

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

VSB TECHNICAL | IT4INNOVATIONS |||| UNIVERSITY OF OSTRAVA | CENTER

TECHNICAL FEATURES AND THE USE OF GPU ACCELERATED PARTITION

Key properties

- 72 nodes, each with
 - 2x AMD EPYC[™] 7763, 64-core, 2.45 GHz processors
 - 1024 GB DDR4 3200MT/s of physical memory
 - 8x GPU accelerator NVIDIA A100
 - | 40GB HBM2 memory per GPU
 - | 320GB HBM2 memory in total
 - 4x 200 Gb/s Infiniband HDR links

In PBS

- PBS queue: **qnvidia**
- name of nodes: acn[01-72]

CPU part of the node

- 2x AMD EPYC[™] 7763,
 - 64-core per socket
 - 2.45 GHz clock frequency
- Memory | 1024 GB DDR4 3200MT/s
- 4x 200 Gb/s Infiniband HDR links

AMD EPYC SERVER CPU ROADMAP

CATEGORY	EPYC 7002 (Rome)	EPYC 7003 (Milan)
Socket	SP3	SP3
Core / Process	Zen2 / 7nm	Zen3 / 7nm
Max Core Count / Threads	64 / 128	64 / 128
L3 Cache Size	256 MB	256 MB
CCX Arch	4 Cores + 16MB	8 Cores + 32MB
Memory	8 Ch DDR4-3200, NVDIMM-N	8 Ch DDR4-3200, NVDIMM-N
PCle Tech & Lane Count	PCle Gen4, 128L/Socket	PCle Gen4, 128L/Socket
Security	SME, SEV	SME, SEV, SNP
Chipset	NA	NA
Power	120W - 280W	120W - 280W

 VSB
 TECHNICAL
 IT4INNOVATIONS

 UNIVERSITY
 NATIONAL SUPERCOMPUTING

 OF OSTRAVA
 CENTER

"MILAN" BUILDS ON INFINITY ARCHITECTURE

VSB TECHNICAL UNIVERSITY OF OSTRAVA | IT4INNOVATIONS NATIONAL SUPERCOMPUTING CENTER

RAL

numactl -H

 0
 10
 12
 12
 12

 1
 12
 10
 12
 12

 2
 12
 12
 10
 12

 3
 12
 12
 12
 10

https://developer.amd.com/spack/stream-benchmark/

DUAL-SOCKET CONFIGURATIONS (MILAN)

Two EPYC 7003 Processors connect through 4 xGMI links

2 NUMA Distances 2 NUMA Domains

[lriha@cn103.barbora ~]\$ numactl -H available: 2 nodes (0-1)

node 0 cpus: 0 - 17 node 0 size: 95197 MB

node 1 cpus: 18 - 35 node 1 size: 96762 MB

node distances:		0	1	
node 0 1	0	10	21	
0: 10 21	1	21	10	
1: 21 10	Bai	rbor	ra no	de

VSB TECHNICAL UNIVERSITY OF OSTRAVA

DUAL-SOCKET CONFIGURATIONS (MILAN)

Two EPYC 7003 Processors connect Nu through 4 xGMI links

2 NUMA Distances 2 NUMA Domains

uma_	0	1	2	3	4	5	6	7
0	39,5	39,0	38,4	38,0	21,8	21,8	21,8	20,6
1	39,0	39,5	38,0	38,4	21,8	21,0	20,6	21,8
2	38,3	38,0	39,5	39,0	20,4	20,8	21,5	21,5
3	38,0	38,3	38,9	39,5	20,8	20,9	21,7	21,7
4	21,7	21,7	21,7	20,8	39,5	39,0	38,4	38,1
5	21,5	21,5	21,5	20,4	38,9	39,5	38,0	38,4
6	20,7	21,0	21,7	21,7	38,4	38,0	39,5	39,0
7	21,8	21,0	20,7	21,7	38,0	38,4	39 <i>,</i> 0	39,5

Socket 2

Bandwidth [GB/s]

