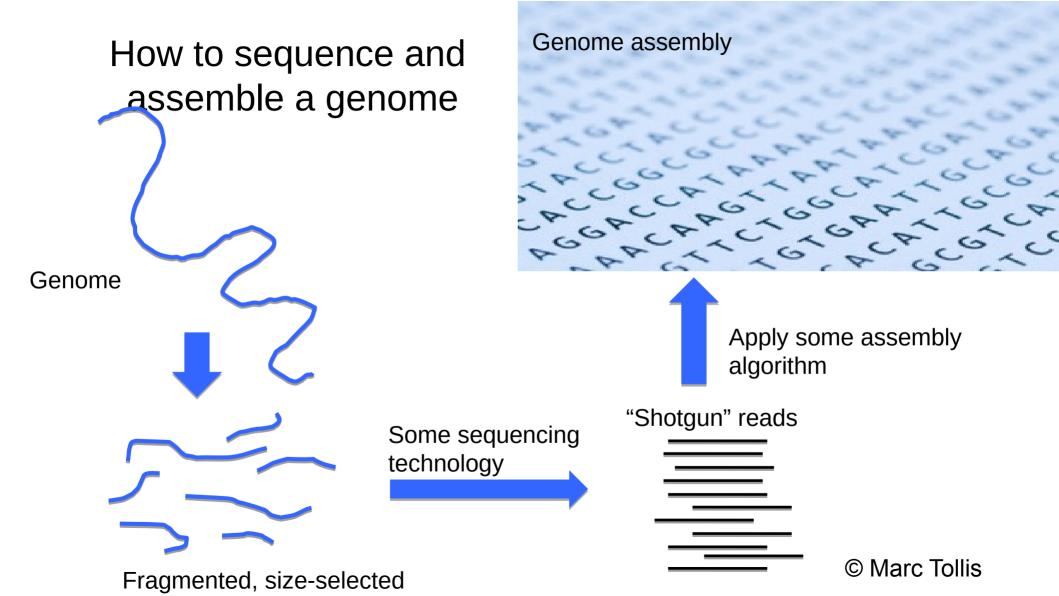
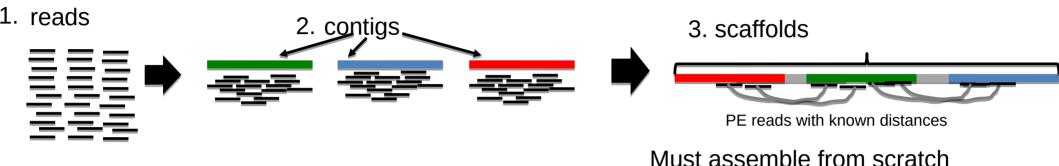

