Jacob's Ladder: Prime numbers in 2d

Alberto Fraile, Roberto Martinez, Daniel Fernandez

<u>arXiv.org</u> > <u>math</u> > arXiv:1801.01540

Jacob's Dream by William Blake (c. 1805, British Museum, London)

Prime numbers; open problems

- Goldbach's Conjecture: Every even *n* > 2 is the sum of two primes.
- <u>Twin Prime Conjecture</u>: There are infinitely many twin primes.
- Is there always a prime between n^2 and $(n+1)^2$?
- Riemann hypothesis
- ...

This site is supported by donations to The OEIS Foundation.

THE ON-LINE ENCYCLOPEDIA OF INTEGER SEQUENCES®

founded in 1964 by N. J. A. Sloane

Search

Hints

(Greetings from The On-Line Encyclopedia of Integer Sequences!)

10 A065358 The Jacob's Ladder sequence: $a(n) = Sum \{k=1..n\} (-1)^{pi}(k)$, where pi = A000720. 0, 1, 0, 1, 2, 1, 0, 1, 2, 3, 4, 3, 2, 3, 4, 5, 6, 5, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 3, 4, 3, 2, 1, 0, -1, -2, -1, 0, 1, 2, 1, 0, 1, 2, 3, 4, 3, 2, 1, 0, -1, -2, -1, 0, 1, 2, 3, 4, 3, 2, 3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 5, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 3, 2, 1, 0, -1, -2, -1, 0, 1, 2, 3, 4, 5, 6, 5, 4 (list; graph; refs; listen; history; text; internal format) OFFSET 0.5 COMMENTS Partial sums of A065357. LINKS N. J. A. Sloane, Table of n, a(n) for n = 0..10000 (First 1000 terms from Harry J. Smith.) Alberto Fraile, Roberto Martínez, and Daniel Fernández, Jacob's Ladder: Prime numbers in 2d, arXiv preprint arXiv:1801.01540 [math.HO], 2017. [They describe essentially this sequence except with offset 1 instead of 0 - N. J. A. Sloane, Feb 20 2018] N 18 980 1000

Prime numbers in 2d. Ulam spiral

37 -	-36 —3	35 — 34	-33 -	-32 —	31
38 	17 —1 	6 —15	-14 -	-13 	30
39 	18 	5 — 4 	— 3 	12 	29
40 	19 	6 1 	-2	11 	28
41 	20 	7 — 8	<u> </u>	-10	27
42 	21 -2	2 -23	-24 -	-25 —	-26
43 -	-44 —4	45 - 46	-47 -	-48 -	-49

Prime numbers in 2d

Stein, M. L.; Ulam, S. M.; Wells, M. B. (1964), "A Visual Display of Some Properties of the Distribution of Primes", American Mathematical Monthly, Mathematical Association of America, 71 (5): 516–520

Prime numbers in 2d

n

n

~200,000 zeroes in 8x10¹²

Conjectures

• I. The number of cuts (zeroes) in the x axis tends to infinity. i.e, being Z(n) the number of zeroes in the Ladder

 $\lim_{n \to \infty} Z(n) = \infty$

- II. The slope ε(n), of the Ladder is zero in the limit when n goes to infinity.
- III. A. the ratio $Area_{up}/Area_{down}$ tends to 1 in the limit $n \rightarrow \infty$.
- III. B. the ratio between the number of points above and below y = 0 tends to 1 when $n \rightarrow \infty$.

Results

Results I. Benford Law

Examples

Fibonacci numbers Factorials n! Powers n^m Binomial coefs $\binom{n}{m}$ Etc..

Length of rivers...

Results I. Benford Law

d

Results II. Prime numbers

Results III. Gaps

Conclusions

Interval	Zeroes	Primes	$n/\log n$	Diff (%)	Average gap \varGamma
$[1, 10^2]$	10	5	4.342	13.16	9.2
$[1, 10^3]$	16	6	5.770	3.82	9.25
$[1, 10^4]$	59	21	14.469	31.09	36.20
$[1, 10^5]$	139	36	28.169	21.75	526.57
$[1, 10^6]$	151	37	30.096	18.65	1503.97
$[1, 10^7]$	151	37	30.096	18.65	1503.97
$[1, 10^8]$	2,415	313	310.034	0.947	40170.11
$[1, 10^9]$	7,730	846	863.41	-2.058	887722.55
$[1, 10^{10}]$	11,631	1,161	1,242.438	-7.014	523588.07
$[1, 10^{11}]$	11,631	1,161	1,242.438	-7.014	523588.07
$[1, 8 \cdot 10^{11}]$	194,530	14,556	15,973	-9.734	2750072.04

Conjecture IV. Gamma1 =4 for all n?

n

Thank you for your attention

Working have effective White-and the Sectors

Conjecture II