Numa	0	1	2	3	4	5	6	7
0	90	98,5	107,1	110,4	188,9	192,4	184,1	188,6
1	109,6	91,6	110,8	106	192,5	197,5	190,9	192,4
2	118,7	110,8	91,5	97,9	181,1	190,5	189,6	190,7
3	126,8	106,5	100,8	90,1	193,7	198,5	196,9	201,1
4	204,7	190,6	189	188,8	90	98,4	106,7	110,2
5	206,6	197,6	194,1	194,6	97,9	91,5	110,8	106
6	203,7	189,1	189,5	192,4	106	110,8	91,5	97,9
7	201,3	193,1	193,6	198,4	110,1	106,5	98,6	90,1

Latency [ns]

Measured by: Inte Memory Latency Checker - v3.9a

VSB TECHNICAL IIT4INNOVATIONS UNIVERSITY NATIONAL SUPERCOMPUTING OF OSTRAVA CENTER

CHIPLET BASED VS MONOLITHIC CPU

Intel Xeon Platinum 8280

https://www.anandtech.com/show/16529/amd-epyc-milan-review/4

MEMORY BANDWIDTH VS. CLOCK FREQ

10^{3} 40 10² Performance [GFLOP/sec] 35 DP Vector FMA Peak 54 GFLOPS DP Vector Add Peak 27 GFLOPS 10¹ Scalar Add Peak 7 GFLOPS 10⁰ 10^{-1} · 10 Memory bound Compute bound 5 10^{-2} 10-3 10^{-2} 10^{-1} 10^{0} 10² 10^{1} Arithmetic intensity [FLOP/byte]

LAMMPS, EMA

- 2 competing system-level choke points:
 - Bandwidth to main memory
 - Compute Bound (frequency)
- These are mutually exclusive to each other
- Perform roofline analysis to confirm where hot-routine lands (red circle)
- It has performed this analysis on a number of popular HPC codes across CFD, Weather, Quantum Chemistry, Molecular Dynamics: Codes are memory bound or borderline
- HPL (compute bound) is *NOT* a good proxy for scoping job throughput on realistic workloads.
- Use memory bound synthetics: HPCG or STREAM

NATIONAL SUPERCOMPUTING

Compiling STREAM benchmark for AMD CPUs

ml AOCC

clang -03 -fopenmp -mcmodel=large -DSTREAM_TYPE=double mavx2 -DSTREAM_ARRAY_SIZE=250000000 -DNTIMES=10 -ffpcontract=fast -fnt-store stream.c -o stream_c

Running STREAM

\$ export OMP_SCHEDULE=static
\$ export OMP_DYNAMIC=false
\$ export OMP_THREAD_LIMIT=256
\$ export OMP_NESTED=FALSE
\$ export OMP_STACKSIZE=256M

STREAM generally gives the better performance with 1 thread per CCD. Binding options for AMD EPYC 7742 and AMD EPYC 7763 Processor to bind 1 thread per CCD: - ---- export GOMP_CPU_AFFINITY=0-127:8 and - export OMP_NUM_THREADS=16

```
# Thread Binding Options for AMD EPYC 7742/7763 Processor
$ export GOMP_CPU_AFFINITY=0-127:8
$ export OMP_NUM_THREADS=16
```

```
$ echo "running for 1 thread per CCD"
$ stream_c.exe
```

Basic Details of Flags used:

Mcmodel=large	Generate code for the large model. This model makes no assumptions about addresses and sizes of sections.
STREAM_ARRAY_SIZE= "	250000000 " Sets the Array size for the STREAM benchmark. General recommendation is that "STREAM_ARRAY_SIZE" must be
	at least 4x the size of the sum of all the last-level caches in the system.
NTIMES=10	STREAM runs each kernel "NTIMES" times.
ffp-contract=fast	enables floating-point expression contraction such as forming of fused multiply-add operations if the target has native support
	for them.
fnt-store	generate non-temporal store instruction for array accesses in a loop with large trip count.