Assembling diploid genome of *Cobitis taenia* using Illumina short reads

November 7 2018

Martin Mokrejš

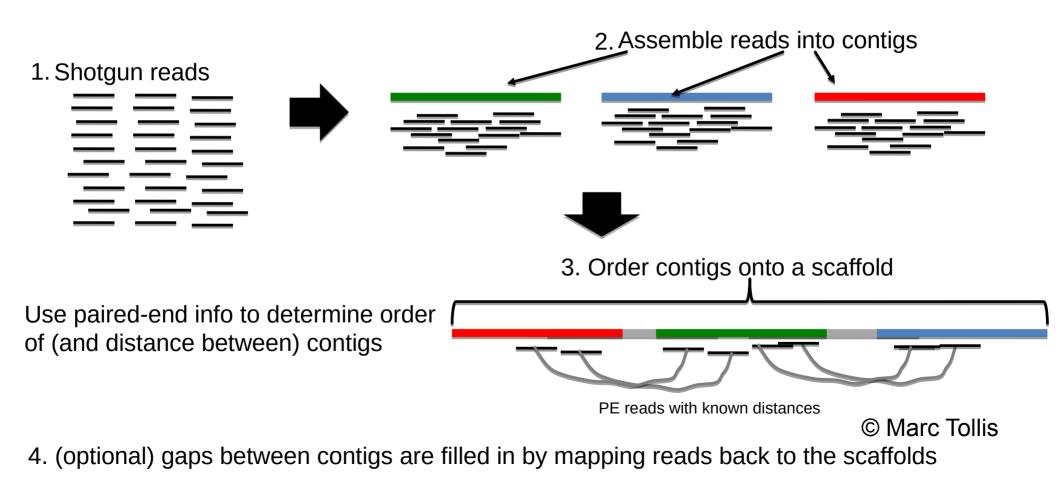

IT4Innovations national01\$#&0 supercomputing center@#01%101


Janko et al. 2006 Mol. Ecol.; Choleva et al. 2012 Evolution

Cobitis fishes have 49 or 50 chromosomes

$ \begin{array}{c} \mathbf{x} \\ \mathbf{y} \\ \mathbf$	0 1 1 1 1 1 1 1 1 1 1 1 1 1
$ \begin{array}{c} \begin{array}{c} +e^{-\frac{1}{2}}e^{-$	14-5- 14
c) $22 = -12 - 11 - 11 - 12 - 14 - 10 - 64 - 64 - 14 - 10 - 61 - 10 - 10 - 10 - 10 - 10 - 10$	4) 23 - 24 - 11 - 21 - 12 - 12 - 14 - 14 - 15 - 15 - 15 - 15 - 15 - 15
$\begin{array}{c} 22 = -\frac{1}{2} \left\{ 1 = \frac{1}{2} - \frac{1}{2} \left\{ 1 = \frac{1}{2} + 1$	$\begin{array}{c} & 2 & - 3 \ell \cdot \frac{1}{2} - \frac{1}{$
40 11 m = 1 − 2 − 2 − 2 − 2 − 2 − 2 − 2 − 2 − 2 −	0 11 A - 3 - 1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2
$\begin{array}{c} 1 & = & 1 \\$	$\begin{array}{c} & 0 & - \frac{N}{2} - \frac$

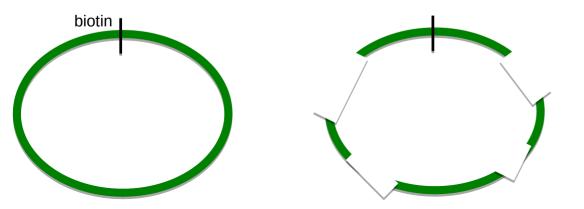
De novo assembly



Reference-based assembly

De novo Assembly Basics

Illumina Paired-end and Mate-pairs


Paired-end (PE) "short insert library" sequencing

- Genome is fragmented to desired lengths
- Reads one end of the molecule, flips and then reads the other end
- Generates read pairs with a known distance between them

500bp

Mate-pair (MP)"jumping library" sequencing

- Circularizes longer molecules (2kb-25kb)
- Biotinylated, fragmented, enriched, and sequenced

© Marc Tollis

orientation

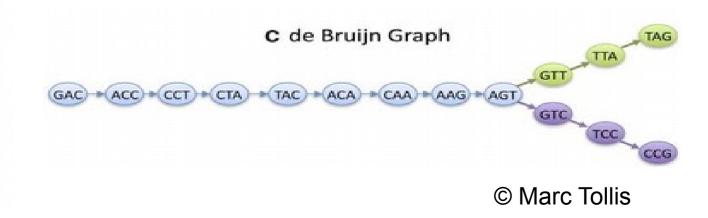
FR

Repeats Resolved

- Repeats can be resolved using paired-end information
- If one end of a read is unique, then you can map both reads.

- However, for longer repeats (*i.e.* LINEs) this will not work.
- Hence Illumina-based genomes tend to be fragmented

© Marc Tollis

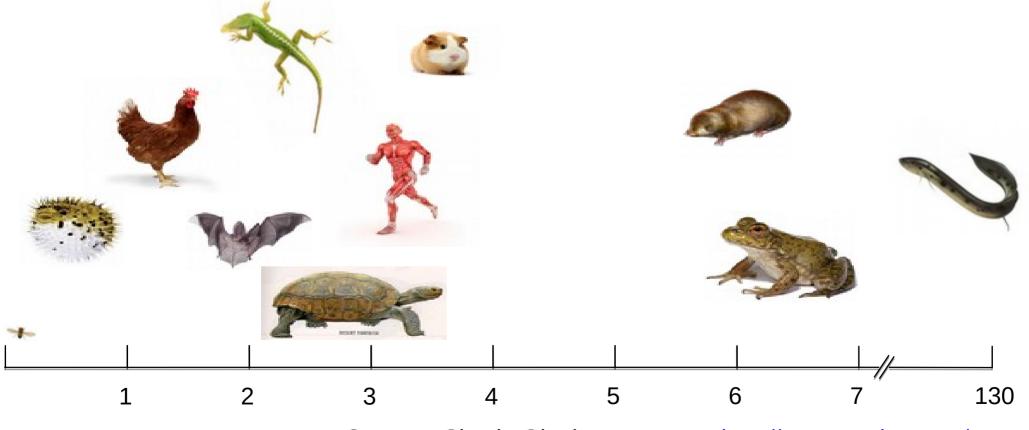

- Chromosomes
- fragments
- K-mers
- unitigs
- contigs
- scaffolds

de Bruijn Graph Construction

- Reads are decomposed in to *k*-mers
- *K*-mers become nodes in a graph.
- Edges are drawn between *k*-mers which overlap by *k*-1 bases.
- Non-branching paths in the graph form unambiguous stretches of sequence.

