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Abstract
The magneto-hydrodynamic description is adopted in many disciplines, where the dynamics of mag-

netized fluids is investigated. It plays a vital role in plasma physics, where high-temperature plasma
becomes highly electrically conductive. Its modelling is then essential for the applications like inertial
and magnetic confinement fusion, laboratory astrophysics and many others. For this purpose, we re-
cently developed the resistive magneto-hydrodynamic extension of the multi-dimensional simulation
code PETE2 (Plasma Euler and Transport Equations version 2) [1, 2]. The Lagrangian nature of the code
means that the computational mesh follows the flow of the matter unlike the traditional codes. Its nu-
merical description is based on the high-order curvilinear finite elements, which provide high precision,
computing efficiency, flexibility and robustness. The latest addition is the model of spontaneous mag-
netic fields, which are generated during the laser–target interaction or at the fronts of cosmic jets and
elsewhere. The construction of the code is reviewed and examples of physically relevant simulations are
given.

Objectives:
• two-temperature resistive Lagrangian MHD

• high-order curvilinear finite element discretization

• identification and curing of the Biermann catastrophe on shock fronts

• high-order Biermann battery discretization

Lagrangian resistive MHD:
• magnetized fluid in a magnetic field

• resistive electric currents ~j = η−1 ~E ( ~E – fluid-frame electric field, η – resistivity)

• closure model for the stress tensor σ = −pI

• magnetic stress tensor σB = 1/µ0( ~B ~B − 1
2
~B2I)

• magnetic energy ǫB = ~B2/(2µ0) (in the rest frame)

mass conservation
dρ

dt
= −ρ∇ · ~u

momentum conservation ρ
d~u

dt
= ∇ · (σ + σB)

Faraday’s law
d ~B

dt
= −∇× ~E

internal energy conservation ρ
dε

dt
= σ : ∇~u +~j · ~E

magnetic energy conservation
dǫB
dt

= σB : ∇~u−
1

µ0
~B · ∇ × ~E

(ρ – mass density, ~u – velocity, ε – specific internal en., εB – specific mag. en., p – pressure)
curvilinear high-order MHD[1]:

• high-order finite elements ⇒ computational efficiency, mesh design flexibility

• curvilinear isoparametric finite elements ⇒ tracking of interfaces and discontinuities

• mass, momentum and energy conserving

• divergence-free magnetic field

• extended to the two-temperature model[2] for the Biermann battery simulations

functional space name 1D (‖ / ⊥) 2D (‖ / ⊥) 3D
thermodynamic (T ) L2

kinematic (K) (H1)1 (H1)2 (H1)3

magnetic field (M) L2/(L2)
2 Hdiv/L2 Hdiv

electric field (E) −/(H1)2 Hcurl/H
1 Hcurl

Biermann battery
• electron momentum eq. ⇒ el. field ~EB to maintain quasi-neutrality = Biermann term

neme
∂~ue
∂t

= 0 = −∇pe − nee ~EB

• naive model – direct discretization

~EB = −
∇pe
ene

(pressure is not continuous over a shock front!)

• dual form[3] – ideal gas equation-of-state is assumed for pe = nekBTe (note gradient parts

do not contribute to ~B)

~EB = −
kBTe
epe

∇pe = −
✘

✘
✘
✘

✘
✘
✘

✘
✘

✘
✘
✘

✘
✘✘kB

e
∇(Te ln pe) +

kB ln pe
e

∇Te

• spontaneous magnetic field generation

d ~B

dt
= −∇× ~EB = −

∇ne ×∇pe
en2e

=
kB
e
∇ ln pe ×∇Te

• weak formulation (with G(Ω) ⊂ Hdiv(Ω), D ⊂ L2(Ω)) ⇒ high-order FEM discretization∫
Ω
gln pe ·