		🟦 Iriha — Iriha@acn06:~ — ssh Irih	a@karolina.it4i.cz — 127×46	
Function Best Rate MB/s #	90 .5%] 33 [0.0% 65	0.0%]	97 [0.0%]
2 E	0.0% 34 [0.0% 66	0.0%	98 [0.0%]
3 [0.0%] 35 [0.0% 67	0.0%	99 [0.0%]
4 <u></u>	0.0%] 36 [0.0% 68	0.0%	100 0.0%
5	0.0% 37	0.0% 69	0.0%	101[0.0%]
6	0.0% 38 [0.0% 70	0.0%	102[0.0%]
	0.0% 39 [0.0% 71	0.0%	103[0.0%]
	0.0% 40	0.0% 72	_ 0.0%_	
		U_U%_ 73	L U.U%	
	4.5% <u>4</u> 2	0.0% 74	U_U%	
	0.0% 43	ຢ ະ ປ% ຢູ່ (ວ ຊຸດທີ 70	Ø_0%_	
	0.0%] 44 L	0,000,00 0,000,00 77	0_0%_	100L Ø.Ø%]
	0.0%] 43 L	0.00/01 70	0_0%_	109L Ø.Ø%J
	0.0%] 40 [0.0%] 47 [0.0%] 70	L 0.0%]	111 F 0.097
	0.0%] 4° [0.0%] /8 [21 [640-0 0 [92] 20	L 0.0%]	112 F 0.092 T
17 E	0.0%] 40 [0.0%] 49 [0.0%] 00 0.0%] 81	[0.0%]	113F 0.0%
	0.0%] +2 [0.0%] 50 [0.0% 1 82	[0.0%]	114 F 0.0%
19 F	0.0%] 51 F	0.0% 83	Г 0.0%]	115 0.0%
20	0.0% 52 F	0.0% 84	0.0%	116 0.0%
	0.0% 53 F	0.0% 85	0.0%	117 0.0%
22	0.0% 54	0.0% 86	0.0%	118 0.0%
23	0.0% 55	0.0% 87	0.0%	119 0.0%
24	0.0% 56 [0.0% 88	0.0%	120 0.0%
25 [0.0% 57 [0.0% 89	0.0%	121 0.0%
26 [4.5%] 58 [0.0% 90	0.0%	122[0.0%]
27 [0.0% 59 [0.0% 91	0.0%	123[9.1%]
28 [0.0% 60 [0.0% 92	0.0%	124[0.0%]
29 [0.0% 61 [0.0% 93	0.0%	125 0.0%
30 L	0.0% 62	0.0% 94	0.0%	
		U.U% 95	0.0%	
	0.0% 64	0.0% 96 27 56 400 767	0.0%	128 0.0%
			d avanada. 0 68 2 27 7 62	
⊃wpL		Unt	ime . 1 day. 08.19.59	
		ор с	line. 1 uuy, 00.19.39	
PID USER	PRI NI VIRT RES	SHR S CPU% MEM% TIME+ Com	mmand	
125100 lriha	35 15 131M 3524 1	528 K 9.3 0.0 1:19.05 ht	op –d Z	
51694 root	<u>20</u> 0 221M 11340 33	108 S U.U U.U 3:22.56 /op	pt/pbs/sbin/pbs_mom	
4256 FOOT	ZU UZZ61Z Z31Z S	79250.0001:31.73/u: 216600000001.46/	sr/spin/irqpalancetoreg	
4202 1'00t	- 20 0 197M 1612 7	524 5 0 0 0 0 0 0 0 0 46 00 /ol	s r/spin/NetworkMunuyer ––n bip/ipi+	
5577 root	- 20 0 107M 4032 20 - 20 0 360M 45116 21	737 5 0 0 0 0 0 0 40 90 751	nt/mellanov/sharn/hin/shar	nd
47271	20 0 1256M 17896 3	124 S	sr/hin/nv-fahricmana aer_	/usr/share/nvidia/nvswitch/fabricm
F1Help F2Setup	F3SearchF4FilterF5Tree	F6SortBvF7Nice -F8Nice +F9	Kill F10Ouit	

