TOL: ‖u−u∆t‖ ≈ TOL

Local truncation error

1. u∆t = u + ∆t2e(u) +O(∆t4)

2. um∆t = u + m2∆t2e(u) +O(∆t4)

Estimate of the relative error

‖u−u∆t∗‖ ≈
(

∆t∗
∆t

)2 ‖u∆t−um∆t ‖
m2−1

= TOL

Heuristic error analysis

– e(u)≈ um∆t−u∆t
∆t2(m2−1)

Adaptive time stepping

(*) ∆t2
∗ = TOL ∆t2(m2−1)

‖u∆t−um∆t ‖
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An heuristic adaptive time stepping method

Algorithm: Algorithm for one adaptive time step

Data: un

Result: un+1

Given the old solution un do:

begin
1. Make m small timesteps of size ∆t to compute u∆t

2. Make one large step of size of size m∆t to compute um∆t

3. Evaluate the relative solution changes ‖u∆t −um∆t‖

4. Calculate the ’optimal’ value ∆t∗ using (*) for the next time step

5. If ∆t∗ << ∆t , reset the solution and go back to step 1, using

∆t∗ as new timestep

6. Set un+1 = u∆t

end Marek Čapek Modelling of blood flow and thrombus formation
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Other issues

different time scales of processes in the equations
-> we take the minimum of the proposed times ∆t∗ from the
previous algorithm,
e.g.∆t∗FUTURE = min{∆t∗NAVIERSTOKES,∆t∗PHASE ,∆t∗TRANSPORT}
we solve equations as decoupled, however in reality they are
coupled
-> at the end of each time iteration we check the residual of the
whole system and reiterate when necessary
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Used tools

deal.ii FEM library
C++11
(almost) dimension independent programming - dimension
dependent on an integer C++ template parameter
enables fully distributed programming using MPI, wherein the
mesh is not stored on any single core
support of threading from Threading Building Blocks
live open source community
support of automatic space adaptivity

Trilinos and Petsc linear solvers, however Trilinos distributed

solvers better integrate with deal.ii
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Some results
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Summary

Outlook
merge the viscoelastic model with the phase field model of blood
clot
implement functional space adaptivity for the problem - finer mesh
near the interface
find the proper configuration of iterative solvers with
preconditioners for better scaling up
perform computations in realistic geometries - obtained from the
medical imaging methods
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