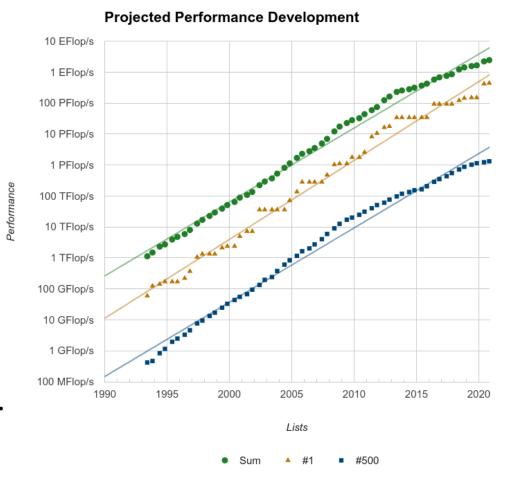



ENERGY EFFICIENCY
FEATURES OF THE
MODERN HPC
HARDWARE AND ENERGY
CONSUMPTION
MEASUREMENT

Ondřej Vysocký IT4Innovations

5. 4. 2022



END OF MOOR'S LAW

Scaling

- Power wall
- Target 20 MW power limit for exascale
 - = 50 GFlop/W
 - | Soft limit
- General hardware optimised for all possible workloads => silicon area wasted to maximize single thread performance
 - New heterogenous hardware GPU, FPGA, ...
 - | Specialized computing units

Top500 11/2021

TOP500

Rmax = Linpack Performance Rpeak = Theoretical Peak

Rank	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
1	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,630,848	442,010.0	537,212.0	29,899
2	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM D0E/SC/Oak Ridge National Laboratory United States	2,414,592	148,600.0	200,794.9	10,096
3	Sierra - IBM Power System AC922, IBM POWER9 22C 3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM / NVIDIA / Mellanox DOE/NNSA/LLNL United States	1,572,480	94,640.0	125,712.0	7,438
4	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway, NRCPC National Supercomputing Center in Wuxi China	10,649,600	93,014.6	125,435.9	15,371
5	Perlmutter - HPE Cray EX235n, AMD EPYC 7763 64C 2.45GHz, NVIDIA A100 SXM4 40 GB, Slingshot-10, HPE D0E/SC/LBNL/NERSC United States	761,856	70,870.0	93,750.0	2,589
6	Selene - NVIDIA DGX A100, AMD EPYC 7742 64C 2.25GHz, NVIDIA A100, Mellanox HDR Infiniband, Nvidia NVIDIA Corporation United States	555,520	63,460.0	79,215.0	2,646
7	Tianhe-2A - TH-IVB-FEP Cluster, Intel Xeon E5-2692v2 12C 2.2GHz, TH Express-2, Matrix-2000, NUDT National Super Computer Center in Guangzhou China	4,981,760	61,444.5	100,678.7	18,482
8	JUWELS Booster Module - Bull Sequana XH2000 , AMD EPYC 7402 24C 2.8GHz, NVIDIA A100, Mellanox HDR InfiniBand/ParTec ParaStation ClusterSuite, Atos Forschungszentrum Juelich (FZJ)	449,280	44,120.0	70,980.0	1,764

Germany

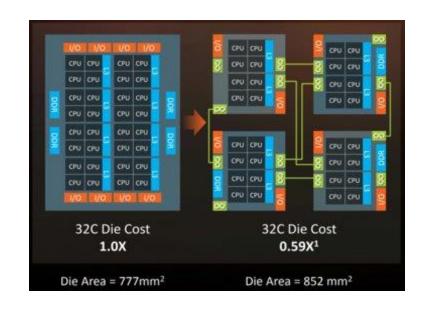
TOP500

Rmax = Linpack Performance Rpeak = Theoretical Peak

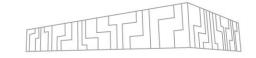
Exascale goal is 20 MW limit

50 GFlops/watts

11/2021


Rank	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power	
1	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,630,848	442,010.0	537,212.0	29,899	x1.86 = 56 MW
2	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM DOE/SC/Oak Ridge National Laboratory United States	2,414,592	148,600.0	200,794.9	10,096	x5 = 44 MW
3	Sierra - IBM Power System AC922, IBM POWER9 22C 3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM / NVIDIA / Mellanox DOE/NNSA/LLNL United States	1,572,480	94,640.0	125,712.0	7,438	x8 = 60 MW
4	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway, NRCPC National Supercomputing Center in Wuxi China	10,649,600	93,014.6	125,435.9	15,371	x8 = 123 MW
5	Pertmutter - HPE Cray EX235n, AMD EPYC 7763 64C 2.45GHz, NVIDIA A100 SXM4 40 GB, Slingshot-10, HPE D0E/SC/LBNL/NERSC United States	761,856	70,870.0	93,750.0	2,589	x11 = 28 MW
6	Selene - NVIDIA DGX A100, AMD EPYC 7742 64C 2.25GHz, NVIDIA A100, Mellanox HDR Infiniband, Nvidia NVIDIA Corporation United States	555,520	63,460.0	79,215.0	2,646	x13 = 34 MW
7	Tianhe-2A - TH-IVB-FEP Cluster, Intel Xeon E5-2692v2 12C 2.2GHz, TH Express-2, Matrix-2000, NUDT National Super Computer Center in Guangzhou China	4,981,760	61,444.5	100,678.7	18,482	x10 = 185 MW
8	JUWELS Booster Module - Bull Sequana XH2000 , AMD EPYC 7402 24C 2.8GHz, NVIDIA A100, Mellanox HDR InfiniBand/ParTec ParaStation ClusterSuite, Atos Forschungszentrum Juelich (FZJ) Germany	449,280	44,120.0	70,980.0	1,764	x14 = 25 MW

HARDWARE TRENDS



CPUs

- Rising number of cores
- Chiplets (tiles)
- Purpose specific units
 - AI, crypto, matrix calculation
- **GPUs**
 - Tensor cores
- **FPGAs**

Power management and monitoring

POWER KNOBS

Intel

- CPU core frequency, uncore frequency, power capping
- ACC (KNL) core frequency, power capping

AMD

- CPU core frequency, power capping, Data Fabric frequency
- ACC ?

Nvidia

GPU - SM frequency, memory frequency, power capping

IBM

- CPU core frequency, power capping+ GPU and node power capping
- ARM
 - A64FX core frequency, FLA (floating-point ops) and EXA (integer ops) pipelines elimination, memory frequency
 - | EPI core frequency, power capping
 - Jetson core frequency, memory frequency

This list is incomplete

OS POWER MANAGEMENT

- ACPI (Advanced Configuration and Power Interface) is an open industry specification establishes industry-standard interfaces enabling OS-directed configuration, power management, and thermal management of mobile, desktop, and server platforms.
- ACPI defines performance states (P-States)
- P-States correspond to different performance levels that are applied while the processor is actively executing instructions
- Intel CPUs from Haswell architecture provide Voltage regulators per core, so each core has its own P-State

ACPI

Scaling driver

Acpi-cpufreq, intel_psate, ...

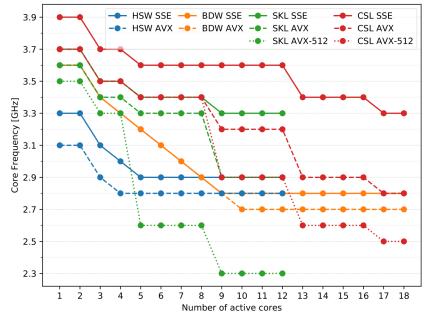
Scaling governor

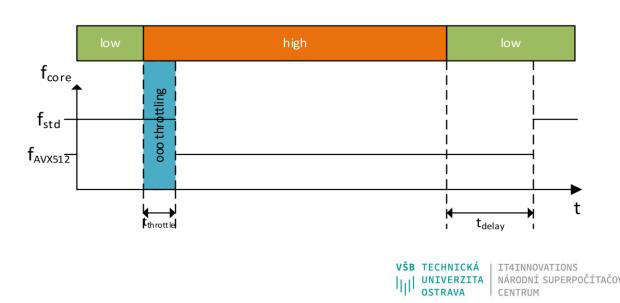
Performance, powersave, userspace, ondemand, conservative

Intel hardware P-state

Applications

OS power management


Software drivers

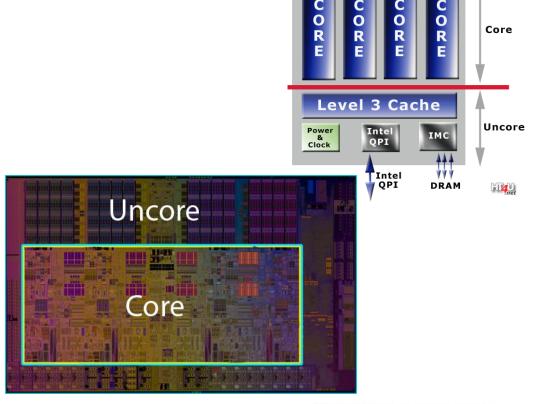

HW: CPU, BIOS, etc.

INTEL CPU CORE TURBO FREQUENCY

- Turbo Boost is a technology that opportunistically allows the processor to run faster than the nominal frequency if the CPU is operating below power, temperature and current limits
- There are three different levels of the turbo core frequency based on instruction set SSE, AVX/AVX2, AVX-512
- The turbo frequency limit also relies on the number of active cores
- Turbo Boost frequency is selected by the firmware of the CPU no OS control
- Be careful when using an islands of AVX instructions, there is always a transition latency

INTEL CPU UNCORE FREQUENCY

MSR MSR_UNCORE_RATIO_LIMIT (0x620)


frequency of subsystems in the physical processor package that are shared by multiple processor cores

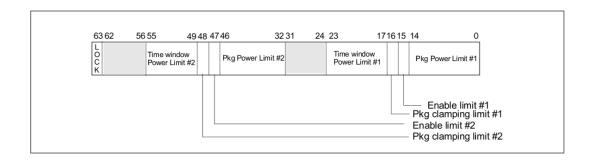
last level cache, on-chip ring interconnect or the integrated memory controllers, etc.

occupies approximately 30 % of a chip area

specification of the maximum and minimum limit

620H	MSR UNCORE_RATIO_LIMIT	Package	Uncore Ratio Limit (R/W)
			Out of reset, the min_ratio and max_ratio fields represent the widest possible range of uncore frequencies. Writing to these fields allows software to control the minimum and the maximum frequency that hardware will select.
	63:15		Reserved
	14:8		MIN_RATIO
			Writing to this field controls the minimum possible ratio of the LLC/Ring.
	7		Reserved
	6:0		MAX_RATIO
			This field is used to limit the max ratio of the LLC/Ring.