- Maximum memory bandwidth can be reached with only 16 OMP threads / CPU cores if placed correctly
- More threads improve compute performance, but reduces memory bandwidth up to 12%
- STREAM generally gives the better performance with 1 thread per CCD

of active cores

GOMP_CPU_AFFINITY	0-127:32	0-127:16	0-127:8	0-127:4	0-127:2	0-127:1
# of active CPU cores	4	8	16	32	64	128
Max bandwidth [GB/s]	153,1	307,3	338,6	326,9	310,8	297,9
Efficiency	45,2%	90,8%	100,0%	96,6%	91,8%	88,0%

TECHNICAL | IT4INNOVATIONS UNIVERSITY NATIONAL SUPERCOMPUTING OF OSTRAVA CENTER

Maximum memory bandwidth

GOMP_CPU_AFFINITY	0-127:32	0-127:16	0-127:8	0-127:4	0-127:2	0-127:1
# of active CPU cores	4	8	16	32	64	128
Max bandwidth [GB/s]	153,1	307,3	338,6	326,9	310,8	297,9
Efficiency	45,2%	90,8%	100,0%	96,6%	91,8%	88,0%

AOCC compiler:

```
clang -O3 -fopenmp -mcmodel=large -DSTREAM_TYPE=double
-DSTREAM_ARRAY_SIZE=250000000 -DNTIMES=10
```

-mavx2 -ffp-contract=fast -fnt-store
stream.c -o stream_c

GOMP_CPU_AFFINITY	0-127:32	0-127:16	0-127:8	0-127:4	0-127:2	0-127:1
# of active CPU cores	4	8	16	32	64	128
Max bandwidth [GB/s]	107,2	212,7	248,2	239,9	231,8	227,2
Efficiency	43,2%	85,7%	100,0%	96,7%	93,4%	91,5%

GCC compiler - settings from STREAM Makefile

gcc -O2 -fopenmp -mcmodel=large -DSTREAM_TYPE=double -DSTREAM_ARRAY_SIZE=250000000 -DNTIMES=10

stream.c -o stream_gcc

SOFTWARE DEVELOPMENT ENVIRONMENT

Use AMD tools for best performance and code efficiency on EPYC CPUs

- Compilers focus on delivering the best out-of-the-box code generation for C, C++, Fortran, Java
- Libraries support common kernels for core math, solvers and FFT
- Profiling tools enable developers to access the full capabilities of EPYC CPUs
 - | All tools are available at <u>https://developer.amd.com/</u> and of course as modules

VSB TECHNICAL | IT4INNOVATIONS ||||| UNIVERSITY | NATIONAL SUPERCOMPUTING OF OSTRAVA | CENTER

NVIDIA HGX A100

8-GPUs connected with NVSwitch

	A100 PCle	4-GPU	8-GPU	16-GPU
GPUs	1x NVIDIA A100 PCIe	HGX A100 4-GPU	HGX A100 8-GPU	2x HGX A100 8-GPU
Form factor	PCIe	4x NVIDIA A100 SXM	8x NVIDIA A100 SXM	16x NVIDIA A100 SXM
HPC and AI compute FP64 TF32*/FP16* INT8* * with sparsity	19.5TF 312TF*/624TF* 1.2POPS*	78TF 1.25PF*/2.5PF* 5POPS*	156TF 2.5PF*/5PF* 10POPS*	312TF 5PF*/10PF* 20POPS*
Memory	40 or 80GB per GPU	Up to 320GB	Up to 640GB	Up to 1,280GB
NVLink	Third generation	Third generation	Third generation	Third generation
NVSwitch	N/A	N/A	Second generation	Second generation
NVSwitch GPU-to-GPU bandwidth	N/A	N/A	600GB/s	600GB/s
Total aggregate bandwidth	600GB/s	2.4TB/s	4.8TB/s	9.6TB/s

https://www.nvidia.com/en-us/data-center/hgx/

A 100 40CD CVA

-P64	9.7 TFLOPS
P64 Tensor Core	19.5 TFLOPS
FP32	19.5 TFLOPS
Tensor Float 32 (TF32)	156 TFLOPS 312 TFLOPS*
3FLOAT16 Tensor Core	312 TFLOPS 624 TFLOPS*
P16 Tensor Core	312 TFLOPS 624 TFLOPS*
NT8 Tensor Core	624 TOPS 1248 TOPS*
GPU Memory	40GB HBM2
GPU Memory Bandwidth	1,555GB/s
ax Thermal Design Power (TDP)	400W
Multi-Instance GPU	Up to 7 MIGs @ 5GB
Form Factor	SXM
nterconnect	NVLink: 600GB/s

