Jacob's Ladder: Prime numbers in 2d
 Alberto Fraile, Roberto Martinez, Daniel Fernandez

Jacob's Dream by William Blake (c. 1805, British Museum, London)

Prime numbers; open problems

- Goldbach's Conjecture: Every even $\boldsymbol{n} \mathbf{>} \mathbf{2}$ is the sum of two primes.
- Twin Prime Conjecture: There are infinitely many twin primes.
- Is there always a prime between n^{2} and $(n+1)^{2}$?
- Riemann hypothesis
-...

THE ON-LINE ENCYCLOPEDIA OF INTEGER SEQUENCES ${ }^{\circledR}$

founded in 1964 by N. J. A. Sloane

	Search Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)	

```
A065358 The Jacob's Ladder sequence: a(n) = Sum_{k=1.n} (-1) pi(k), where pi = A000720.
    0, 1, 0, 1, 2, 1, 0, 1, 2, 3, 4, 3, 2, 3, 4, 5, 6, 5, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 3, 4, 3, 2,
    1,0,-1, -2, -1,0, 1, 2, 1,0, 1, 2, 3, 4, 3, 2, 1, 0, -1, -2, -1,0, 1, 2, 3, 4, 3, 2, 3, 4, 5,
    6, 7, 8, 7, 6, 5, 4, 5, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 3, 2, 1, 0, -1, -2, -1, 0, 1, 2, 3, 4, 5,
    6, 5, 4 (list; graph; refs; listen; history; text; internal format)
    OFFSET
    comments
    0,5
    COMMENTS Partial sums of A065357.
    LINKS
    N. J. A. Sloane, Table of n, a(n) for n = 0..10000 (First 1000 terms from Harry J.
    Smith.)
Alberto Fraile, Roberto Martínez, and Daniel Fernández, Jacob's Ladder: Prime
    numbers in 2d, arXiv preprint arXiv:1801.01540 [math.HO], 2017. [They describe
    essentially this sequence except with offset 1 instead of 0 - N. J. A. Sloane,
    Feb 20 2018]
```


Prime numbers in 2d. Ulam spiral

Prime numbers in 2d

Stein, M. L.; Ulam, S. M.; Wells, M. B. (1964), "A Visual Display of Some Properties of the Distribution of Primes", American Mathematical Monthly, Mathematical Association of America, 71 (5): 516-520

Prime numbers in 2d

${ }^{\sim} 200,000$ zeroes in 8×10^{12}

Conjectures

- I. The number of cuts (zeroes) in the x axis tends to infinity. i.e, being $Z(n)$ the number of zeroes in the Ladder

$$
\lim _{n \rightarrow \infty} Z(n)=\infty
$$

- II. The slope $\varepsilon(\mathrm{n})$, of the Ladder is zero in the limit when n goes to infinity.
- III. A. the ratio Area $_{u p} /$ Area $_{\text {down }}$ tends to 1 in the limit $n \rightarrow \infty$.
- III. B. the ratio between the number of points above and below $\mathrm{y}=0$ tends to 1 when $\mathrm{n} \rightarrow \infty$.

Results

Results I. Benford Law

Examples

Fibonacci numbers
Factorials n !
Powers n^{m}
Binomial coefs $\binom{n}{m}$ Etc..

Length of rivers...

Results I. Benford Law

$$
P(d)=\log _{10}(1+1 / d)
$$

Results II. Prime numbers

Results III. Gaps

Conclusions

Interval	Zeroes	Primes	$n / \log n$	Diff (\%)	Average gap Γ
$\left[1,10^{2}\right]$	10	5	4.342	13.16	9.2
$\left[1,10^{3}\right]$	16	6	5.770	3.82	9.25
[1, 10 ${ }^{4}$]	59	21	14.469	31.09	36.20
$\left[1,10^{5}\right]$	139	36	28.169	21.75	526.57
$\left[1,10^{6}\right]$	151	37	30.096	18.65	1503.97
$\left[1,10^{7}\right]$	151	37	30.096	18.65	1503.97
$\left[1,10^{8}\right]$	2,415	313	310.034	0.947	40170.11
$\left[1,10^{9}\right]$	7,730	846	863.41	-2.058	887722.55
[1, 10 ${ }^{10}$]	11,631	1,161	1,242.438	-7.014	523588.07
[1, $\left.10^{11}\right]$	11,631	1,161	1,242.438	-7.014	523588.07
$\left[1,8 \cdot 10^{11}\right]$	194,530	14,556	15,973	-9.734	2750072.04

Conjecture IV. Gamma1 =4 for all n?

Thank you for your attention

Conjecture II