A Read Layout

R_1 :	GACCTACA
R2:	ACCTACAA
R3:	CCTACAAG
R_4 :	CTACAAGT
A:	TACAAGTT
B:	ACAAGTTA
C:	CAAGTTAG
X :	TACAAGTC
Y :	ACAAGTCC
Z :	CAAGTCCG



Expected Cobitis genome size?

1.3Gbp (1.3giga characters [ATGC])

3.2Gbp (human genome)

Animal Genome Sizes

Genome Size in Gigabases

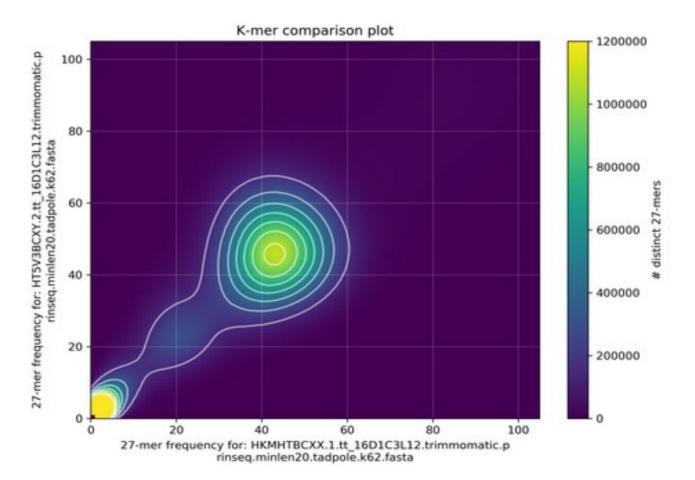
http://genomesize.com/

Sequence datasets of the Cobitis (fish) genome

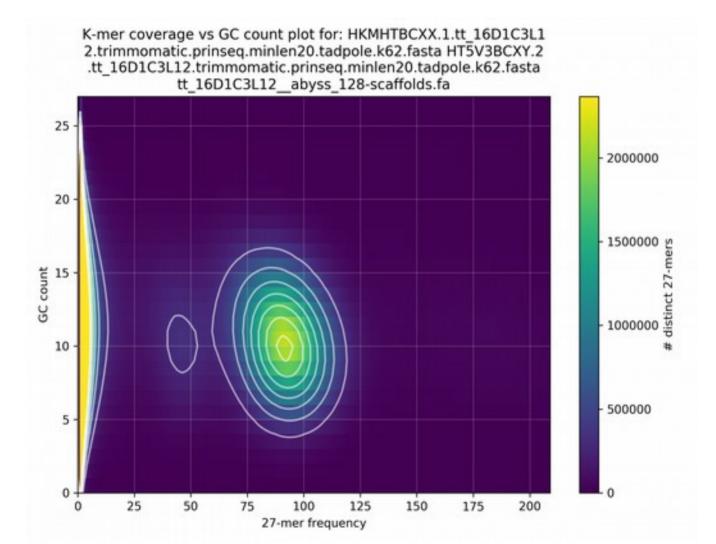
Illumina 2x250nt reads paired-end, inserts ~600bp Illumina 2x250nt reads mate-pair:

> 5kbp 8kbp 5kbp

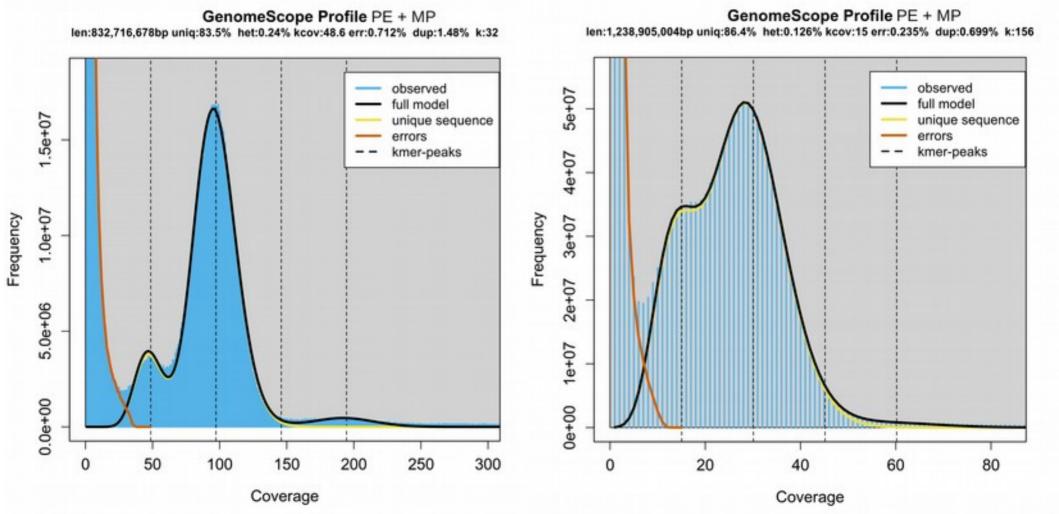
About 5 000 Euro were spent in sequencing with sample preparation


