Central European Institute of Technology BRNO | CZECH REPUBLIC

Using the IT4I infrastructure on the enzymatic reactions studies

Molecular modelling of the biological systems

> Chemical reactions in living organisms are catalyzed by enzymes
$>$ Enzymes are large biomolecules containing thousands of atoms
$>$ Modelling of the enzymatic reaction:

- Small model containing dozens of atoms treated by the QM methods
- Model of the full enzyme treated by the hybrid QM/MM methods

Introduction - OGT glycosyltransferase

* Uridine diphospho- N-acetylglucosamine: polypeptide β - N -acetylaminyltransferase; PDB ID: 3PE4
* Enzymatic transfer of N -acetylglucosamine molecule on Ser/Thr residue of protein
* Inverting glycosyltransferase of the GT-B family
* Post-translational modification: first reported in 1984

$$
\begin{aligned}
& \text { UDP-GIcNAc }+\mathrm{OH}-\text { Ser/Thr }(\text { peptide }) \longrightarrow \text { Peptide-GlcNAc }+ \text { UDP } \\
& \text { Donor } \quad \text { Acceptor }
\end{aligned}
$$

OGT Crystal Structure (Walker et al, 2011)

OGT Catalytic Site

Introduction - OGT glycosyltransferase

OGT biological function: Nutrient and stress sensor (cycling dynamics comparable to that of protein-phosphorylation)

OGT function abnormalities: insulin resistance, diabetic complications, neurodegenerative disorders and cancer

OGT as a promising drug target: The TS state analogues are the best inhibitors, however several reaction mechanisms were proposed

Different Mechanisms Proposed for OGT

1. His498 as catalytic base ($\mathrm{M}_{\mathrm{His}}$)
(Lazarus et al. 2011
Tvaroska et al. 2012)
2. α-phosphate as base ($\mathrm{M}_{\mathrm{PO} 4}$) (Schimpl et al. 2012)

3. Water molecule for shunting proton to ASP554 ($\mathrm{M}_{\text {Asp }}$)
(Lazarus et al. 2012)

Structure of the Substrates in the Crystal Structures

3TAX -> hOGT4.5, Casein Kinase II subunit alpha (Ser21), UDP; Lazarus2011; 1.88 Å
4AY6 -> hOGT(TRP fragment and CD), TGF-BETA-ACTIVATED Kinase 1 and MAP3K7-BINDING PROTEIN 1 (aminoAla1395), UDP-5S-GIcNAc; Shimpl2012; 3.3 Å

4GYW -> hOGT4.5, Casein Kinase II subunit alpha (Ser21), UDP, Ser21-GIcNAc; Lazarus2012; 1.7 Å

Acceptor Serine Side Chain Conformations

3 TAX (1.88 Å) -> +g (57°)
4AY6 (3.30 Á) -> -g (-65 ${ }^{\circ}$)
4GYW (1.70 Å) -> t (169°)

3TAX x-ray electron density around the Ser21

Undescribed density for the trans of Ser21
Presumed gauche:trans occupancy between 2:1 and 3:1

Ser21 rotation: Access to Different Proton Acceptor

Serine Side Chain Conformations for Diverse Mechanisms

Computational Methodology

- Hybrid QM/MM ab initio MD using CPMD/GROMOS
- Fully solvated system
- QM part treated by DFT PBE functional with Trouiller-Martins pseudopotenitials
- MM part treated by AMBER99SB force field
- Free energy reaction path optimization using the String Method on selected collective variables
- Exploring the Free Energy Surface using Metadynamics

Reaction Mechanism Studies - METADYNAMICS

- the type of accelerated molecular dynamics, where an artificial potential is added to the site already visited to allow the molecule to explore places with higher energy
- this potential can also be applied to selected collective variables (distance, angle, etc.) for a given reaction path which helps to overcome the reaction barrier
- the difficulty of the method grows exponentially with the number of collective variables

NWChem, https://www.youtube.com/watch?v=CtIrLkx6aNo

Reaction Mechanism Studies - String Method

- minimum free energy reaction path optimization
- the reaction path is divided into points (beads) with defined values of the collective variable (distance, angle, dihedral angle, etc.)
- at each point there is a molecular dynamics running where the value of the collective variable is held by means of restraints
- its difficulty does not depend on the number of collective variables and is linearly dependent on the number of beads

Eric Vanden-Eijnden, http://cims.nyu.edu/~eve2/string.htm

Partitioning of the QM and MM Zone

Large QM Zone

Atoms: 146 QM
Box Size: $19.7 \times 27.4 \times 27.1$ Å
Time: 19 s/step on 80 CPUs
Atoms: 106 QM atoms
Box Size: $19.7 \times 20.2 \times 27.1 \AA$
Time: 11 s/step on 64 CPUs

Small QM Zone

Collective Variable and Free Energy Evolution During Optimization

146 QM atoms statistics:
1 bead: 19 s / step on 80 CPUs Steps: 2200 steps/iter
Iter: 37
Beads: 41
Overall CPU time: $1.4 \mathrm{M} \mathrm{cpu} / \mathrm{h}$

Most Probable Reaction Path - M $_{\text {PO4 }}$

Summary

> Used methodology was able to distinguish between proposed mechanisms
> Catalytic process involves nucleophilic attack, proton transfer and glycosidic bond formation, in the same order for all the mechanism and has slightly dissociative $\mathrm{S}_{\mathrm{N}} 2$ character
> N-Acetyl group stabilize leaving phosphate group
> Free energy profile suggests $\mathrm{M}_{\mathrm{PO} 4}$ as the most probable pathway having the TS barrier of $\sim 24 \mathrm{kcal} / \mathrm{mol}$

Aknowledgment

Financial support

Prof. Jaroslav Koča
Dr. Igor Tvaroška
Manju Kumari
Petr Kulhánek
Jakub Štepán
Tomáš Trnka

JIHOMORAVSKÉ CENTRUM PRO MEZINÁRODNÍ MOBILITU

MARIE CURIE

Jihomoravský kraj

Computational support
IT4Innovations
national
supercomputing
center

| Slovak Academy ofsciences Programme | S A S S P | R |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Central European Institute of Technology
BRNO |CZECH REPUBLIC

Thank You for your kind attention!