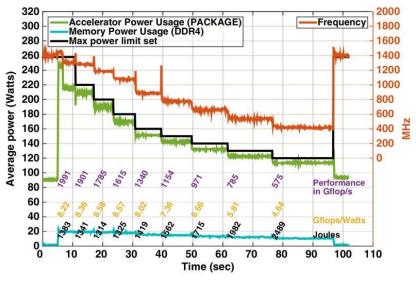
INTEL RUNNING AVERAGE POWER LIMIT (RAPL)


- Sysfs: /sys/devices/virtual/powercap/intel-rapl/intel-rapl:X/intel-rapl:0:Y
- Power domains:
 - Package: limits the power consumption for the entire package of the CPU, this includes cores and uncore components
 - Short (1.2 * TDP, ~ milliseconds) and long window (TDP, ~ second)
 - **DRAM**: is used to power cap the DRAM memory = memory monitoring, P-State scaling.
 - only for server architectures, no client
 - single time window
 - in default is turned off
 - **PPO/Core**: is used to restrict the power limit only to the cores of the CPU
 - no new server
 - single time window
 - **PP1/Graphic**: is used to power limit only the graphic component of the CPU
 - no server
 - Single time window
 - **PSys/Platform**: controls entire System on Chip
 - short and long window
 - available from Skylake architecture
 - requires support from vendor

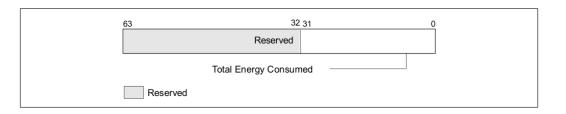
Domain	Machine Specific Register	Address
Package	MSR_PKG_POWER_LIMIT	0x610
DRAM	MSR_DRAM_POWER_LIMIT	0x618
PP0	MSR_PP0_POWER_LIMIT	0x638
PP1	MSR_PP1_POWER_LIMIT	0x640
Platform	MSR_PLATFORM_POWER_LIMIT	0x65C

INTEL RUNNING AVERAGE POWER LIMIT (RAPL)

MSR MSR_PKG_POWER_LIMIT (0x610)



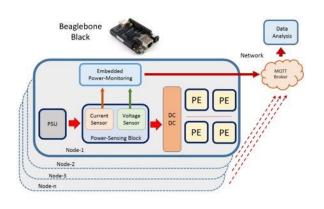
MSR MSR_RAPL_POWER_UNIT (0x606)

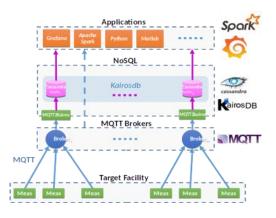

- Power units
- Energy status units
- Time units

Energy consumption measurement

- MSR MSR_PKG_ENERGY_STATUS (0x611)
- MSR MSR_DRAM_ENERGY_STATUS (0x619)
- MSR MSR_PPO_ENERGY_STATUS (0x639)
- MSR MSR_PP1_ENERGY_STATUS (0x641)
- MSR MSR_PLATFORM_ENERGY_COUNTER (0x64D)

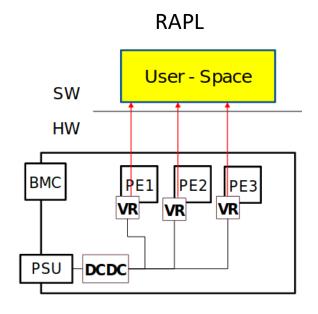
Haidar et al: Investigating power capping toward energy-efficient scientific applications




POWER MONITORING SYSTEMS FOR HPC

name	original purpose	out/in	sampling	sensors
		band	rate	
ADEPT	energy measurement	out	1 MHz	blade, CPUs, DRAMs,
				ACC, HDD, NIC
DiG	anomaly monitoring	out	1 kHz	blade
HDEEM	energy measurement	out	1 kHz /	blade, CPUs, DRAMs,
			$100\mathrm{MHz}$	NIC*, VAUX*
IPMI	server monitoring	out	$1\mathrm{Hz}$	baseboard
NVML	power management	in	<66.7 Hz	GPU
OCC	power management	both	$4\mathrm{kHz}$	blade
PowerInsight	energy measurement	both	1 kHz	CPUs, DRAMs, ACC,
PowerMon2	energy measurement	out	$1\mathrm{kHz}$ / $3\mathrm{kHz}$	8 sensors
RAPL	power management	in	1 kHz	Package, DRAM*,
				PP0*, PP1*, Platform*

$$Energy(t) = \int_0^t Power(x) dx \approx \frac{\sum_{i=0}^n PowerSample_i}{SamplingFrequency}$$



IN- AND OUT-OF-BAND POWER MONITORING

In-band

- Vendor dependent
- HW performance counters
- Out-of-band
 - No overhead
 - (usually) fine-grain power measurement
 - Custom sensors

Database

Remote
Man. Node

WRET

WRET

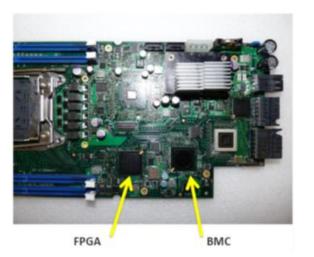
WRET

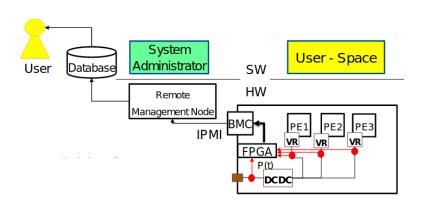
MQTT

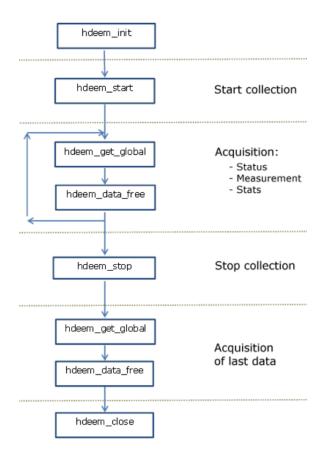
P(t)

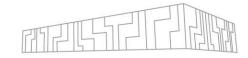
DCDC

DCDC

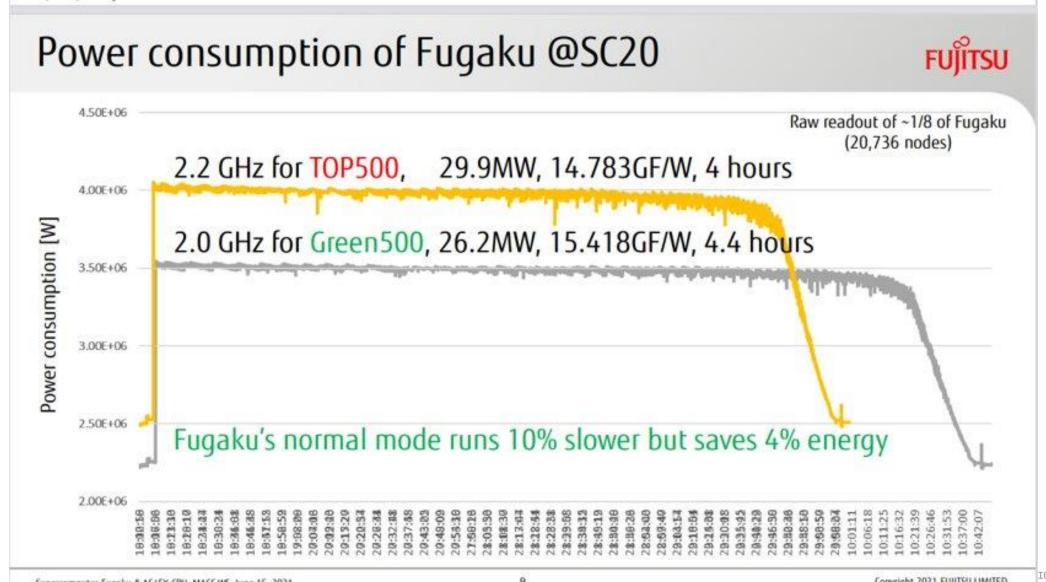

DCDC


HIGH DEFINITION ENERGY EFFICIENCY MONITORING (HDEEM)


- Bull | Atos technology available for production systems (Bullx B7xx and Bull Sequana)
- On board out-of-band technology for power monitoring


Power domains:

- Blade (1kHz)
- VRs (100 Hz) CPUs, DRAMs, NIC*, VAUX*
- 2% of accuracy uncertainty
- C library as well as command line utility:
 - startHdeem
 - stopHdeem
 - checkHdeem
 - printHdeem
 - clearHdeem


EE HPC centers

- #1 in Top500 since 6/2020
- Using Fujitsu A64FX (48 compute cores + 4 assistant cores for OS daemon and MPI offload)
 - No TDP, no nominal frequency => no turbo frequency
 - Available frequencies 1.6, 2.0, or 2.2 GHz
- User-controlled options
 - Power mode (scheduler option)
 - Normal 2.0 GHz frequency
 - **Boost** 2.2 GHz frequency
 - **ECO** 2.0 GHz frequency + use one of two FP units only + reduces its standby power
 - **Boost ECO** 2.2 GHz frequency + FPU elimination
 - Core retention ON/OFF
 - Eliminates standby power idle CPU cores
- See: https://sites.google.com/view/rikenfugakushowcase/home

Memory peak bandwidth	1024			GB/s	
Peak HP perf (FP16)	11 12 13			TFLOPS	
Peak SP perf (FP32)	5.5	6.1	6.7	TFLOPS	
Peak DP perf (FP64)	2.7	3.0	3.3	TFLOPS	
CPU core frequency	1.8	2.0	2.2	GHz	

LRZ SuperMUC-NG:

- #8 in Top500 in 11/2018, Rmax 20 PFlops
- Using Intel Xeon Platinum 8174 (24 cores)
 - Intel default
 - 240 W TDP
 - 2.4 GHz CPU uncore frequency
 - Turbo CPU core frequencies
 - 3.9 GHz SSE, 3.8 GHz AVX-2, 3.8 GHz AVX-512
 - LRZ Default
 - 205 W power limit (-14.6%)
 - 1.8 GHz CPU uncore frequency
 - Turbo CPU core frequencies
 - 3.7 GHz SSE, 3.6 GHz AVX-2, 3.5 GHz AVX-512
- All jobs executed under Energy Aware Runtime (EAR)

See:

https://doku.lrz.de/display/PUBLIC/Details+of+Compute+Nodes

https://doku.lrz.de/display/PUBLIC/Energy+Aware+Runtime

CINECA's systems:

It is possible to access and change all the power knobs without special permission on all CINECA's systems, the SLURM scheduler takes care to restore a default configuration after the termination of power-aware jobs.