Quality control steps

analyze frequencies of [ATGC], cross-compare dataset properties


raw vs. trimmed FASTQ files can be inspected FASTQC/MultiQC trimmomatic KAT

assembled unitigs/contigs/scaffolds can be inspected ntCard/jellyfish GenomeScope KAT

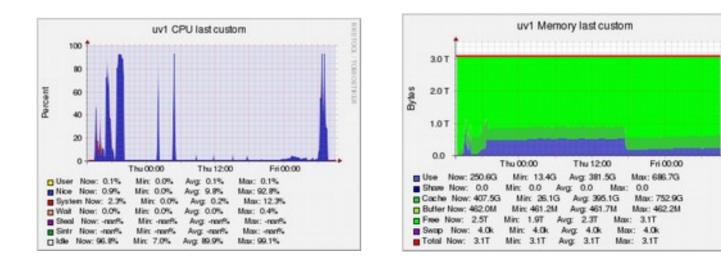

Basic quality-control checks, PE2016 vs. PE2017 libraries, kmer freq. vs. kmer freq.

Basic quality-control checks, PE2016 vs. PE2017 libraries, kmer freq. vs. GC-content

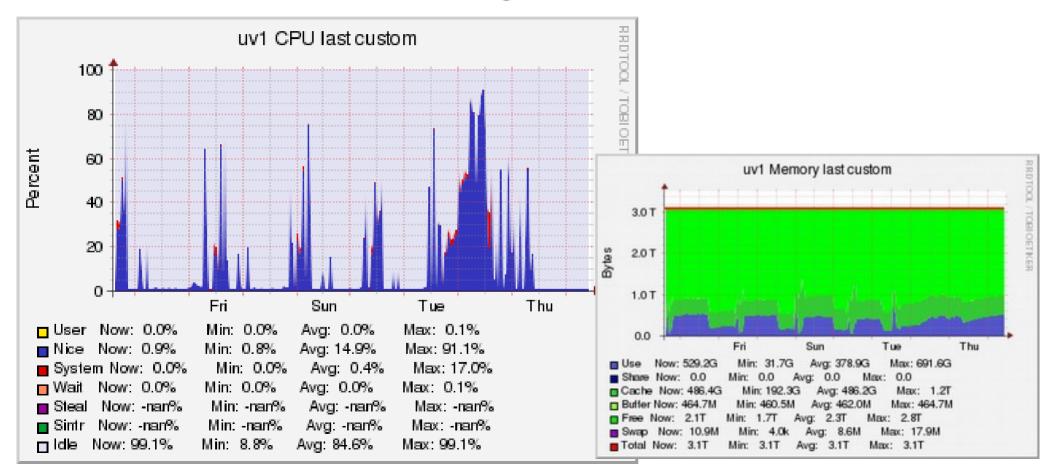
K-mer frequency analysis of cleaned reads reveals diploid and haploid portions of the genome (k-32 and k=156)

Computational resources spent so far

- 32 TB working dataset (FASTQ, BAM, VCF) (25TB compressed)
- 731 GB working 454 cDNA datasets
- 723 856 CPU hours burned under OPEN-9-41 project
- 91 306 CPU hours burned under OPEN-13-42 project (out of 448 000 core hours available until 2019-02-20

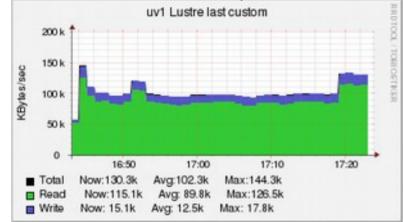


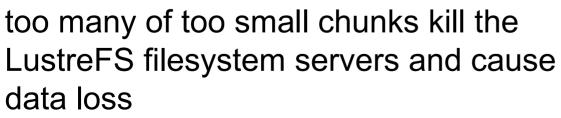
Genome assembly programs tested

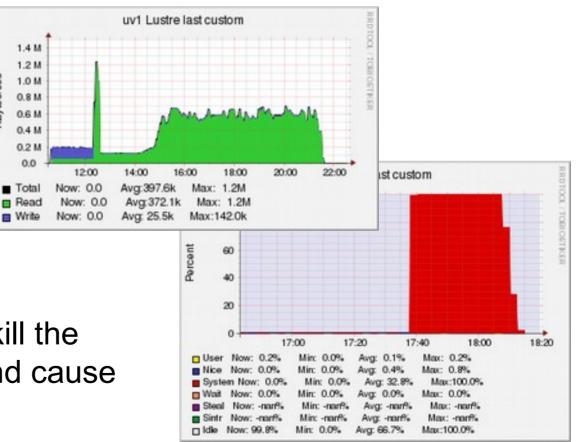

- SOAPdenovo
- SPAdes-3.11.1
- abyss-2.0.2 and 2.1.0, 2.1.2

SPAdes 3.11.1 assembly attempts

- no good results nor performance, placing input data + \$tmpdir into /dev/shm is a must
- had to use --read-buffer-size and --tmp-dir options
- badly scaling, k-mer splitting/counting is single-threaded
- no expected remaining computations time is printed
- scaffolding crashed
- error-correction using builtin hammer tools uses k=21 (suboptimal)
- can perform several incremental assemblies but after the last k-mer size moves to gap closing (without outputting intermediate files)


