Interpretation of phase behavior of ionic liquids using the tool of theoretical chemistry

Ctirad Červinka

Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, CZ-166 28 Prague 6, Czech Republic, cervinkc@vscht.cz

What are ionic liquids?

- Chemical species composed of molecular ions, being liquid at ambient temperatures, or at least below 100 °C. In other words, low-melting (in)organic salts.
- What valuable porperties do the ionic liquids possess? Vast tunability of their chemical structure enables a tailored design of their extremely low volatility, high eletrochemical stability, selective reactivity etc.
- What potential applications can be ionic liquids suitable media for? Electrolytes in supercapacitors and batteries; Gas capture, storage and metamorphosis; Biomass processing media
- What are the challenges related to investigation of ionic liquids? For experimentalists – high viscosity, limited availability.
 - For theoreticians massive cohesive interactions, slow internal dynamics.
- What factors impede broader explotation of ionic liquids in chemical technologies?
- Prevailing higher price, limited availability of their physico-chemical properties and insufficient understanding of their behavior.

Project motivation

- Phase behavior of 20 1-ethyl-3-methylimidazolium ionic liquids has been investigated calorimetrically in a related experimetnal project
- Only 11 out of 20 species were found to crystallize routinely, additional 5 species crystallized rarely and irreproducibly while 4 species did not crystallize at any conditions and experimetnal setups
- Computational interpretation of the tendency of the given ionics liquids to crystallize was looked for using structural, energetic and transport properties accessible from moleuclar-dynamics simulations or quantum-chemical calcaultions

Computational details

- Liquid phase treated by classical non-polarizable molecular dynamics in Lammps using all-atom OPLS-like CL&P force-field model
- Trajectories initiated from random positions of 500 ion pairs maintained at 400 K and 1 bar
- Equilibration 5 ns, 20 ns production runs, step 1 fs
- Simulated annealing used to determine the ion pair geometry corresponding to the global potential energy of the ion pair
- Pair interaction energies and their decompositions calculated with sSAPT0/jun-pVDZ

Geometry of the 1-ethyl-3methylimidazolium p-toluenesulfonate [emIm][OTs] corresponding to its global minimum of the potential energy.

Chaotic structure of the liquid phase of ionic liquid 1-ethyl-3methylimidazolium p-toluenesulfonate [emIm][OTs].

OTf

I _{fus}

[EtSO₄]

♦ [Br]

(PF_e)

Ordered crystal structure of the monoclinic polymorph of [emIm][OTs].

- Crystal phase treated by quantum-chemical density-functional theory (DFT) using the PBE-D3(BJ) functional, PAW basis sets and periodic boundary conditions in VASP
 - Geometry of unit cells containing 2-8 ion pairs optimized with DFT
 - Isolated ion pairs relevant for the gaseous phase mimicked within peridodic DFT calculations with fixed 30 Å cubic cells
- Static electronic cohesive energies computed as the difference of energies of an ion pair in the crystalline and gaseous phases

Structural aspects

- Ionic liquids not reported to crystallize exhibit shorter ion contact distance in the liquid and its lower ordering
- Molar volumes or the cohesive energy density cannot be used to predict the crystallizablility of investigated ILs
- Lower thermal expansivity seems to impeed the crystallizability
- Strucural paramters were found to be uncorrelated with with T_g and T_{fus} values

JRDF , tij 3.4 20 NY NRY NY NR' NR T_{g} I _{fus} T_{fus} [AcO] [EtSO₄] [MeSO₄] [TFAcO] [AcO] [MeSO₄] [TFAcO] [DMP] ♦ [OTf] ♦ [NO₃] [PF₆] 🔶 [Br] [NO₃]

Calculated descriptors considered:

 $d_{\rm int}$ – position of the first peak of cation-anion radial distribution function; $g_{\rm RDF}$ – intensity of the first peak of cationanion radial distribution function; n_{coord} – coordination number ncoord of cation-anion contacts; V_m – molar volume at 400 K; α_n – isobaric thermal expansivity coefficient; E_n – cohesive energy density.

[DMP]

Diffusion aspects

- Transport properties do not discriminate crystallizing and yet non-crystallizing ILs
- Self-diffusivities yield reasonable correlations with T_{g} and T_{fus} , enabling estimates of these qunatities for compounds with unavailable physicochemical data

Calculated descriptors considered:

 D_{cat} – self-diffusivity of cations at 400 K; D_{ani} – self-diffusivity of anions at 400 K; E_A – activation energy for diffusion of an ion pair.

Relevant correlations

Left panels – ILs with unknown (N) and known (Y) glass transition temperatures (T_g) .

Right panels – ILs with unknown (N) melting temperature (T_{fus}) , rarely crystallizing ILs (R) and routinely crystallizing ILs (Y).

Energetic aspects

- Pair interaction energies are the most relevant descriptors for assessment of the crystallizability
- Out of 11 species exhibiting | *E*^{liq} | above 350 kJ·mol⁻¹, only 3 crystallize routinely
- Vaporization energy and its conformation component do not discriminate crystallizing and yet non-crystallizing ILs
- Significant dispersion interactions in the liquid and large curvature of the interaction energy vs. distance curves impede the crystallizability

Calculated descriptors considered:

 E^{liq} – interaction energy of the closest ion pair in its average geometry in liquid; E^{gas} – interaction energy of the simualted-annealed ion pair; ΔE_{conf} – conformational penalty associated with condensation; $\Delta_{vap}U$ – vaporization energy at 400 K; ε_{disp} – fraction of dispersion contribution to the total cohesion of the given phase; κ – curvature of the ion pair interaction energy vs. distance curve at its minimum point.

- Rather enthalpy-driven T_g exhibit more significant correlations with energetic and transport descriptors than T_{fus} , the correlations of which are blurred by entropic contributions
- Correlations of T_g enable its estimates with an uncertainty 10-20 K
- [emIm][AcO] possesses a unique set of outlying characteristics, possibly rendering its

crystallization extremely hard, yet not impossible

Acknowledgements

Agilio Pádua, École Normale Supériore de Lyon – Development of force fields for ionic liquids **Vojtěch Štejfa**, University of Chemistry and Technology Prague – Calorimetry and critical assessment of experimental data Martin Klajmon, University of Chemistry and Technology Prague – Molecular-dynamics simulations of ionic liquids systems

Financial support from the Czech Science Foundation (GACR No. 19-04150Y) is acknowledged. Access to computing facilities under the program the Large Infrastructures for Research, Experimental Development and Innovations project "IT4Innovations National Supercomputing Center – LM2015070" is acknowledged.