Marconi

- Intel Xeon 8160 Skylake, 24 cores, 150 W TDP
- User-controlled knobs Power capping, frequency scaling, power driver

Marconi100

- #9 Top500 6/2020
- IBM POWER9 AC922, 16 cores
- User-controlled knobs Power capping, frequency scaling, power driver

Galileo100

- Intel Xeon 8260 Cascade lake, 24 cores, 165 W TDP
- Support under development
- User-controlled knobs Power capping, frequency scaling, power driver

\$ srun -A \$PROJECT
--partition=m100_usr_prod
--gres=sysfs --exclusive

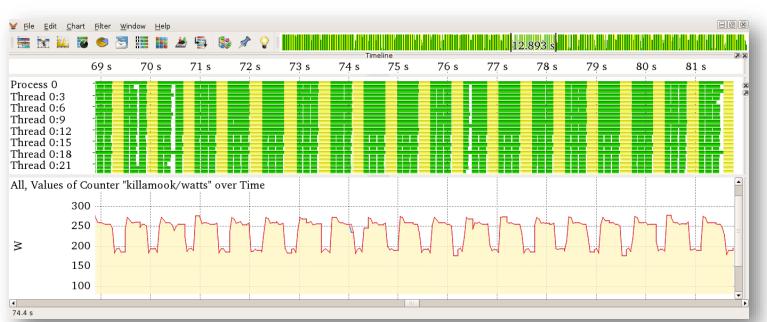
IT4I's systems:

- It is possible to access and change power knobs and monitor energy consumption
- Barbora
 - Intel Xeon Cascade Lake 6240, 18 cores, 150 W TDP / Intel Skylake Gold 6126, 12 cores, 120 W TDP + Nvidia V100, 300 W TDP
 - User-controlled knobs
 - CPU: Power capping, core + uncore frequencies scaling, power driver
 - GPU: Power capping, Mem + SM frequencies scaling
 - Power monitoring Intel RAPL, Atos | Bull HDEEM / Intel RAPL, Nvidia NVML

Karolina

- AMD EPYC 7h12, 64 cores, 280 W TDP / AMD EPYC 7763, 64 cores, 280 W TDP + Nvidia A100, 400 W TDP
- User-controlled knobs
 - CPU: Power capping, core frequency scaling
 - GPU: Power capping, Mem + SM frequencies scaling
- Power monitoring AMD RAPL / AMD RAPL, Nvidia NVML

Energy-aware dynamic tuning


RUNTIME SYSTEMS

	scope	tuneable params	tuning	power capping	power overprov.	objective	tuning model	visualization	platform
MERIC	Full runtime Functions auto	multiple	online +1 def. +multi run	RAPL, NVML	On roadmap Intra node Intra job	tuning + overprov. + monit.	Search in & out	RADAR	multi
READEX	Manual loop + Auto LL-regions within	CF, UCF, #thrds	analysis phase	-	-	tuning + monit.	Search out	Cube	Intel RAPL, HDEEM
Conductor	Manual loop	CF, #thrds	online	RAPL	Intra job	overprov.	-	-	Intel RAPL
Unc. Power scavenger	Full runtime sampling	UCF	online	-	-	tuning	-	-	Intel RAPL
COUNTDOWN	Auto MPI	CF	+1 def. run	-	-	tuning	-	-	Intel RAPL
GEOPM	Man/MPI/OMP in the main loop	CF	online	RAPL	Intra job/ Inter jobs	tuning/ overprov. /monitor.	-	Txt	Intel RAPL
EAR	Auto MPI in the main loop	CF	online	-	-	tuning/ monitor.	Search in & out	paraver	Intel

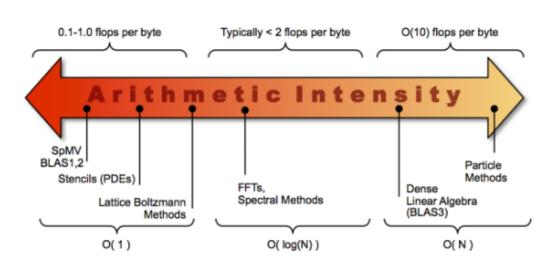
READEX PROJECT

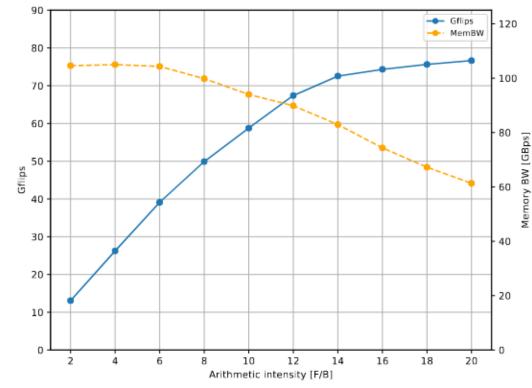
- Energy efficiency is critical to current and future systems
- Applications exhibit dynamic behavior
 - Changing resource requirements
 - Computational characteristics
 - | Changing load on processors over time

VSB TECHNICAL
UNIVERSITY
OF OSTRAVA

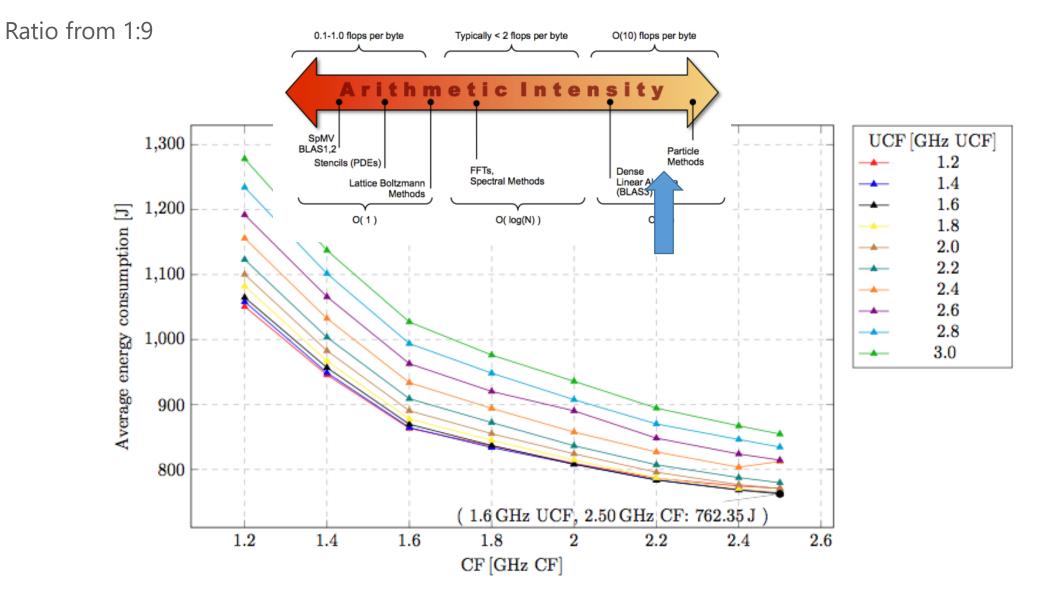
IT4INNOVATIONS
NATIONAL SUPERCOMPUTING

NUI Galway OÉ Gaillimh

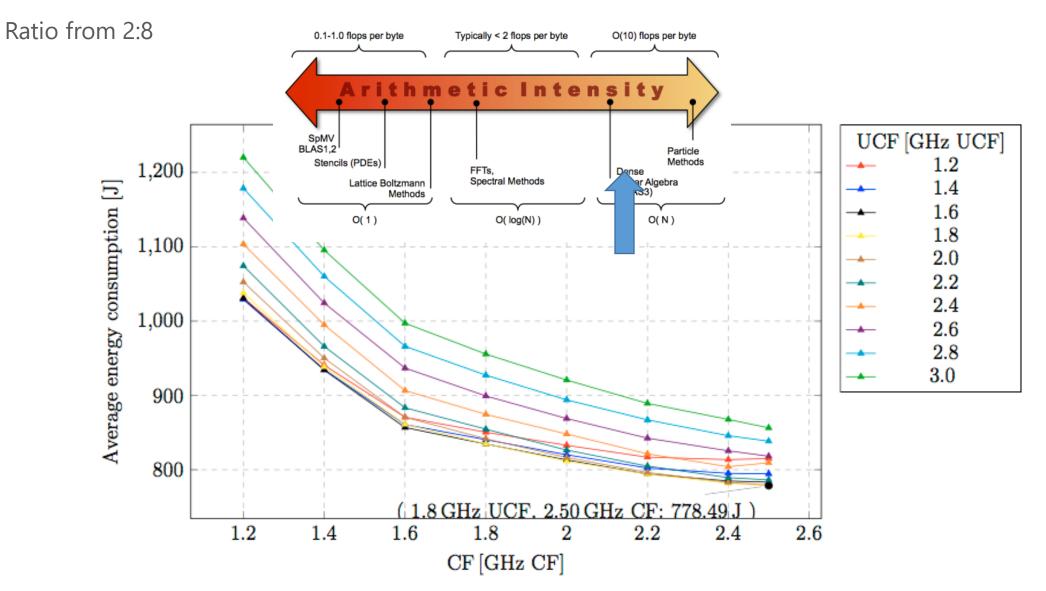



- Goal was to create a tools-aided methodology for automatic tuning of parallel applications
- Dynamically adjust system parameters to actual resource requirements

