Accurate modeling of zeolite (in-)stability using tailored neural network potentials

Andreas Erlebach, Christopher J. Heard, Petr Nachtigall, Lukáš Grajciar

Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, 128 43 Prague, Czech Republic E-mail: lukas.grajciar@natur.cuni.cz

Energy-density plot of hypothetical and existing (red) zeolites calculated using an analytical potential (SLC) and NNPs.

- Both NNPs (PBE+D3 and SCAN+D3 level) show virtually same accuracy as DFT
- Energy errors are about one order of magnitude lower compared to analytical potentials (ReaxFF [5], SLC) and TB-DFT (XTB-GFN0 [6])

- generate a database of hypothetical zeolites [1]
- Optimization of the database using the new NNPs parameterized at the SCAN+D3 level
- Database provides vital input for elucidation of structure-property relationships of zeolites using machine learning [4]

- NNPs systematically underestimate energies (20-40 meV) after bond breaking

Simulated annealing of silica glass and zeolite amorphization by compression at 1200 K

Summary and outlook

Tailored silica NNP

- ✓ Robust interpolators of the PES
- ✓ Accuracy close to DFT
- ✓ Fast and accurate simulations of zeolites close to equilibrium as well as at high temperatures and pressures
- ✓ Revised zeolite database as input for future machine learning studies
- ✓ Two DFT databases at the PBE+D3 and SCAN+D3 level for future NNP development

Next steps

- \rightarrow Extension to more complex systems including heteroatoms (Ge, Al, ...) and water
- \rightarrow NNPs as surrogate model for large scale sampling of the PES (biased dynamics, FEP, ...)
- \rightarrow Prediction of phase transitions, zeolite hydrolysis, ...

Root mean square errors (RMSE) with respect to SCAN+D3 of structures not included in NNP training

Energy error distribution with respect to PBE+D3 of

an analytical potential (AIP [8]), TB-DFT (XTB-GFN0 [6])

and tailored NNPs

Tailored NNP for Ge containing zeolites In silico screening of the Ge location in zeolites to find promising precursors for the (ADOR [2]) synthesis of new zeolites

Root mean square errors (RMSE) with respect to PBE+D3 of structures not included in NNP training

RMSE	Energy [meV/atom]	Forces [eV/Å]
SiGe_NNP	7.3	0.122
XTB-GFN0	16.2	0.335
AIP	59.2	85.9

References

[1] Pophale, R. *et al.*, *PCCP*, **2011**, 27, 12507 [2] Roth, W. J. *et al.*, *Nat. Chem.*, **2013**, 5, 628-633 [3] K. T. Schütt, *J. Chem. Phys.*, **2018**, 148, 241722 [4] D. Schwalbe-Koda, et.al., Nat. Mater., 2019 , 18, 1177-1181

[5] J. C. Fogarty *et.al.*, *J. Chem. Phys.* , **2010**, 132, **174704** [6] C. Bannwarth *et.al.*, *WIREs Comput Mol Sci.*, **2020**, e01493 [7] H. W. Klemm, *Angew. Chem. Int. Ed.*, **2020**, 59, 10587-10593 [8] G. Sastre *et.al., Chem. Mater.* **2003**, 15, 1788–1796