

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

Predicting Tribological Properties of Low-Dimensional Materials

Benjamin James Irving, irvinben@fel.cvut.cz

Advanced Materials Group, Department of Control Engineering, Faculty of Electrical Engineering, CTU in Prague

AMG | ČVUT

IT4I 2nd User Meeting

Advanced Materials Group

Head: Prof. Tomáš Polcar Ass't Prof: Antonio Cammarata, Paolo Nicolini Postdocs: Emilio Frutos, Alberto Fraile, Benjamin Irving , Hakan Yavas, Sener Sen, Kosta Simonovic, Diego Lopez PhD students: Martin Daněk, Jamil Missaoui Victor Claerbout, Florian Belviso

AMG | ČVUT

- Self-adaptive low-friction coatings [WSC; WSeC; MoSC; MoSeC]
- High temperature tribology
- Biocompatible coatings
- Interface design of crystalline materials with improved radiation damage resistance
- Modelling & Simulations e.g. TMD; h-BN; ZnO; Graphene

- Methods generally fall into two distinct categories:
- Quantum: uses quantum physics; suitable for smaller systems (10-100s of atoms) parameter-free (can do 'brand new' chemistry & physics); computationally intensive
- Classical: uses classical physics; suitable for larger systems (10² - 10⁶ of atoms); computationally less intensive; no electronic properties; may be less accurate
- In Advanced Materials Group we combine both methods

Studying materials in silico

- Simulation packages: LAMMPS, VASP, ABINIT, SIESTA...
- High Performance Computing clusters (ca. 10⁷ CPU hrs): Anselm/Salomon, IT4I, Ostrava, CZ Iridis, University of Southampton, UK Eagle, Poznań, Poland

AMG | ČVUT

- CODFISH (2,5 M); ENDFISH (0,5 M)
- HOLDEM (2,23 M)
- OPTOSILICA (0,5 M)
- FATRADEX (2,5 M)
- NanoTribo (1,5 M)
- ATRIO (3,03 M)
- RATONMO (2,83 M)
- AFAM (2,706 M)

3 > 4 3

Background

- Friction: a force that resists sliding or rolling of one object over another; both a necessity and a disadvantage
- Tribology: from Greek τριβω ('I rub') + λογια ('study of'); the multidisciplinary (engineering, metallurgy, chemistry) study of interactions between sliding surfaces

TMDs - structure & lubricating properties [AMG]

- MX₂ family of compounds, where M = Mo, W; X = S, Se, Te
- Molybdenum disulfide, MoS₂, best known example

TMDs - structure & physicochemical properties

- We have a variety of stoichiometries available, each offering unique properties
- We can explore/improve their properties using both experiments and theory

Homogeneous TMDs

 Layer-dependent properties of TMDs have attracted much attention e.g. MoS₂ transition from indirect (1.3 eV) to direct bandgap (1.8 eV):

10/24

AMG | ČVUT

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Recent work - DFT calculations to investigate sliding properties of TMDs

Most important geometric configurations for MX₂ bilayers:

Potential energy profiles for MoX₂ bilayers:

AMG | ČVUT

13/24

TMD	E _{bind} / meV (per cell)	$\gamma/{ m Jm^{-2}}$	f _{max} / eV/Å	$\tau_{\rm y}/{ m GPa}$
MoS ₂	149.058	0.271	0.037738	0.6853
MoSe ₂	218.230	0.366	0.056833	0.9536
MoTe ₂	332.902	0.493	0.081934	1.2145
WS_2	267.337	0.490	0.064125	1.1748
WSe ₂	333.132	0.559	0.081275	1.3631
WTe ₂	440.756	0.657	0.099769	1.4874

Table: Nanomechanical properties calculated for each TMD bilayer

•
$$E_{bind} = E_{bi} - (2 \times E_{mono})$$

•
$$\gamma = E_{\text{bind}} / A$$

- $f_{max} = dE/dy$
- $\tau_{\rm y} = f_{\rm max}/A$

z-averaged charge density difference plots for MoS₂:

- E_{min}: charge accumulation at interface
- E_{max}: charge accumulation at chalcogens only
- Perhaps we can use fundamental properties to predict tribo behaviour.

•
$$\chi_{\text{Mo}} = 2.16, \chi_{\text{W}} = 2.36; \chi_{\text{S}} = 2.58, \chi_{\text{Se}} = 2.55, \chi_{\text{Te}} = 2.10$$

Top-down projection of incommensurate accidentally commensurate MoS_2 bilayer (top layer rotated 92.2° about *z*-axis):

The effect(s) of incommensuration have also been studied for MoS_2 ; it is shown that a greater degree of incommensuration results in a significant drop in calculated values of τ_v (*i.e.*, easier inter-plane shear)

AMG | ČVUT

IT4I 2nd User Meeting

Again using the PES we can calculate the *ideal shear strength*, τ_y , for which a lower value indicates easier sliding:

Table: Nanomechanical properties calculated for each of the (in)commensurate MoS_2 bilayers

Angle of Rotation	E _{bind} / meV (per MoS ₂)	$\gamma/{ m Jm^{-2}}$	f _{max} / eV/Å	$\tau_{\rm y}/{\rm GPa}$
0.00	74.529	0.271	0.037738	0.6853
17.9	57.131	0.212	0.008902	0.0127
38.2	58.757	0.218	0.000105	0.0008
92.2	58.849	0.218	0.000043	0.0001

Van der Waals Heterostructures

AMG | ČVUT

IT4I 2nd User Meeting

Ostrava, 07-11-18 19 / 24

< ロ > < 回 > < 回 > < 回 > < 回</p>

Van der Waals Heterostructures

WOS search results "van der Waals heterostructures":

Sum of Times Cited per Year

AMG | ČVUT

イロト イポト イヨト イヨ

Van der Waals Heterostructures

- Can offer excellent semiconducting properties and strong-light matter interactions
 - Power conversion efficiency enhancers
 - Photoactive layer
- Scalable fabrication still a big obstacle
 - Require sound understanding of nanomechanical properties...

Van der Waals Heterostructures - PES calculations

TMD	E _{bind} / meV (per cell)	γ/Jm^{-2}	f _{max} / eV/Å	$\tau_{\rm v}/{\rm GPa}$
MoS ₂	149.058	0.271	0.037738	0.6853
MoSe ₂ MoS ₂	182.161	0.319	0.046099	0.8065
$WS_2 \parallel MoS_2$	198.755	0.362	0.048498	0.8830
MoSe ₂	218.230	0.366	0.056833	0.9536
WSe ₂ MoS ₂	225.831	0.394	0.055964	0.9775
WS ₂ MoSe ₂	240.856	0.421	0.060308	1.0546
WSe ₂ MoSe ₂	268.694	0.449	0.067703	1.1326
WS ₂	267.337	0.490	0.064125	1.1748
MoTe ₂	332.902	0.493	0.081934	1.2145
WSe ₂ WS ₂	300.199	0.524	0.074150	1.2946
MoTe ₂ WTe ₂	381.674	0.563	0.092021	1.3571
WSe ₂	333.132	0.559	0.081275	1.3631
WTe ₂	440.756	0.657	0.099769	1.4874

 Now formulating relationship between electronic properties of vdwH systems and nanomechanical properties

Project 'Centre for Advanced Photovoltaics' was supported by Ministry of Education, Youth and Sport. CZ.02.1.01/0.0/0.0/15_003/0000464

Thank you for your attention

AMG | ČVUT

IT4I 2nd User Meeting