* With sparsity

** SXM4 GPUs via HGX A100 server boards; PCIe GPUs via NVLink Bridge for up to two GPUs

https://www.nvidia.com/en-us/data-center/a100/

VSB TECHNICAL IT4INNOVATIONS UNIVERSITY NATIONAL SUPERCOMPUTING OF OSTRAVA CENTER

NVLINK GPU INTERCONNECT IN DGX-A100

Bandwidth and latency for accessing remote memory over NVLink 3.0 for all combinations of GPUs

Unidir - Bandwith [GB/s]

GPU	0	1	2	3	4	5	6	7	
0	1180	244	255	251	255	255	249	255	
1	251	1202	256	245	256	256	252	257	
2	248	256	1195	255	252	255	255	248	
3	252	257	257	1198	253	255	255	249	
4	244	255	256	249	1173	254	249	253	
5	251	256	255	251	256	1198	255	252	
6	256	251	255	255	253	254	1195	248	
7	257	256	248	255	257	251	255	1206	
GPU	0	1	2	3	4	5	6	7	
C	4.1	11.1	11.1	10.2	10.0	9.9	9.9	10.0	
1	11.1	4.2	11.1	9.6	9.7	9.6	9.8	9.7	
2	11.0	11.0	4.1	10.0	10.0	9.9	9.9	9.9	
3	11.1	10.1	9.6	4.2	10.0	10.0	9.9	10.0	
4	11.6	10.0	9.7	9.8	4.4	9.7	9.7	9.7	
5	11.7	10.1	9.8	9.8	9.7	4.4	9.7	9.7	
6	5 11.6	11.3	10.6	9.8	9.8	9.9	4.4	9.7	
7	11.7	10.3	9.8	9.8	9.7	9.7	9.8	4.4	
L	Latency [us]								

OF OSTRAVA

CENTER

GPU NODE TOPOLOGY

[lriha@acn07.karolina ~]\$ nvidia-smi topo -m

	GPU0	GPU1	GPU2	GPU3	GPU4	GPU5	GPU6	GPU7	mlx5_	0 mlx5_	<u>1 mlx5</u>	2 mlx5_3	CPU Affinity	NUMA	Affinity
GPU0	X	NV12	2 NV12	NV12	NV12	NV12	NV12	NV12	SYS	PXB	SYS	SYS	48-63	3	
GPU1	NV12	X	NV12	NV12	NV12	NV12	NV12	NV12	SYS	PXB	SYS	SYS	48-63	3	
GPU2	NV12	NV12	2 X	NV12	NV12	NV12	NV12	NV12	PXB	SYS	SYS	SYS	16-31	1	
GPU3	NV12	NV12	2 NV12	X	NV12	NV12	NV12	NV12	PXB	SYS	SYS	SYS	16-31	1	
GPU4	NV12	NV12	2 NV12	NV12	X	NV12	NV12	NV12	SYS	SYS	SYS	PXB	112-127	7	
GPU5	NV12	NV12	2 NV12	NV12	NV12	X	NV12	NV12	SYS	SYS	SYS	PXB	112-127	7	
GPU6	NV12	NV12	2 NV12	NV12	NV12	NV12	x	NV12	SYS	SYS	PXB	SYS	80-95	5	
GPU7	NV12	NV12	2 NV12	NV12	NV12	NV12	NV12	x	SYS	SYS	PXB	SYS	80-95	5	
mlx5_	OSYS	SYS	PXB	PXB	SYS	SYS	SYS	SYS	x	SYS	SYS	SYS			
mlx5_	1 PXB	PXB	SYS	SYS	SYS	SYS	SYS	SYS	SYS	X	SYS	SYS			
mlx5_	2 SYS	SYS	SYS	SYS	SYS	SYS	PXB	PXB	SYS	SYS	X	SYS			
mlx5_	3 SYS	SYS	SYS	SYS	PXB	PXB	SYS	SYS	SYS	SYS	SYS	X			

