Large-scale quantum-mechanical calculations for computer-aided drug design

Jan Řezáč

Institute of Organic Chemistry and Biochemistry Academy of Sciences of the Czech Republic

Pavel Hobza group

Pavel Hobza Martin Lepšík Jindřich Fanfrlík Jan Řezáč Adam Pecina Cemal Köprülüoğlu Saltuk Eyrilmez Haresh Ajani

Institute of Organic Chemistry and Biochemistry Academy of Sciences of the Czech Republic Prague

Enzyme inhibition

Enzyme inhibition

Enzyme inhibition

Rational drug design

- Identify metabolic pathways involved in the disease
- Identify structure and mechanism of a key enzyme
- Design an inhibitor of this enzyme
 - binds stronger than the substrate
 - specific to the target
 - can be delivered into the cell
 - is not toxic

Rational drug design

- Identify metabolic pathways involved in the disease
- Identify structure and mechanism of a key enzyme
- Design an inhibitor of this enzyme

Computer-aided drug design

- Identify metabolic pathways involved in the disease
- Identify structure and mechanism of a key enzyme
- Design an inhibitor of this enzyme

Modeling protein-ligand binding

- Protein structure X-ray data + modeling
- Geometry of the protein-ligand complex **docking**
- Binding free energy calculation scoring

Computational approaches

- Statistics-based models
- Molecular mechanics approximate empirical models
- Quantum-mechanical calculations

theoretical approximations

numerical calculations

Semiempirical QM methods

- Full QM to demanding for large-scale applications
- Semiempirical methods
 - Approximations compensated with empirical parameters
 - 1000s of atoms computed in minutes
 - No system-specific parameterization
 - Covers all phenomena using appropriate physics
- Limitations
 - Poor description of non-covalent (intermolecular) interactions

Method development

- Corrections for PM6 and DFTB methods
- Fixing London dispersion, hydrogen and halogen bonds

Our method development

- Corrections for description of non-covalent interactions¹⁻⁵
- Benchmark calculations for their parametrization⁶
- Solvation model improvements
- Computational drug design protocol based on SQM⁷
- Software framework for automating the calculations⁸

1) Řezáč, J.; Fanfrlík, J.; Salahub, D.; Hobza, P. J. Chem. Theory Comput. 2009, 5 (7), 1749–1760.
 2) Korth, M.; Pitoňák, M.; Řezáč, J.; Hobza, P. J. Chem. Theory Comput. 2010, 6 (1), 344–352.
 3) Řezáč, J.; Hobza, P. Chem. Phys. Lett. 2011, 506 (4-6), 286–289.
 4) Řezáč, J.; Hobza, P. J. Chem. Theory Comput. 2012, 8 (1), 141–151.
 5) Hostaš, J.; Řezáč, J.; Hobza, P. Chem. Phys. Lett. 2013, 568–569, 161–166.
 6) Řezáč, J.; Hobza, P. Chem. Rev. 2016, 116 (9), 5038–5071.
 7) Lepšík, M.; Řezáč, J.; Kolář, M.; Pecina, A.; Hobza, P.; Fanfrlík, J. ChemPlusChem 2013, 78 (9), 921–931.

Virtual screening capabilities

- Docking
 - large databases of compunds
 - 10⁶ structures generated
- Fast filtering SQM scoring on fixed geometry
 - from 5 minutes
 - 100 000 calculations / project
- Full scoring including SQM optimization
 - few days
 - 1000 calculations / project

Carbonic anhydrase II

• New solvation model COSMO2²

Pecina A., Řezáč, J. et al. ChemPhysChem 2018.
 Kříž K., Řezáč J.; submitted manuscript

- Perfect model with accurate experimental data for 10 inhibitors¹
- Zinc metaloprotein

Crystal waters	YES		NO	
	R ²	PI	R ²	PI
SQM/COSMO	0.58	0.87	0.45	0.73
SQM/COSMO2	0.68	0.91	0.69	0.75
AMBER/GB	0.09	0.45	0.13	0.3
Vina	0.39	0.67	0.07	0.2
DOCK 6	0.38	0.5	0.1	-0.22
Autodock 4	0.19	0.53	0.09	0.06
Gold ASP	0.15	0.47	0.12	0.35
GoldPLP	0.12	0.39	0.13	0.39
GoldScore	0.01	0.15	0.01	-0.1
Chemscore	0.01	0.08	0.01	-0.1

Identification of Native Protein–Ligand Poses

- Can SQM identify native geometry of P-L complex?
- large set of structures from docking
- Native pose should be energy minimum
- SQM tested against multiple scoring functions used in the field

1) Pecina, A.; Haldar, S.; Fanfrlík, J.; Meier, R.; Řezáč, J.; Lepšík, M.; Hobza, P. J. Chem. Inf. Model. 2017.

Identification of Native Protein–Ligand Poses

1) Pecina, A.; Haldar, S.; Fanfrlík, J.; Meier, R.; Řezáč, J.; Lepšík, M.; Hobza, P. J. Chem. Inf. Model. 2017.

Conclusions

- SQM method perform significantly better than standard scoring functions and molecular mechanics
- The computational cost is well justified
- Synergy between method development and applications

GRANTOVÁ AGENTURA ČESKÉ REPUBLIKY

IT4Innovations0
národní0@101€\$€
superpočítačové
centrum01100\$0£