~ξ dV =

∮
∂Ω

ln pe~ξ · d~S −

∫
Ω
ln pe∇ · ~ξ dV ∀~ξ ∈ G(Ω)∫

Ω
gTe

~ξ dV =

∮
∂Ω

Te~ξ · d~S −

∫
Ω
Te∇ · ~ξ dV ∀~ξ ∈ G(Ω)∫

Ω

dB
dt · ~ΞdV +

∫
Ω
α∇ · ~ΞdV =

kB
e

∫
Ω
gln pe × gTe

· ~ΞdV ∀~Ξ ∈ M(Ω)∫
Ω
∇ ·Bµ dV = 0 ∀µ ∈ D(Ω)

Examples
crossed gradients
• initial profiles of density and temperature:

ρ0(x, y) = 1 + 10−3(cos(πx) + cos(πy) + cos(πz))

T0(x, y) = 100 + 10−1(cos(πx) + sin(πy) + cos(πz))

• analytic solution for the linear regime (t = 10−20 s)

• random mesh (20 %) – 2nd order T ,M,D, 3rd order K, E ,G finite elements

magn. of magnetic field [statT] (20× 20 el.) magn. of magnetic field [statT] (8× 8× 8 el.)

ellipsoidal blast wave
• Sedov blast problem for t < 0.4 s – high energy placed in the center (e0 = 1 erg) ⇒ spherical

blast wave to the cold medium (γ = 5/3, ρ0 = 1 g/cm3, A = 1, Z = 1)

• domain Ω = (−1.5,+1.5)× (−1.5,+1.5) cm

• prolongation of the profiles along the horizontal axis at t = 0.4 s by 50 %

• propagation of an ellipsoidal blast wave for 0.4 s < t ≤ 0.6 s

• heat conduction κ/(ρcV e)
.
= 0.35 cm2/s⇒ crossed gradients of ρ and Te ⇒ generation of ~B

• resistivity η/µ0
.
= 0.018 cm2/s ⇒ slow magnetic field diffusion

• 30× 30 elements – 2nd order T ,M,D, 3rd order K, E ,G finite elements

magnetic field – naive [statT]
...totally diverging

magnetic field – dual [statT]
...smooth and convergent

Conclusions
• Biermann battery term constructed for the high-order curvilinear Lagrangian MHD

• two formulations compared on the problem of an ellipsoidal blast wave

• smooth and convergent results obtained for the dual form

⇒ high-order FE modelling provides high computational efficiency and flexibility

⇒ enabled detailed simulations of shock-generated magnetic fields in ICF and astrophysics

Forthcoming Research
• generalization for a realistic equation-of-state of electrons

• extension of MHD by additional terms (Nernst effect, Righi-Leduc . . . )

• parallelization and optimization for different architectures including IT4I infrastructure
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[2] J. Nikl, M. Kuchařík, M. Holec, and S. Weber. Curvilinear high-order Lagrangian hy-
drodynamic code for the laser-target interaction. In S. Coda, J. Berndt, G. Lapenta,
M. Mantsinen, C. Michaut, and S. Weber, editors, Europhysics Conference Abstracts – 45th
EPS Conference on Plasma Physics, volume 42A, page P1.2019. European Physical Society,
2018.

[3] C. Graziani, P. Tzeferacos, D. Lee, D. Q. Lamb, K. Weide, M. Fatenejad, and J. Miller. The
Biermann catastrophe in numerical magnetohydrodynamics. The Astrophysical Journal,
802(1):43, 2015.

Acknowledgements
Portions of this research were carried out at ELI Beamlines, a European user facility op-

erated by the Institute of Physics of the Academy of Sciences of the Czech Republic. Sup-
ported by CAAS project CZ.02.1.01/0.0/0.0/16_019/0000778 from European Regional De-
velopment Fund; Czech Technical University grant SGS19/191/OHK4/3T/14 and Czech
Science Foundation project 19-24619S. The computations were performed using computa-
tional resources funded from the CAAS project. This work has received funding from the
Eurofusion Enabling Research Project No. CfP-FSD-AWP21-ENR-01-CEA-02.