Legend:

X SYS NODE	Self Connection Connection	traversing traversing	PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI) PCIe as well as the interconnect between PCIe Host Bridges within a NUMA
node			
PHB	Connection	traversing	PCIe as well as a PCIe Host Bridge (typically the CPU)
PHB PXB	Connection Connection	traversing traversing	PCIe as well as a PCIe Host Bridge (typically the CPU) multiple PCIe bridges (without traversing the PCIe Host Bridge)
PHB PXB PIX	Connection Connection Connection	traversing traversing traversing	PCIe as well as a PCIe Host Bridge (typically the CPU) multiple PCIe bridges (without traversing the PCIe Host Bridge) at most a single PCIe bridge

RUNNING MPI ON ALL 4 IB LINKS

4x 200 Gb/s Infiniband HDR links should provide close to 80 GB/s

however, they are on different sockets – one needs 2 MPI processes to reach 80 GB/s

RUNNING MPI ON ALL 4 IB LINKS

4x 200 Gb/s Infiniband HDR links should provide close to 80 GB/s

however, they are on different sockets – one needs 2 MPI processes to reach 80 GB/s

```
#qsub -q qnvidia -A PROJ_ID -1 select=2:mpiprocs=2:ompthreads=64:ncpus=128 -I -1 walltime=02:00:00
```

```
ml OpenMPI/4.1.1-GCC-10.3.0
mpic++ -fopenmp -o mpi_test_ompi mpi_test.cpp
mpirun -np 4 \
```

```
-bind-to core -cpu-list 16,80 --report-bindings \
-x UCX_MAX_EAGER_RAILS=2 -x UCX_MAX_RNDV_RAILS=2 \
-x UCX_NET_DEVICES=mlx5_0:1,mlx5_1:1,mlx5_2:1,mlx5_3:1 \
./mpi_test_ompi
```

```
mpirun -np 4 \
-bind-to core -cpu-list 16,80 \
./mpi_test_ompi
```

mpirun -np 4 \
-bind-to core -cpu-list 48,112 \
./mpi_test_ompi

Unified Communication X – UCX

- an open-source communication framework
- takes care of multi rail support
- loaded as module with MPI

RUNNING MPI ON ALL 4 IB LINKS

4x 200 Gb/s Infiniband HDR links should provide close to 80 GB/s

however, they are on different sockets – one needs 2 MPI processes to reach 80 GB/s

qsub -q qnvidia -A PROJ_ID -1 select=2:mpiprocs=2:ompthreads=64:ncpus=128 -I -1 walltime=02:00:00

SINGLE NODE MULTI-GPU WITH OPENMP


```
omp_set_num_threads( num_gpus); // create as many CPU threads as there are CUDA
devices
```

#pragma omp parallel

}

unsigned int cpu_thread_id = omp_get_thread_num();

cudaSetDevice(cpu thread id);

```
GPUkernel<<<gpu_blocks, gpu_threads>>>( ... );
```

Source: https://github.com/NVIDIA/cuda-samples/tree/master/Samples/cudaOpenMP

CUDA AWARE MPI

cudaMemcpy(s_buf_h,s_buf_d,size,cudaMemcpyDeviceToHost); MPI_Send(s_buf_h,size,MPI_BYTE,1,tag,MPI_COMM_WORLD);

MPI_Recv(r_buf_h,size,MPI_BYTE,0,tag,MPI_COMM_WORLD,&stat); cudaMemcpy(r_buf_d,r_buf_h,size,cudaMemcpyHostToDevice);

REGULAR MPI GPU TO REMOTE GPU

MPI_Send(s_buf_d,size,MPI_BYTE,1,tag,MPI_COMM_WORLD);