SPAdes: Series of several incremental assemblies with increasing k-mer sizes

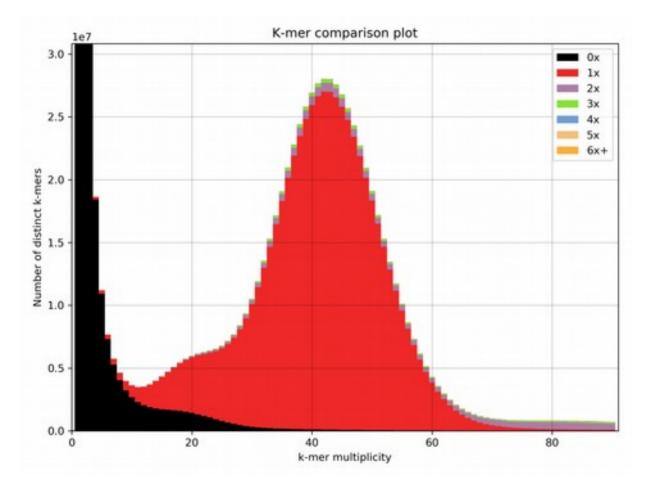



SPAdes: reading/writing of output files is slow (1 MBps vs. 0.6 – 1.2 GBps)

SPAdes supposedly writes out data in too small chunks (should be 1MB or even 10MB in size)

KBytes/

Results

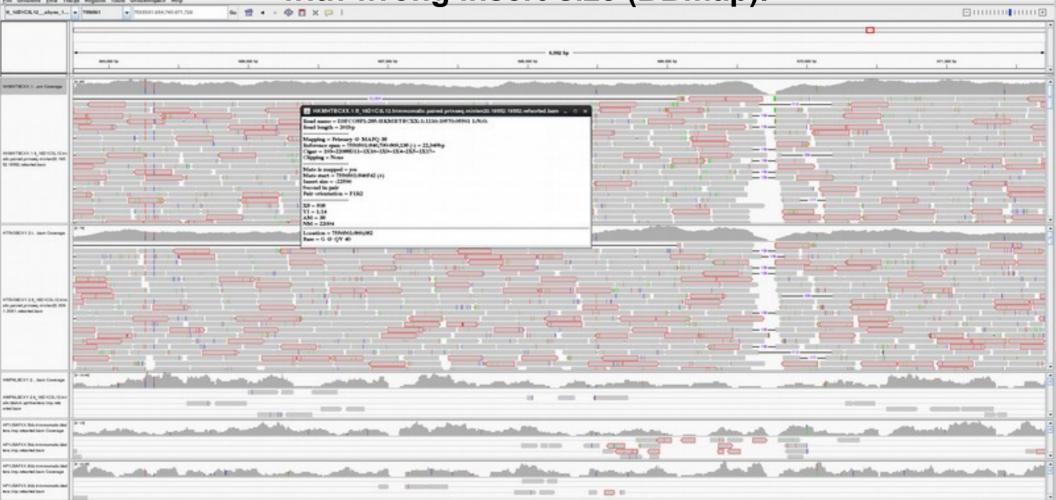

Cobitis genome assembly

- abyss-2.0.2
 - ECC correction using tadpole.sh, k=63
 - ⁻ tested k-mer sizes 64, 96, 128, 144, 156, 160, 192

