Automatized Sentinel-1 Monitoring System

Milan Lazecký, Ph.D. milan.lazecky@vsb.cz

IT4Innovations national00£\$1! supercomputing center000#1010

Background

- 1980s satellite (SAR) radar images are interferometrically coherent!
- 1990s satellite SAR interferometry (InSAR) has potential to identify subsidence and landslides!
- 2000 PS-InSAR technique can identify (sub)millimetric motions!
- 2008 TerraSAR-X satellite offers ground resolution < 1x1 m!
- 2014 new SAR satellite Sentinel-1 = "golden era of InSAR"
- 2016 approaches towards (inter)national systems for monitoring of terrain displacements, InSAR recognized and approved by geodetists

Work objective(s)

- to create a Czech national terrain monitoring system offering:
 - generation of annual static maps of terrain motions subsidence, active landslides
 - on-demand generation of high resolution motion maps over urban areas
 - "near real-time" warning system for potential sudden motions
 - extra radar-based feature maps e.g. dual-polarization application for forestry/agriculture (identification of land type and/or deforestation)

Satellite SAR Interferometry

Multitemporal InSAR

- usage of 20+ SAR images
- selection of stably reflecting objects
- removal of atmospheric and other noise components

Basic techniques:

- Persistent Scatterers (PS-InSAR)
 - combination of images with common "master"
 - high accuracy of estimation (<1 mm/year)
- Small Baselines (SB-InSAR)
 - combination of images with short time span
 - spatial filtering -> more points, lower accuracy

Sentinel-1, a "game-changer"

- part of European Copernicus fleet
- free and open data access
- global data (with higher revisit rate over Europe) since Oct 2014
- 6 days revisit time (for InSAR purposes)
- resolution of 20x5 m
- 1 image = cca 250x180 km = cca 4.5 GB
 - ---> need of supercomputations

Sentinel-1 coverage over Czech Rep.

- 4 descending(D) tracks
 - footprints pictured ->
- 4 ascending (A) tracks
- example:
 - 1 image of D track 124

124

Sentinel-1 coverage over Czech Rep.

- 1 image consists of:
 - 3 swaths
 - 3x8 bursts (80x20 km)

Sentinel-1 coverage over Czech Rep.

- each area covered by 2 D and 2 A tracks
- processing of all tracks leads to selfconfirmed results
- ~60 images/year -> 4 tracks x 60 images x 4.5 GB = 1 TB => processing of any 1 area needs 1 TB of input data

2015: HPC processing system 1.0 - "IT4InSAR"

- virtual machine running specific software on one node (24 cores)
- quick and flexible for one-off processing and testing, sharable platform
- convenient but "no-HPC"
- empowered by SARPROZ sw

2015: HPC processing system 1.0 - "IT4InSAR"

2015: HPC processing system 1.0 - "IT4InSAR"

2016: HPC processing system 2.0 - "Sentineloshka"

- processing using open-source tools, custom Sentinel-1 database
- codes available: https://github.com/espiritocz/sentineloshka/
- fully automatic
 - user input: coordinates
- heavy processing
 - need optimizations

2016: HPC processing system 2.0 - "Sentineloshka"

first result:

- 50x50 km area
- 2 years data: 3.8 TB
- 650 core-hours (!)

OOKING INSIDE THE CONTINENTS FROM SPACE

- ESA transforms raw satellite data into SLC (images that include radar wave phase information)
- CollGS stores SLC data over Czech Republic
- IT4I exploits SLC data and calibrates/coregisters them (0.001 px precision)

- SLC preprocessor (CESNET server) calibrates data using precise ephemerides and auxilliary Sentinel-1 data, sends data to IT4I ^{10 minutes/18 bursts}
- metadata base (CESNET server) S1 burst metadb based on LiCS
- SLC-C generation (IT4I) (heavy) HPC processing, storage ^{20 minutes/18 bursts}

- SLC preprocessor (CESNET server) calibrates data using precise ephemerides and auxilliary Sentinel-1 data, sends data to IT4I ^{10 minutes/18 bursts}
- metadata base (CESNET server) S1 burst metadb based on LiCS
- SLC-C generation (IT4I) (heavy) HPC processing, storage ^{20 minutes/18 bursts}

- SLC-C data are organized per track and burst ID
- user sets coordinates, data are sent for processing, results are seen in a webGIS
- currently available:
 - DINSAR one burst interferogram is generated in 8 seconds
 - PS InSAR using STAMPS, dataset of 100 bursts: 1-2 hours, i.e. 24-48 core-hours
 - SB InSAR using STAMPS, dataset of 300 bursts: 3-4 hours, i.e. 72-96 core-hours

SLC-C storage multitemporal processor end user

both PS and SB processing should be more optimized

STAMPS

TRAIN

SW

4

124 2 2142

24 2 2142

relorb swa

75 1 8109 75 1 8136

175 2 8118

coher.: 0.89638877 vel.: -2.3

8109

1 8136

175 2 8118

75

.75

21479 Line of sight -8.9000 - -4.8400 -4.8400 - -0.7800 -0.7800 - 3.2800 3.2800 - 7.3400 7.3400 - 11.4000

51 3 21479

1479

IT4S1 - first results - zoom out + new frames

124 124 175 175 175 175 175	22111222	2142 2144 8109 8136 8164 8091 8118	

IT4S1 - first results - zoom out + new frames

rela	SW	SWa	
124	2	2142	
124 175	2	2144	
175	1	8136	
175	2	8091	
175	2	8118	

IT4S1 - first results - zoom out + new frames

Further works for IT4S1

- improvements of codes
- application of partially prepared (post)processing scripts
 - decomposition, landslide identification,...
- preparing full pre-processing chain:
 - CZ: 8 tracks per ~120 images x 24 corehours = 23040 c.hours = ~1 core-month
- calibration of intensity images for dual-polarization processing
- include external information (weather, temperature, landuse?)
- include other techniques for full exploitation (e.g. pixel offset tracking)
- inclusion of commercially available processing tools (?)

full national map of potential landslide activity

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

POTENTIAL OF SENTINEL-1A FOR NATION-WIDE ROUTINE UPDATES OF ACTIVE LANDSLIDE MAPS

M. Lazecky ^a* F. Canaslan Comut^b, E. Nikolaeva^c, M. Bakon^d, J. Papco^d, A. M. Ruiz-Armenteros^e, Y. Qin^f, J. J. M. de Sousa^g, P. Ondrejka^h

map of decomposed
displacements of infrastructure

EEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING

Bridge Displacements Monitoring Using Space-Borne X-Band SAR Interferometry

Milan Lazecky, Ivana Hlavacova, Matus Bakon, Joaquim J. Sousa, Daniele Perissin, and Gloria Patricio

early warning about structure destabilization

Hong–Kong building collapse (29th January 2010)

• identification of deforestation and other (semi-)automatic outputs

EVALUATION OF FOREST LOSS IN BALIKPAPAN BAY IN THE END OF 2015 BASED ON SENTINEL-1A

POLARIMETRIC ANALYSIS

MILAN LAZECKÝ¹, STANISLAV LHOTA², ZUZANA POHANKOVÁ², PETRA WENGLARZYOVÁ³,

NEHA JOSHI⁴

Thank you for your attention