MPI_Recv(r_buf_d,size,MPI_BYTE,0,tag,MPI_COMM_WORLD,&stat);

MPI GPU TO REMOTE GPU

Source: Multi-GPU Programming with CUDA, GPUDirect, NCCL, NVSHMEM, and MPI; Akhil Langer, Senior Software Engineer, NVIDIA

VSB TECHNICAL | IT4INNOVATIONS ||||| UNIVERSITY OF OSTRAVA | CENTER

NCCL

NCCL : NVIDIA Collective Communication Library

Communication library running on GPUs, for GPU buffers.

Source: NCCL: ACCELERATED MULTI-GPU COLLECTIVE COMMUNICATIONS, Cliff Woolley, Sr. Manager, Developer Technology Software, NVIDIA

TECHNICAL IT4INNOVATIONS UNIVERSITY NATIONAL SUPERCOMPUTING OF OSTRAVA CENTER

ADVANCED METHOD BASED ON MEMORY ACCESS ANALYSIS IMPLEMENTATION USING CUDA UNIFIED MEMORY

Data structure memory allocation in CPU memory

cudaMemAdviseSetReadMostly

size t size = 4 * 64 * 1024 * 1024; //size of data struct char *data struct = NULL;

cudaMallocManaged(&data struct, size);

for (int gpu = 0; gpu < gpu count; gpu++)</pre> cudaMemAdvise((char *)data struct, size, cudaMemAdviseSetAccessedBy, gpu);

size t csize = 64 * 1024 * 1024; // chunk size

//set chunk 1 to be replicated in memory of all GPUs cudaMemAdvise(data struct + 0*csize, csize, cudaMemAdviseSetReadMostly, 0)); for (int gpu = 0; gpu < gpu count; gpu++) cudaMemPrefetchAsync(data struct + 0*csize, csize, gpu);

//set chunk 2 to located on GPU0 only cudaMemAdvise(data struct + 1*csize, csize, cudaMemAdviseSetPreferredLocation, 0)); cudaMemPrefetchAsync(data struct + 1*csize, csize, 0);

//set chunk 3 to located on GPU1 only cudaMemAdvise(data struct + 2*csize, csize, cudaMemAdviseSetPreferredLocation, 1)); cudaMemPrefetchAsync(data struct + 2*csize, csize, 1);

//set chunk 4 to located on GPU3 only

cudaMemAdvise(data struct + 3*csize, csize, cudaMemAdviseSetPreferredLocation, 3)); cudaMemPrefetchAsync(data struct + 3*csize, csize, 3);

cudaMemAdvise (const void* devPtr, size t count, cudaMemoryAdvise advice, int device);

cudaMemPrefetchAsync (const void* devPtr, size t count, int dstDevice, cudaStream t stream = 0);

VSB TECHNICAL **IT4INNOVATIONS** UNIVERSITY NATIONAL SUPERCOMPUTING OF OSTRAVA CENTER

ADVANCED METHOD BASED ON MEMORY ACCESS ANALYSIS MEMORY ACCESS PATTERN

Method work on a memory management level

- it does not differentiate what content is stored in a data structure
- works with all data structures equally
- all allocations are divided into chunks of fixed sizes

VSB TECHNICAL

UNIVERSITY

OF OSTRAVA

IT4INNOVATIONS

NATIONAL SUPERCOMPUTING

	data_a ^{data} data_c	data_d	data_e
--	-------------------------------	--------	--------

Division of all data structures into chunks

	dataa	data_c	datad	data_e
--	-------	--------	-------	--------

Step 1: Memory access pattern analysis

• based on 1 sample per pixel pre pass, which can be executed on CPU or on fully distributed data in GPU memories