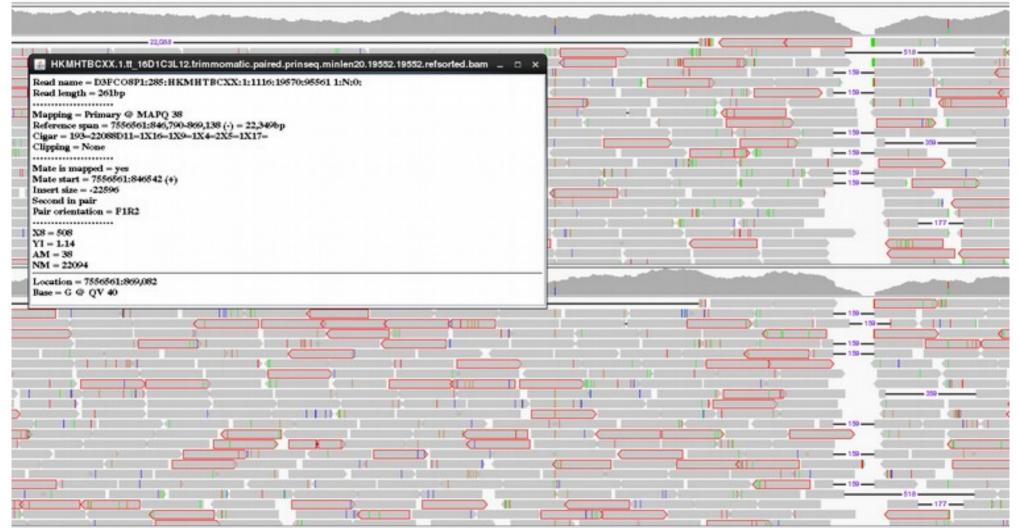
- 517042 contigs >=500nt
- 223325 (scaffolds+remaining_contigs) >=500nt

\$ abyss-fac -G	1267403131 tt_1	16D1C3L	_12ab	yss_160)-?.ta							
n	n:500	L50	LG50	NG50	min	N75	N50	N25	E-size	max	sum	name
5397779	618531	106862	157307	1919	500	1173	2615	5048	3810	42190	1.041e9	tt_16D1C3L12abyss_160-1.fa
2419093	517042	85266	125235	2482	500	1537	3344	6266	4688	57811	1.037e9	tt_16D1C3L12abyss_160-3.fa
1814706	349105	47307	63838	5107	500	3111	6369	11680	8712	82251	1.079e9	tt_16D1C3L12abyss_160-6.fa
1672273	223325	4552	6810	34920	500	13093	52459	132681	91701	721116	1.074e9	tt_16D1C3L12abyss_160-8.fa

Basic quality-control checks, PE2016 vs. abyss-k160 assembly Is the genome assembly at k=160 inflated?



Conclusion: The assembly is not inflated by redundant contigs, which is good.


So why do we have the genome still in 223 325 pieces instead of just 50?

There are gaps due repetitiveness of the genome and conflicting long-distance evidence from mate-pair datasets.

Gaps in the abyss_k128_ecc_N10 assembly and lots of read pairs with wrong insert-size (BBmap).

			6,962 b	,	0.0000000	
	667,000 bp		666.000 bp		609,000 bp	670,000 bp
1		1	1	1		1

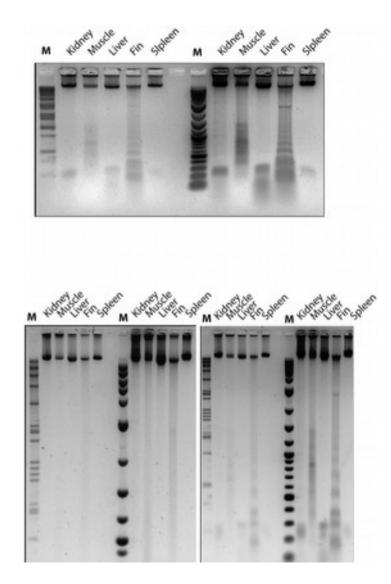
Future plans

Oxford Nanopore datasets

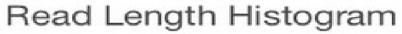
2017:

1D-reads, RapidSequencing kit 3kbp avg. reads

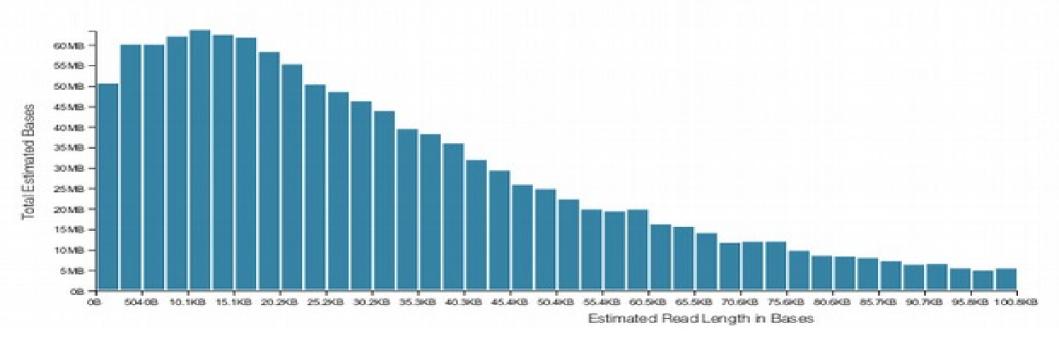
2018:

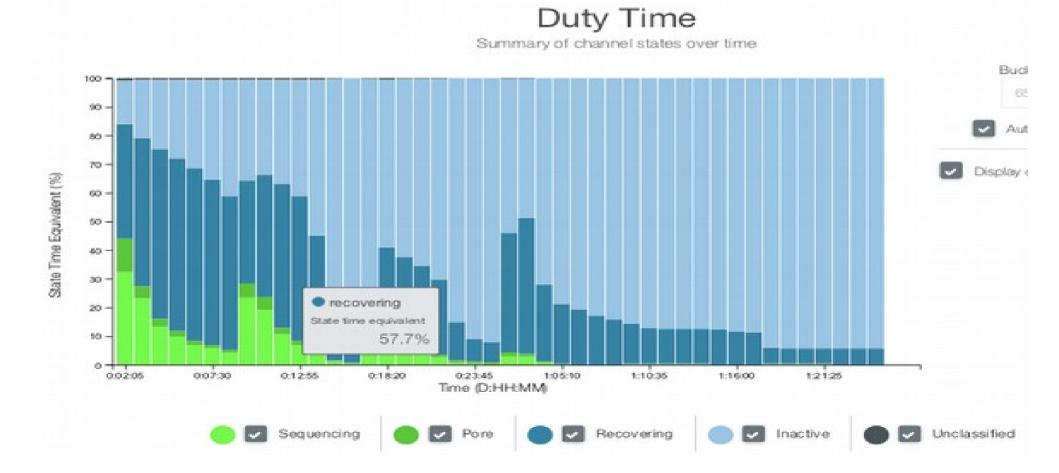

Cobitis taenia, spleen 1D-reads, RapidSequencing kit

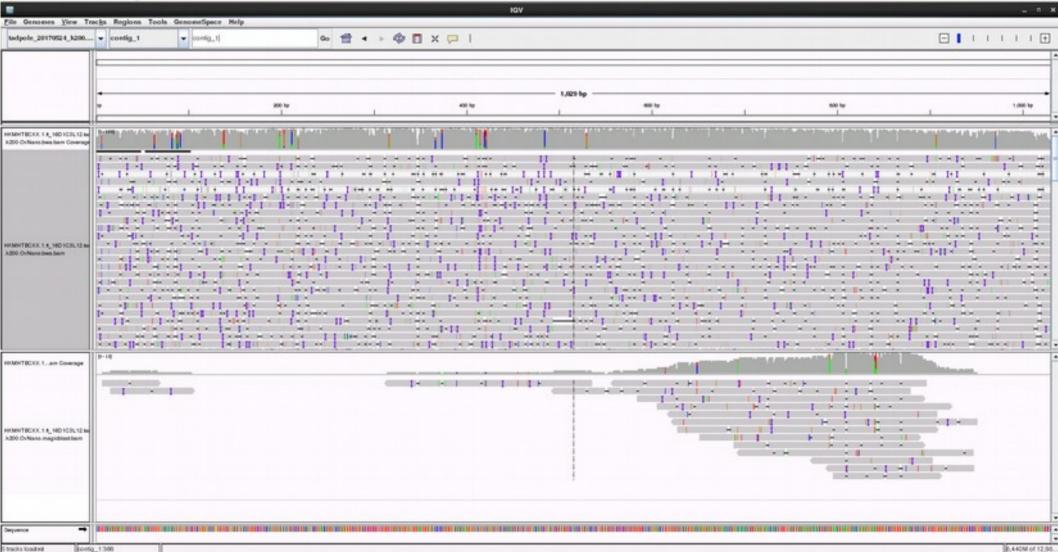
7 runs, 0.7Gbp per run


~ 60 000 reads >=10 kbp proovread

albacore


future: chiron


2018: Oxford Nanopore sequencing for 1 day 21 hrs (SEKA1)


Summary read length distribution

2018: Oxford Nanopore sequencing for 1 day 21 hrs (SEKA1)

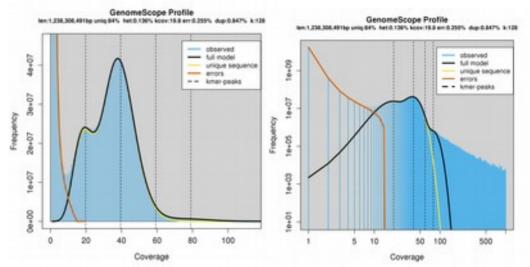
Raw quality of OxfordNanopore 1D reads after alignment to an Illumina-based contig

Vladimir Nikolić (IT4I, SoHPC student) Karel Janko (ÚŽFG AV ČR) Jan Kočí (OSU) Jan Roslein (OSU) Oldřich Bartoš (ÚŽFG AV ČR) Vladimír Beneš (EMBL) Dinko Pavlinič (EMBL) **Thank vou!**