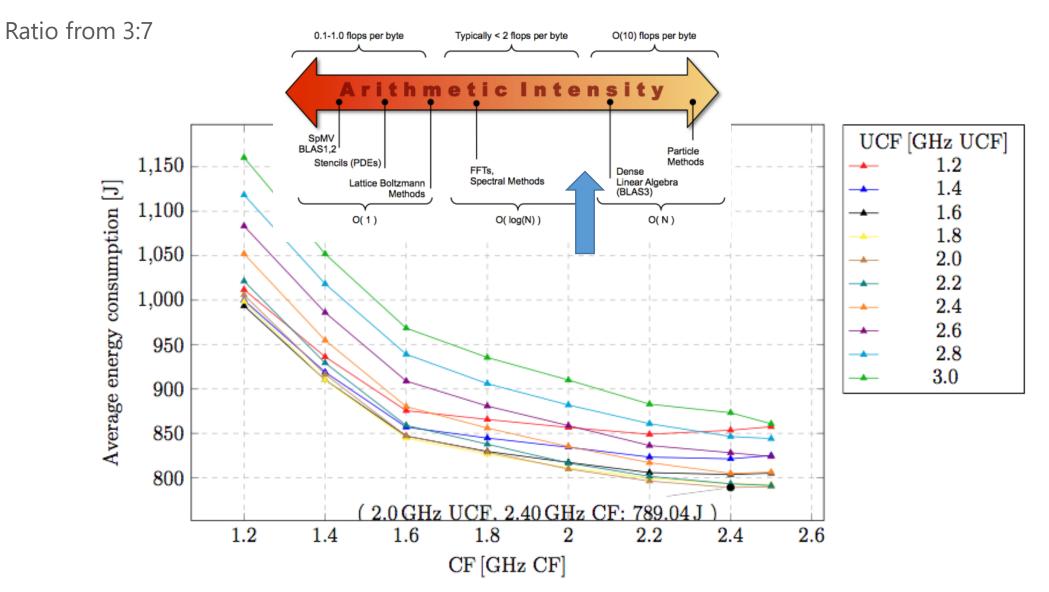
DYNAMICITY

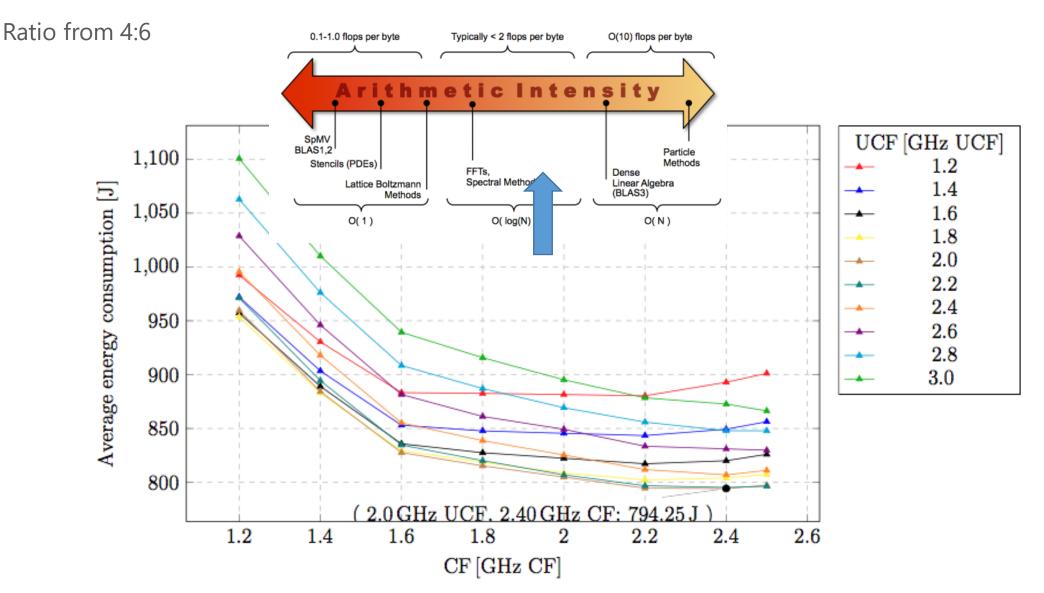


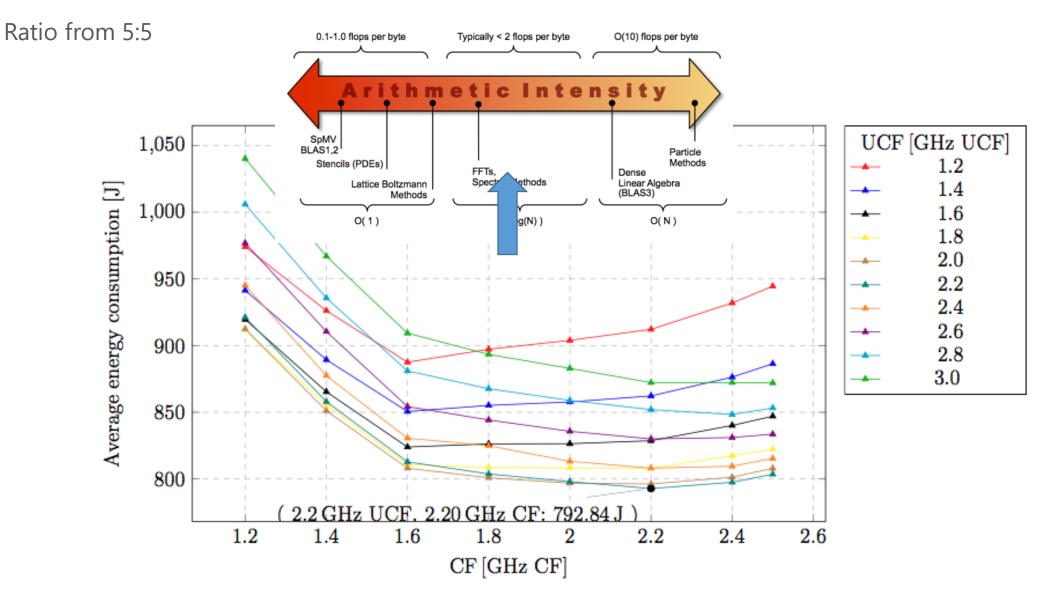
(a) Arrow presenting a range of applications of various arithmetic intensities [54].

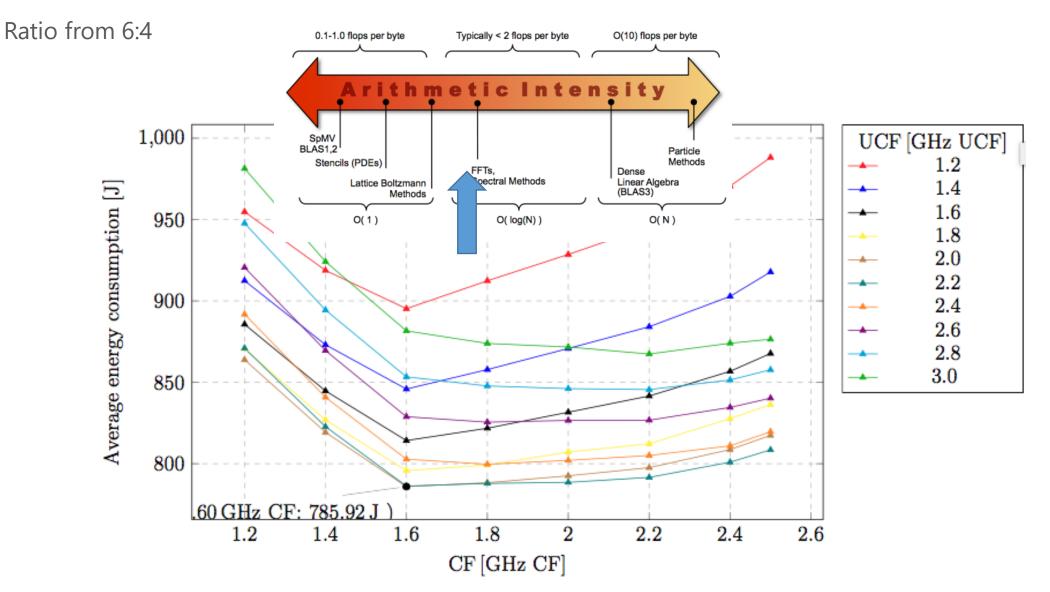


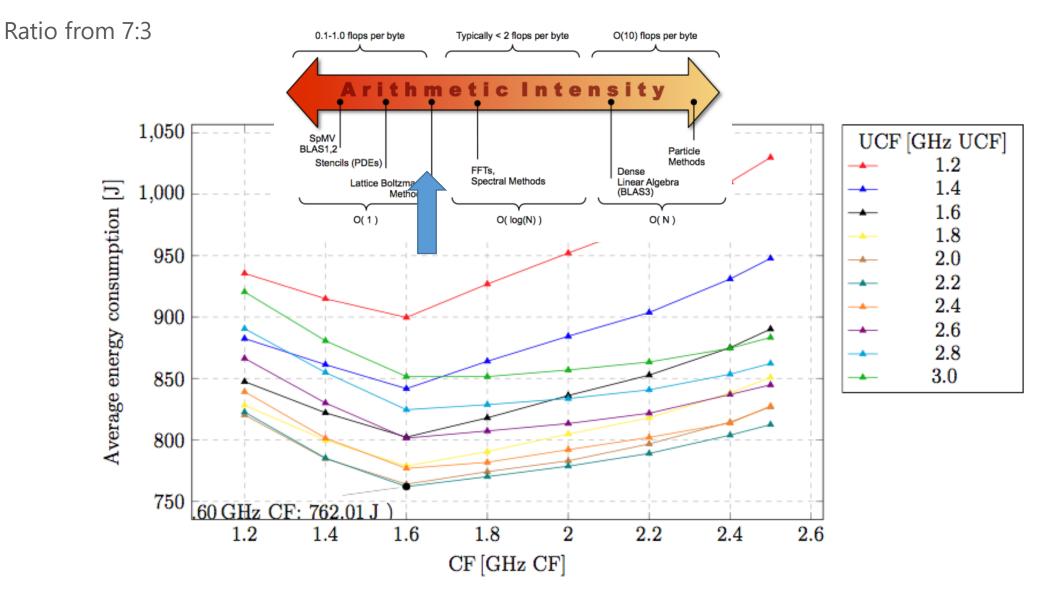
(b) Roofline model of the Intel Xeon Gold 6240 processor when executing a workload of AVX-512 instructions.