Memory access counters of all individual chunks

 9
 1
 8
 1
 4
 8
 9
 5
 7
 4
 3
 6
 2
 4
 7
 8
 5
 5
 5
 7
 8
 5
 7
 8
 5
 7
 8
 5
 8
 9
 5
 7
 8
 5
 7
 8
 5
 7
 8
 5
 7
 8
 5
 7
 8
 5
 7
 8
 5
 7
 8
 5
 7
 8
 5
 7
 8
 5
 7
 8
 5
 7
 8
 5
 7
 8
 5
 7
 8
 5
 7
 8
 5
 7
 8
 5
 7
 8
 5
 7
 8
 5
 7
 8
 5
 7
 8
 5
 7
 8
 5
 7
 8
 5
 7
 8
 5
 7
 8
 5
 7
 8
 5
 5
 7
 8
 5

Step 2: Identify chunks which will be replicated

- chunks with the highest amount of memory access are marked for replication on all GPUs
- number of chunks to be replicated is based on the scene size and total amount of GPU memory

Memory access counters of all individual chunks

Step 3: Distribution of the non-replicated chunks

- we have to assign chunk to the GPU that has the highest number of access to it
- based on scene partitioning each part will be assigned to one GPU
- we have to record memory access counters for each part of the scene independently
 - this again can be done on both CPU or multiple GPUs with fully distributed data in a round robin fashion
- chunks with no memory accesses are distributed in a round robin fashion

Step 3: Distribution of the non-replicated chunks

- we have to assign chunk to the GPU that has the highest number of access to it
- based on scene partitioning each part will be assigned to one GPU
- we have to record memory access counters for each part of the scene independently
 - this again can be done on both CPU or multiple GPUs with fully distributed data in a round robin fashion
- chunks with no memory accesses are distributed in a round robin fashion

GPU 0	Part of scene rendered by GPU 0
GPU 1 GPU 1	Part of scene rendered by GPU 1
GPU 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Part of scene rendered by GPU 2
GPU 3 GPU 3	Part of scene rendered by GPU 3
Final data distribution per chunk	

Final data distribution per chunk

ADVANCED METHOD BASED ON MEMORY ACCESS ANALYSIS VERTICES – DATA DISTRIBUTION

Replication 0%

Replication 10%

 VSB
 TECHNICAL
 IT4INNOVATIONS

 UNIVERSITY
 NATIONAL SUPERCOMPUTING
 NATIONAL SUPERCOMPUTING

TECHNICAL I IT4INNOVATIONS UNIVERSITY NATIONAL SUPERCOMPUTING OF OSTRAVA CENTER

RENDERING OF MASSIVE SCENES

OF OSTRAVA

Source: Jaros M., Riha L., Strakos P., Spetko M.: GPU Accelerated Path Tracing of Massive Scenes, ACM Transactions on Graphics (TOG), 2021, DOI: http://dx.doi.org/10.1145/3447807

ADVANCED METHOD BASED ON MEMORY ACCESS ANALYSIS SCALABILITY ANALYSIS ON SMALL SCENE - DGX A100

Moana 27GB

Source: Jaros M., Riha L., Strakos P., Spetko M.: GPU Accelerated Path Tracing of Massive Scenes, ACM Transactions on Graphics (TOG), 2021, DOI: http://dx.doi.org/10.1145/3447807

VSB TECHNICAL | IT4INNOVATIONS |||| UNIVERSITY | NATIONAL SUPERCOMPUTING OF OSTRAVA | CENTER

RENDERING OF MASSIVE SCENES

Moana 169GB

VSB TECHNICAL | IT4INNOVATIONS UNIVERSITY | NATIONAL SUPERCOMPUTING OF OSTRAVA | CENTER

Source: Jaros M., Riha L., Strakos P., Spetko M.: GPU Accelerated Path Tracing of Massive Scenes, ACM Transactions on Graphics (TOG), 2021, DOI: http://dx.doi.org/10.1145/3447807

Lubomir Riha lubomir.riha@vsb.cz VSB TECHNICAL | IT4INNOVATIONS |||| UNIVERSITY | NATIONAL SUPERCOMPUTING OF OSTRAVA | CENTER

IT4Innovations National Supercomputing Center VSB – Technical University of Ostrava Studentská 6231/1B 708 00 Ostrava-Poruba, Czech Republic <u>www.it4i.cz</u>