Jan Pačes (ÚMG AV ČR) Petr Pajer (ÚMG AV ČR)

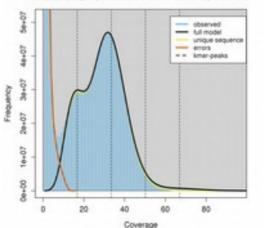
IT4Innovations national01\$#&0 supercomputing center0#01%101

Several very good assemblies were prepared by abyss-2.0.2 using error-corrected reads using different k-mer values


sun	max	E-size	N50	min	NG50	LG50	L50	n:500	n
921.7e6	57779	4112	2936	500	1801	162732	87706	479704	3282085
972.2e6	84004	7801	5684	500	3892	79411	47968	320183	2524721
968.8e6	910150	83684	48678	500	23272	8913	4463	195687	2383961
sun	max	E-size	N50	min	NG50	LG 50	L50	n:500	n
980.4e6	56465	4426	3151	500	2144	141270	86074	496455	2809379
1.027e9	109348	8324	6090	500	4540	70164	47269	332146	2130364
1.023e9	730307	89693	51296	500	29632	7594	4441	207153	1988503
sun	max	E-size	N50	min	NG50	LG 50	L50	n:500	n
1.037e9	57811	4688	3345	500	2482	125222	85211	516769	2411515
1.078e9	82251	8717	6370	500	5107	63826	47265	348775	1807627
1.074e9	724617	91040	51976	500	34706	6863 <mark>-</mark>	4585	223249	1665496
sun	max	E-size	N50	min	NG50	LG50	L50	n:500	n
1.141e9	60880	4686	3294	500	2829	114146	93440	596980	1731479
1.167e9	98989	7278	5287	500	4723	71142	61113	455052	1361846
1.163e9	751657	74019	38588	500	30914	7774	6263	319826	1213455

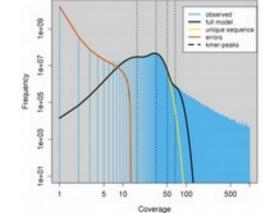
N50 is the length of the contig, and L50 is the number of the contigs whose size is N50 or larger. Yes it's weird, but that's the way it is. See <u>https://en.wikipedia.org/wiki/N50, L50, and related statistics</u>

and http://quast.bioinf.spbau.ru/manual.html#sec3.1.1

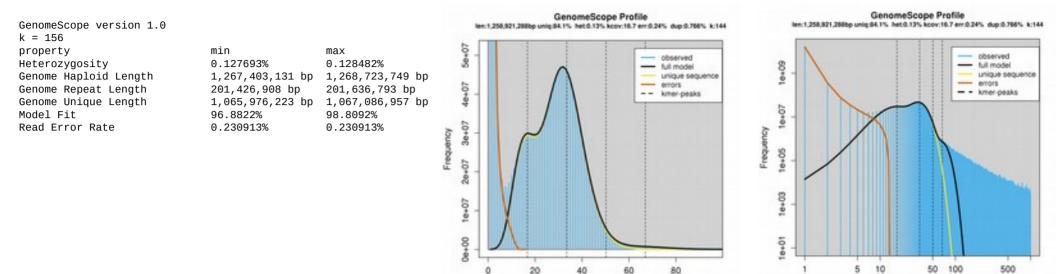

tt_16D1C3L12__PE-only__ntCard_k128.histo http://qb.cshl.edu/genomescope/analysis.php?code=HBnsyGEI1MNQDu1sB3fW

GenomeScope version 1.0 k = 128		
property	min	max
Heterozygosity	0.135367%	0.136532%
Genome Haploid Length	1,236,859,142 bp	1,238,308,491 bp
Genome Repeat Length	197,837,241 bp	198,069,067 bp
Genome Unique Length	1,039,021,900 bp	1,040,239,424 bp
Model Fit	96.0452%	98.0828%
Read Error Rate	0.255411%	0.255411%

tt_16D1C3L12_PE-only_ntCard_k144.histo http://qb.cshl.edu/genomescope/analysis.php?code=2ZkJ2eyTW83ZdmDI98mk


min	max
0.129235%	0.13013%
1,257,611,366 bp	1,258,921,288 bp
200,553,631 bp	200,762,527 bp
1,057,057,735 bp	1,058,158,761 bp
96.5393%	98.5629%
0.239662%	0.239662%
	0.129235% 1,257,611,366 bp 200,553,631 bp 1,057,057,735 bp 96.5393%

GenomeScope Profile


len:1,258,921,2886p unig 84.1%. het/8.12% kcov.16.7 evr.8.24%. dup:8.766%. k.144

tt 16D1C3L12 PE-only ntCard k156.histo http://gb.cshl.edu/genomescope/analysis.php?code=2ZkJ2eyTW83ZdmDl98mk

0

40

Coverage

Coverage