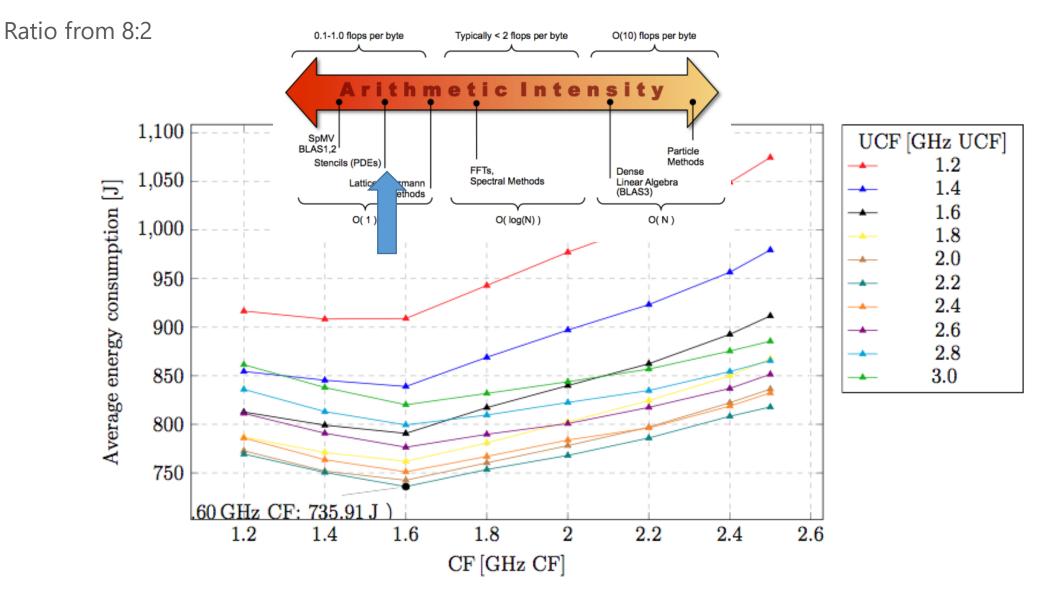


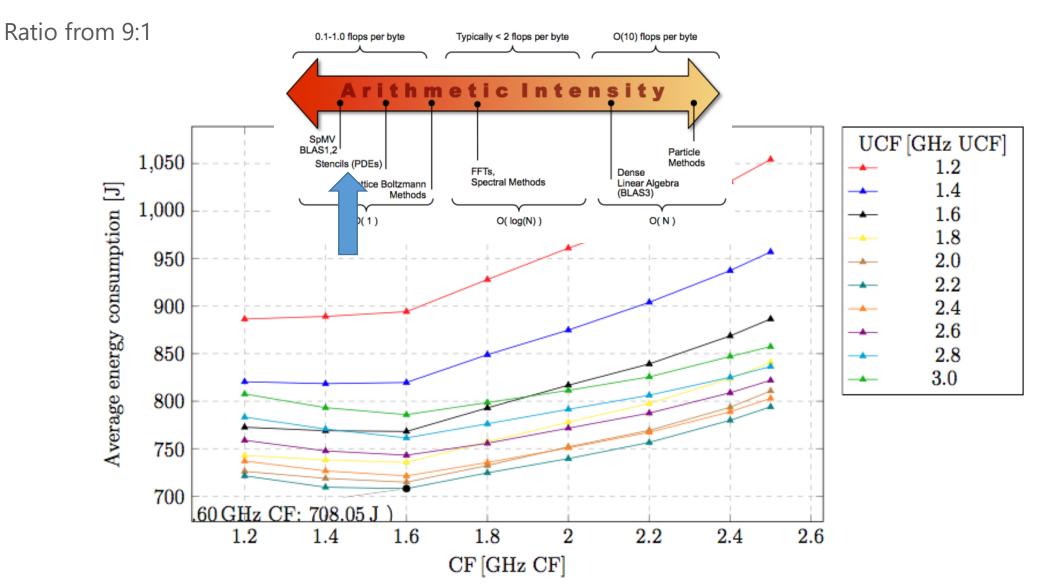


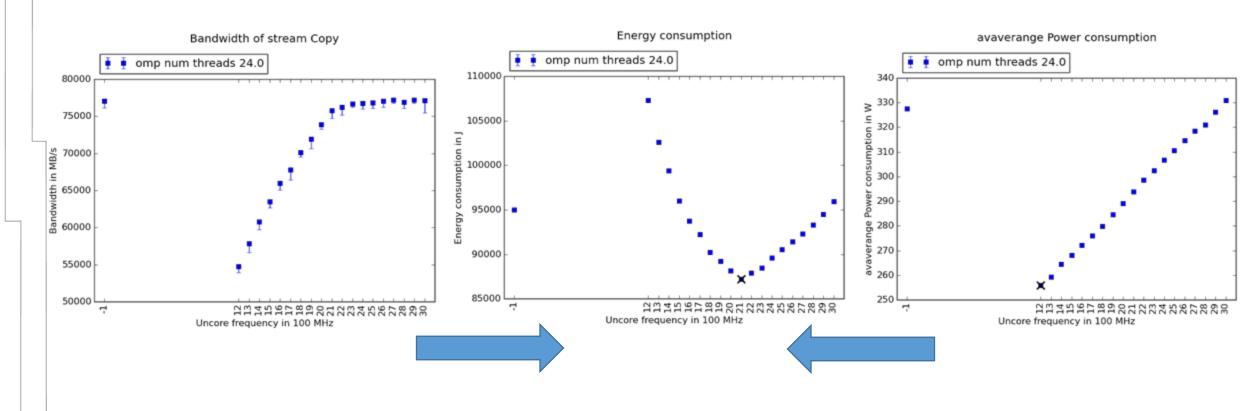










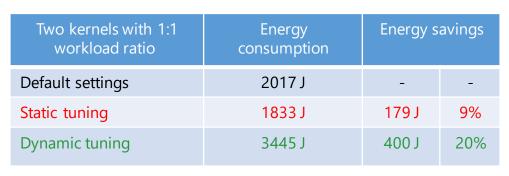

UNCORE CPU FREQUENCY TUNING

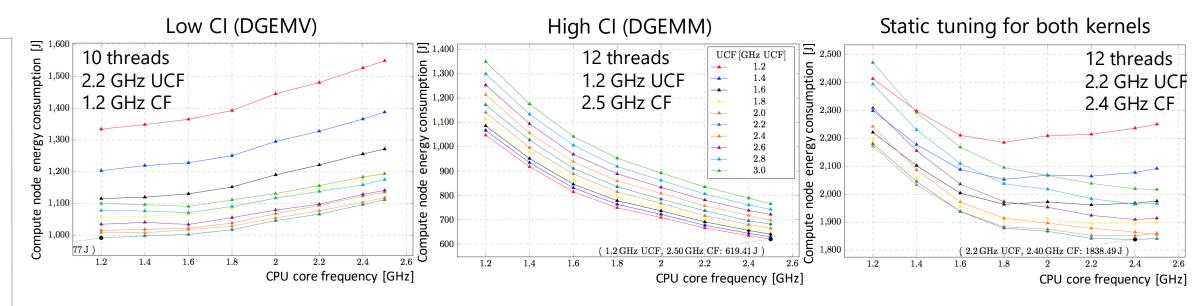
Investigation of impact of **CPU uncore frequency** tuning on memory bound code:

Optimal frequency, with low energy consumption, and a small performance impact

Evaluation using STREAM Copy benchmark

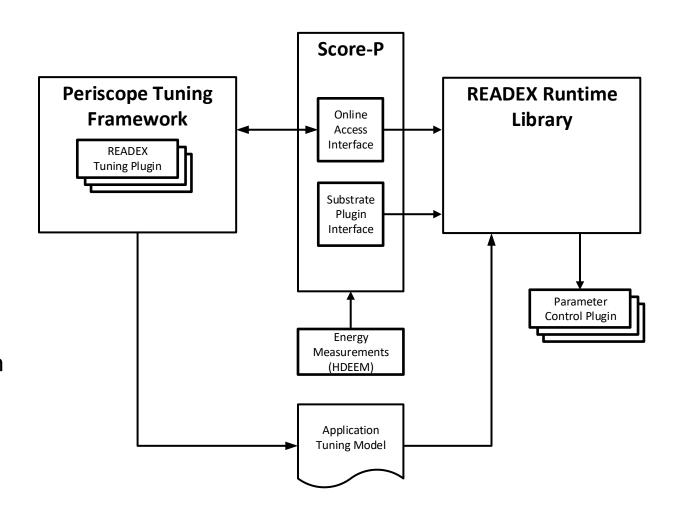
DYNAMIC TUNING


```
int main(void) {
                               // Initialize application
                               // Initialize experiment variables
  Phase region
                               int num_iterations = 2;
                               for (int iter = 1; iter <= num_iterations; iter++) {</pre>
                                                                                           FREQ=2 GHz
                                  // Start phase region
                                  laplace3D(); -
                                                          // significant region
Significant region
                                  residue = reduction(); // insignificant region
                                  fftw_execute(); -
                                                         // significant region
                                  // End phase region
Significant region
                                                                                          FREQ=1.5 GHz
                               // Post-processing:
                               // Write noise matrices to disk for visualization
                               // Terminate application
                               MPI_Finalize();
                               return 0;
```

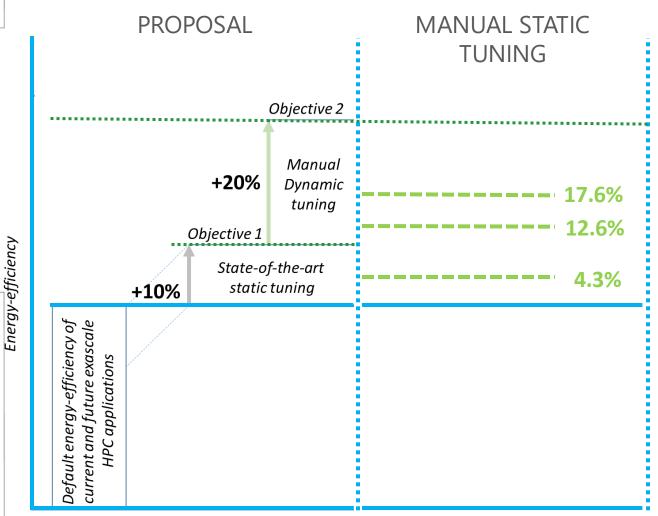

HW PARAMETERS TUNING


Behavior of the simple application with two kernels

- Low computational intensity DGEMV
- High computational intensity DGEMM
- | Tuning of three parameters
 - CPU core and uncore frequency, number of OpenMP threads

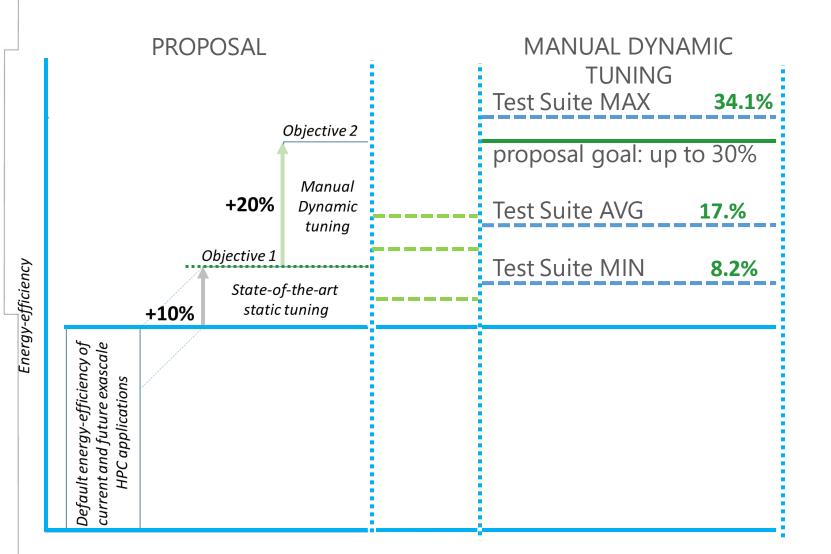


READEX TOOLSUITE


- Instrument application
 - Score-P provides different kinds of instrumentation
- Detect dynamism
 - Check whether runtime situations could benefit from tuning
- Detect energy saving potential and configurations (DTA)
 - Use tuning plugin and power measurement infrastructure to search for optimal configuration
 - | Create tuning model
- 4. Runtime application tuning (RAT)
 - Apply tuning model, use optimal configuration

READEX toolsuite

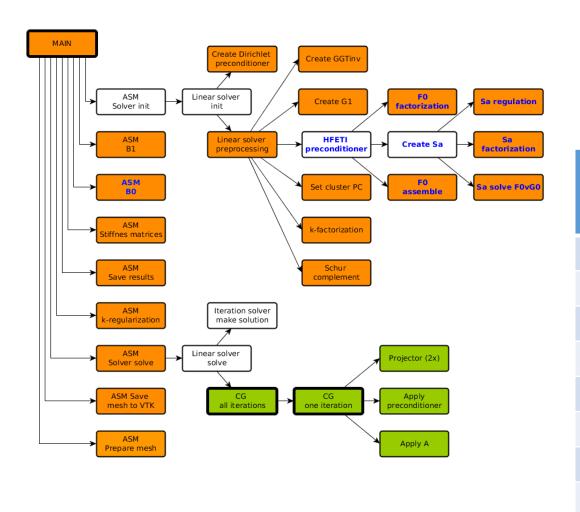
STATIC TUNING


Test Suite MAX
Test Suite AVG

Test Suite MIN

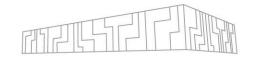
Software	Static tuning savings
AMG2013	12.5 %
Blasbench	7.4 %
Kripke	11.5 %
Lulesh	17.6 %
NPB3.3	11.0 %
BEM4I	15.7 %
INDEED	17.6 %
ESPRESO	4.3 %
OpenFOAM	15.9 %
Average	12.6 %

DYNAMIC TUNING


Software	Dynamic tuning savings
AMG2013	12.5 %
Blasbench	15.3 %
Kripke	18.5 %
Lulesh	18.7 %
NPB3.3	11.0%
BEM4I	34.1 %
INDEED	19.5 %
ESPRESO	8.2 %
OpenFOAM	20.1%
Average	17.5 %

IMPROVING PERFORMANCE AT SCALE

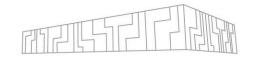
Strong scaling of ESPRESO FEM code


Improved performance and energy consumption

#nodes	Default time [s]	Default energy [kJ]	Tuned time [s]	Tuned energy [kJ]	Time savings [s]	Energy savings [%]
1	129.3	37.2	143.7	34.3	-11.1	8.0
2	68.6	39.8	75.5	36.5	-10.1	8.2
4	33.2	38.0	35.6	34.3	-7.2	9.8
8	21.5	49.6	22.9	44.7	-6.8	9.9
16	13.4	60.8	14.3	53.5	-6.3	12.1
32	7.7	62.2	7.2	50.6	6.1	18.7
64	4.0	69.9	3.6	52.4	9.3	25.0
128	3.6	119.6	2.8	80.1	22.2	33.0

BEM4I

Application runtime	assemble_k [s]	assemble_v [s]	gmres_solve [s]	print_vtu [s]	main [s]
default runtime	5.4	5.9	10.2	5.6	27.3
static tuning runtime	9.8	10.6	6.1	2.4	29.0
dynamic tuning runtime	7.0	7.2	7.9	2.1	24.3
				_	
static savings [%]	-82.3%	-79.1%	40.5%	56.8%	-6.2%
dynamic savings [%]	-30.6%	-20.9%	23.2%	62.9%	10.9%


Hardware: dual socket system with 2x12 CPU cores — "standard HW" in HPC centres

Region description:

- assemble_k and assemble_v high utilization of vector units, extreme level of optimization fully compute bound great utilization of both sockets and all cores
- **gmres_solve** uses DGEMV from MKL memory bound, suffers on NUMA effect; this routine is more efficient on single socket
- print_vtu single threaded I/O and network bound region why stores data to a file on LUSTRE system

```
"assemble k": {
  "FREQUENCY": "23",
 "NUM THREADS": "24",
  "UNCORE FREQUENCY": "16"
"assemble v": {
 "FREQUENCY": "25",
 "NUM THREADS": "24",
  "UNCORE FREQUENCY": "14"
"gmres_solve": {
  "FREQUENCY": "17",
 "NUM THREADS": "8",
  "UNCORE FREQUENCY": "22"
"print vtu": {
  "FREQUENCY": "25",
 "NUM THREADS": "6",
 "UNCORE FREQUENCY": "24"
```

BEM4I

Compute node energy	assemble_k [J]	assemble_v [J]	gmres_solve [J]	print_vtu [J]	main [J]
default energy	1476	1484	2733	1142	6872
static tuning energy	1962	2015	1366	420	5792
dynamic tuning energy	1467	1462	1259	293	4531
static savings [%]	-33.8%	-35.8%	50.0%	63.2%	15.7%
dynamic savings [%]	0.6%	1.5%	53.9%	74.3%	34.1%

Large energy savings is combination of optimal HW settings and runtime savings due to mitigation of NUMA effect by optimal settings of OpenMP threading

- Without savings in runtime caused by similar application will
 - Energy savings approx. 15 20%
 - Runtime savings approx. -15%

```
"assemble k": {
  "FREQUENCY": "23",
 "NUM THREADS": "24",
 "UNCORE FREQUENCY": "16"
"assemble v": {
 "FREQUENCY": "25",
 "NUM THREADS": "24",
 "UNCORE FREQUENCY": "14"
"gmres_solve": {
 "FREQUENCY": "17",
 "NUM THREADS": "8",
  "UNCORE FREQUENCY": "22"
"print vtu":{
  "FREQUENCY": "25",
 "NUM THREADS": "6",
  "UNCORE FREQUENCY": "24"
```

TUNING UNDER POWER CAP

def	111.62	124.87	137.26	142.97	149.40	149.55	149.55	149.55
2.5 -	111.03	124.00	136.98	142.92	149.35	149.56	149.55	149.54
2.4 -	107.65	120.96	132.93	138.57	146.96	149.57	149.56	149.55
2.3 -	106.33	118.84	130.60	135.11	142.95	149.44	149.55	149.57
Core Frequency [GHz] - 1.1 - 1.7	92.93	105.41	117.08	120.98	128.64	138.28	145.89	146.25
ouenba	86.52	97.53	108.44	114.03	121.00	128.64	137.29	137.11
a 1.7 -	81.60	91.75	101.48	106.37	113.34	120.18	126.56	128.14
1.5 -	76.18	87.37	95.09	99.27	103.75	110.30	117.44	118.41
1.3 -	71.54	81.91	86.56	88.53	93.53	100.27	105.76	109.88
1.1 -	67.19	74.00	77.53	81.20	84.83	90.52	95.98	89.40
1 -	65.81	69.99	73.95	74.99	81.89	86.37	91.49	82.64
	1.2	1.4	1.6 U	1.8 Incore Freq	2 uency [GHz	2.2	2.4	def.

- 140
- 120
- 100
- 80
- 60

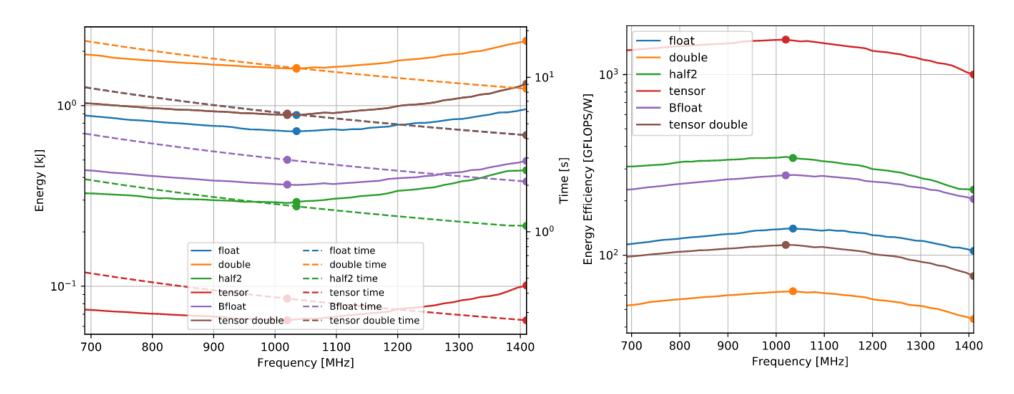
CF	def.	2.5; 1.6	2.5; 1.8	2.5; 1.95	2.5; 1.96	2.5; 1.97	2.5; 1.96
	2.5	2.5; 1.6	2.5; 1.8	2.5; 1.95	2.5; 1.97	2.5; 1.97	2.5; 1.96
	2.4	2.4; 1.6	2.4; 1.8	2.4; 2.0	2.4; 2.06	2.4; 2.06	2.4; 2.05
	2.3	2.3; 1.6	2.3; 1.8	2.3; 2.0	2.3; 2.15	2.3; 2.16	2.3; 2.16
	2.1	2.1; 1.6	2.1; 1.8	2.1; 2.0	2.1; 2.2	2.1; 2.4	2.1; 2.4
	1.9	1.9; 1.6	1.9; 1.8	1.9; 2.0	1.9; 2.2	1.9; 2.4	1.9; 2.4
		1.6	1.8	2.0	2.2	2.4	def.
							UCF

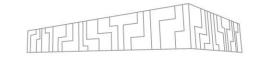
TUNING UNDER POWER CAP

Observations for memory bound workload

- Under the power budget lower that 80 W
 - core frequency should be set to minimum value
 - boost the performance of the uncore part by 22%.
- Tuning of the uncore frequency
 - has low effect on the performance
 - but a major effect on energy consumption
 - between 21% (60 W and 80W) to 38% (100W)

Observations for compute bound workload


- To achieve the best possible performance
 - the uncore frequency must be reduces to minimum
 - 9.4 % performance gain up to and
 - 14.9 % lower energy consumption
- If further energy savings are required use DVFS and lower the core freq.
 - up to 21 % of energy savings
 - up to 21 % penalty in runtime
 - this effect is more visible for higher powercap levels


GPU TUNING

Mandelbrot benchmark
A100 + core frequency tuning

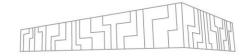
GPU TUNING

Mandelbrot benchmark A100 + core frequency tuning

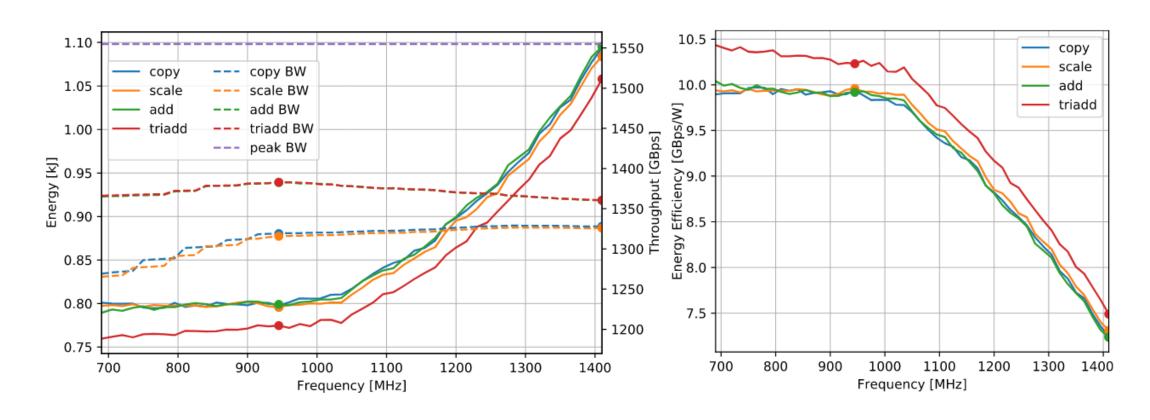
	Frequency [MHz]	Time [s]	Time Difference	Energy [J]	Energy Savings	Performance [TFLOPS]	Energy Efficiency [GFLOPS/W]
double	1410 1035	8.43 11.49	136.19%	2285 1601	29.91%	9.71 7.13	35.86 51.16
float	1410 1035	4.23 5.76	136.13%	958 721	24.76%	19.37 14.23	85.53 113.68
Bfloat	1410 1035	2.11 2.88	136.19%	494 364	26.40%	38.75 28.46	165.74 225.17
half2	1380 * 1020	1.09 1.48	135.65%	439 289	34.15%	75.04 55.32	186.69 283.53
tensor half	1410 1020	0.27 0.37	138.18%	101 65	35.86%	307.02 222.18	810.80 1264.15
tensor double	1410 1020	4.21 5.82	138.19%	1321 887	32.82%	19.44 14.07	62.02 92.32

A100 VS V100

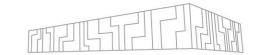
Λ	1	Λ	\cap
H	Щ.	U	U


	Frequency [MHz]	Time [s]	Time Difference	Energy [J]	Energy Savings	Performance [TFLOPS]	Energy Efficiency [GFLOPS/W]
A a sulla la	1410	8.43		2285		9.71	35.86
double	1035	11.49	136.19%	1601	29.91%	7.13	51.16
float	1410	4.23		958		19.37	85.53
	1035	5.76	136.13%	721	24.76%	14.23	113.68
Bfloat	1410	2.11		494		38.75	165.74
Diioat	1035	2.88	136.19%	364	26.40%	28.46	225.17
half2	1380 *	1.09		439		75.04	186.69
namz	1020	1.48	135.65%	289	34.15%	55.32	283.53
tomoon half	1410	0.27		101		307.02	810.80
tensor half	1020	0.37	138.18%	65	35.86%	222.18	1264.15
tomoon double	1410	4.21		1321		19.44	62.02
tensor double	1020	5.82	138.19%	887	32.82%	14.07	92.32

V100

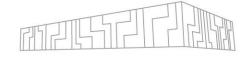

	Frequency [MHz]	Time [s]	Time Difference	Energy [J]	Energy Savings	Performance [TFLOPS]	Energy Efficiency [GFLOPS/W]	
double	1597 1050	10.02 15.25	152.16%	3303 2015	39.01%	8.17 5.37	24.80 40.67	_
float	1597 1057	5.01 7.57	150.99%	1596 982	38.50%	16.34 10.82	51.33 83.46	_
half2	1597 1057	2.51 3.78	151.05%	870 531	38.97%	32.69 21.64	94.18 154.30	_
tensor half	1597 1057	0.63 0.95	151.04%	219 132	39.58%	130.65 86.50	374.90 620.51	I N
							I OF OSTRAVA	_, CE

IT4INNOVATIONS
NATIONAL SUPERCOMPUTING
CENTER


GPU TUNING

STREAM benchmark A100 + core frequency tuning

GPU TUNING



STREAM benchmark A100 + core frequency tuning

	Frequency [MHz]	Time [s]	Time Difference	Energy [J]	Energy Savings	Throughput [GBps]	Energy Efficiency [GBps/W]
copy	1410 945	5.97 6.01	100.69%	1094 798	27.07%	1328.16 1319.02	7.25 9.94
scale	1410 945	5.98 6.02	100.77%	1084 796	26.59%	1325.90 1315.73	7.31 9.96
add	1410 945	5.83 5.73	98.39%	1095 799	27.05%	1360.35 1382.62	7.23 9.92
triadd	1410 945	5.82 5.73	98.39%	1058 775	26.79%	1360.62 1382.92	7.49 10.23



MERIC and RADAR visuzalizer

MERIC

- MERIC runtime system provides dynamic application tuning according the READEX approach
- Lightweight + easy to install + easy to use
- Support for a wide range of architectures and energy measurement systems
 - Intel, AMD, Nvidia, IBM OpenPOWER, ARM
 - RAPL, HDEEM, DiG, NVML, BSC's ARM systems
- C/C++ API and Fortran module
- MPI and OpenMP applications
- Hardware performance counters monitoring
- Providing a new way of insight into application behavior
- Useful utilities part of the package

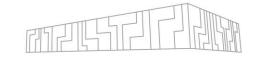
SUPPORTED POWER KNOBS

Intel

- CPU core frequency, uncore frequency, power capping
- ACC (KNL) core frequency, power capping

AMD

- CPU core frequency, power capping, Data Fabric frequency
- ACC ?


Nvidia

| GPU - SM frequency, memory frequency, power capping

IBM

- CPU core frequency, power capping+ GPU and node power capping
- ARM
 - A64FX core frequency, FLA (floating-point ops) and EXA (integer ops) pipelines elimination, memory frequency
 - | EPI core frequency, power capping
 - | Jetson core frequency, memory frequency

MERIC PARAMETERS

export MERIC_FREQUENCY=2400MHz
export MERIC_UNCORE_FREQUENCY=2GHz
export MERIC_NUM_THREADS=24
export MERIC_MEASURE=RAPL,HDEEM-S
export MERIC_COUNTERS=papi


And many more, see **MERIC README**

MERIC API

- void **MERIC_Init**()
 - At the beginning of the main() or in case of MPI applications follows after MPI_Init()
- void **MERIC_Close**()
 - At the end of application run, but before MPI_Finalize()
- void **MERIC_MeasureStart**(const char * regionName)
- double MERIC_MeasureStop()
- double MERIC_MeasureStopStart(const char * regionName)
 - Optimized transition, removes switching to configuration of the parent region
- void MERIC_CaptureScope(const char * regionName)
 - Resource Acquisition Is Initialization (RAII)
- void MERIC_IgnoreStart()
- void MERIC_IgnoreStop()

STATIC TUNING WITHOUT INSTRUMENTATION

- tools/energyMeasuereStart + tools/energyMeasureStop
- Commandline energy measurement
- The tuneable parameters also possible to specify

\$./energyMeasureStart -e RAPL

\$ sleep 5

\$./energyMeasureStop-eRAPL

Runtime [s] = 5.03672

RAPL RAM 0[J] = 38.2296

RAPL RAM 1[J] = 27.3747

RAPL PCKG 0[J] = 249.266

 $RAPL_PCKG_1[J] = 256.062$

RAPL Energy consumption [J] = 570.932

energyMeasureStart parameters:

- -e = energy measurement system "RAPL" or "NVML"
- -c = CPU core frequency [Hz]
- -u = CPU uncore frequency [Hz]
- -t = #OpenMP threads
- -p = power capping power limit [mW]
- -w = power capping time window [ms]
- -s = GPU SM frequency [Hz]
- -r = GPU memory frequency [Hz]
- -g = GPU power capping power limit [mW]

energyMeasureStop parameters:

- -e = energy measurement system "RAPL" or "NVML"
- -b = node baseline (static) power [W]
- -q = print the overall consumed energy only [J]

STATIC BINARY INSTRUMENTATION

Tool using Dyninst library (or MAQAO library) to produce a new binary that contains MERIC instrumentation

- Inserts all the necessary shared libraries dependencies
- Inserts MERIC_Init() and MERIC_Close()
 - In case of MPI applications generates also a new binary of MPI library that contains these functions
 - LD_PRELOAD=\$(pwd)/libmpi.so mpirun -n \$NUMPROC ./application [APP_PARAMS]
- Instruments all the selected application's functions
 - Detects selected functions in the binary and changes the instructions of the function to add MERIC_MeasureStart("funcName") call at the function beginning and MERIC_MeasureStop() call as the last function instruction
- How to select functions to instrument?
 - any profiler
 - or TIMEPROF (part of MERIC repository) provides runtime of the instrumented functions (application binary can be also instrumented with TIMEPROF using dinst_instrument.cpp tool)

DYNAMISM INVESTIGATION

Dynamism investigation = running the application in different configurations

- MERIC stores measurements for each configuration for each region inside the application
- systemInfo tool provides an overview what is the current status of the CPU and what are the available configurations

\$ meric/tools/systemInfo

SYSTEM INFORMATION

Sockets per Node: 2 Cores per Socket: 8 Threads per Core: 2

CPU FREQUENCIES

Current scaling driver: intel_pstate Current scaling governor: powersave

Available governors: performance powersave

Hardware controlled P-State: not available

Turbo CPU core frequencies: 3400000(1) 3400000(2)

3200000(3) 3100000(4) 3000000(5) 2900000(6)

2800000(7) 2800000(8) kHz(#cores)

Nominal CPU core frequency: 2600000 kHz Min CPU core frequency: 1200000 kHz Max CPU uncore frequency: 3000000 kHz Min CPU uncore frequency: 1200000 kHz

RAPL POWER LIMITS

RAPL time window unit: 976.562 us PKG max power limit: 180 W PKG min power limit: 34 W DRAM max power limit: 36 W DRAM min power limit: 16.5 W

DEFAULT RAPL POWER LIMITS

PKG power limit #1: enabled + clamping enabled

PKG power limit #1: 90 W PKG time window #1: 1 s

PKG power limit #2: enabled + clamping enabled

PKG power limit #2: 108 W PKG time window #2: 0.0078125 s

AVAILABLE ENERGY MEASUREMENT SYSTEMS

RAPL

DYNAMISM INVESTIGATION

MERICwrapper

- Provides algorithms for state space search the tool will execute the application in various configurations to find the optimal one for each region
- A json configuration file:

```
"MPI": "true",
"PARAMETERS":{
    "FREQUENCY": {
        "MAX": 3600000000,
       "MIN": 1200000000,
       "STEP": 200000000
    "UNCORE FREQUENCY":{
       "MAX": 2800000000,
       "MIN": 1200000000,
       "LIST": [2800000000,2100000000,
         1600000000,1200000000]
    "NUM THREADS":{
        "MAX": 36,
        "MIN":1,
        "STEP": 4
"MERIC":{
   "MEASURE": "RAPL",
   "PWRCAP POWER":0,
   "PWRCAP TIME":0,
    "COUNTERS": "msr",
    "AGGREGATE": 1,
    "CONTINUAL":1,
    "DETAILED":1,
    "SAMPLES": 0,
    "BARRIERS" : "all",
   "OUTPUT DIR": "mericMeasurement"
"ALGORITHM": {
```

```
"ALGORITHM": {
   "NAME": "EXHAUSTIVE"
"ALGORITHM": {
   "NAME": "EVO",
   "PARAMETERS": {
       "END_CONDITION": 2,
       "POPULATION": 10
"ALGORITHM": {
   "NAME": "PSO",
   "PARAMETERS": {
       "END CONDITION": 2,
       "PARTICLES": 10,
       "CONST CP": 2.05,
       "CONST CG": 2.05,
       "CONST W" : 0.9
```

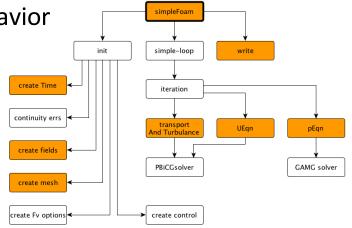
RADAR VISUALIZER

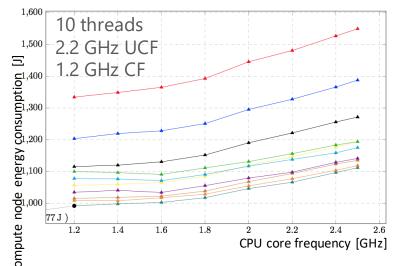
PyQt5 tool for visualization of the analyzed application behavior in different system

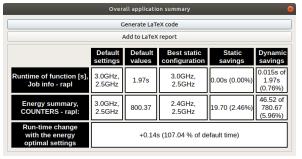
configurations

Tables

Overall application evaluation


Summary of nested regions' behavior


Each region behavior description


Heatmaps

Plots Call-path graph

Power-samples visualization

	120		11111		111111	11111
	100	4	инини	444444		ициц
M	80	-1	կելելելելել	Ակկելելելելե	լկկկկկկկ	$\left\{\bigcup_{i}\bigcup_{j}\bigcup_{j}\bigcup_{i}\bigcup_{j}\bigcup_{j}\bigcup_{i}\bigcup_{j}\bigcup_{j}\bigcup_{i}\bigcup_{j}\bigcup_{j}\bigcup_{i}\bigcup_{j}\bigcup_{j}\bigcup_{j}\bigcup_{i}\bigcup_{j}\bigcup_{j}\bigcup_{j}\bigcup_{j}\bigcup_{j}\bigcup_{j}\bigcup_{j}\bigcup_{j$
Power [W]	60					
	40		11111	PREFER		'
	20					
	0		dratadrata	Indudated and the state of the	-drabaladrahadrah	-վրվրվրվիմ^
		0 1000	2000	3000 Sample number	4000	5000

Uncore freq [GHz]
Core freq [GHz]
1.2
1.4
1.6
1.8
2
2.2
2.4
0.5

1.2	1.4	1.6	1.8	2.0	2.2
13,200.02	12,717.1	12,621.78	12,410.62	12,380.68	12,507.38
13,161.9	12,597.78	12,125.18	12,065.52	12,074.54	12,173.36
13,320.66	12,640.76	12,256.22	12,033.62	11,966.36	11,992.7
13,878.04	13,082.66	12,700.92	12,457.08	12,373.86	12,445.98
14,218.58	13,327.12	12,902.62	12,544.82	12,456.82	12,494.8
14,625.62	13,849.58	13,240.14	12,851	12,760.98	12,802.24
15.083.2	14.412.62	13.568.68	13.447.18	12.973.38	13.238.6

2.2	2.4	2.6	2.8	3.0
12,507.38	12,774.16	13,108.6	13,604.2	14,040.8
12,173.36	12,312.24	12,802.26	13,095.84	13,450.8
11,992.7	12,372.04	12,579.22	13,126.44	13,370.24
12,445.98	$12,\!574.6$	12,831.82	13,081.62	13,296.04
12,494.8	12,680.32	13,038.86	13,207.38	13,474.8
12,802.24	12,993.44	13,260.38	13,497.6	13,767.62
13,238.6	13,332.7	13,388.7	13,777.68	14,030.66
13,354.46	13,472.36	14,179.16	14,083.06	14,231.3

INOVATIONS NÍ SUPERPOČÍTAČOVÉ

MERIC WORK-FLOW

Application profiling

• Identification of significant regions

Application instrumentation

Application analysis

• Optimal configuration identification

App's behavior visualization

• Production runs and dynamic tuning

Binary instrumentation tool

Dyninst / MAQAO

MERICwrapper

RADAR visualizer PyQt5 tool

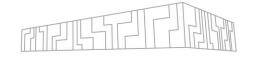
MERIC runtime

ACKNOWLEDGEMENT

- This work was supported by the **READEX** project the European Union's Horizon 2020 research and innovation programme under grant agreement No. 671657.
- READEX

 Runtime Exploitation of Application Dynamism for Energy-efficient eXascale computing
- This work was supported by The Ministry of Education, Youth and Sports from the National Programme of Sustainability (NPS II) project "IT4Innovations excellence in science LQ1602" and by the IT4Innovations infrastructure which is supported from the Ministry of Education, Youth and Sports of the Czech Republic through the e-INFRA CZ (ID:90140).

This work was supported by the **POP2** project - the European Union's Horizon 2020 research and innovation programme under grant agreement No. 824080.


This work was supported by the **SCALABLE** project. This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No 956000. The JU receives support from the European Union's Horizon 2020 research and innovation programme and France, Germany, the CzechRepublic.

This work was supported by the **EUPEX** project - the European Union's Horizon 2020 research and innovation programme under grant agreement No. 101033975.

ACKNOWLEDGEMENT

- The work has been performed under the Project HPC-EUROPA3 (INFRAIA-2016-1-730897), with the support of the EC Research Innovation Action under the H2020 Programme; in particular, the author gratefully acknowledges the support of University of Bologna and the computer resources and technical support provided by CINECA."
- This work was also partially supported by the SGC grant No. SP2020/21 "Infrastructure research and development of HPC libraries and tools II", VŠB Technical University of Ostrava, Czech Republic.
- This work was partially supported by the SGC grant No. SP2019/59 "Infrastructure research and development of HPC libraries and tools", VŠB Technical University of Ostrava, Czech Republic.
- This work was partially supported by the SGC grant No. SP2018/134 "Development of tools for energy-efficient HPC applications", VSB Technical University of Ostrava, Czech Republic.
- This work was supported by the Moravian-Silesian Region from the programme "Support of science and research in the Moravian-Silesian Region 2017" (RRC/10/2017).
- This work was supported by the ESF in "Science without borders" project, reg. nr. CZ.02.2.69/0.0./0.0./16_027/0008463 within the Operational Programme Research, Development and Education.
- This work was supported by Barcelona Supercomputing Center under the grants 288777, 610402 and 671697.