
HANDS-ON:
PERFORMANCE
ANALYSIS USING POP
METHODOLOGY

Radim VAVŘÍK, Tomáš PANOC
Infrastructure Research Lab, IT4I
5. 4. 2022

Who has any experience with a performance analysis tool?
§ What was the tool?

Objectives today?
§ Not to reach an incredible performance improvement of the example code
§ Rather to learn the procedures and best practices with tools

PERFORMANCE ANALYSIS

General steps:
§ Installation of the application (and the tools!)
§ Execute the application as is

§ Test if it works as exptected
§ Measure runtime of the application with no extra tool overhead

§ Perform tracing – configuration and collection of performance data
§ Execute the tracing runs typically for strong or weak scaling

§ Perform analysis
§ Preprocess traces
§ Identify the structure of the application
§ Select regions of interest
§ Evaluate the basic metrics
§ Dig down as necessary

PERFORMANCE ANALYSIS

Paraver
§ Performance analysing tool
§ Visual analysis using timelines and 2D/3D tables (profiles, histograms)
§ Comparative analysis of multiple traces
§ Trace manipulation support (cutting, filtering)
§ Additional applications (Stats, Dimemas, Clustering, …)
§ Predefined + custom derived metrics

Extrae
§ Package devoted to collect performance data and generate Paraver profiles
§ Instrumentation, tracing, sampling, burst mode tracing, User events API
§ Linker preload – no need of source codes
§ libseqtrace, libmpitrace[f], libomptrace, libompitrace[f], libpttrace, libptmpitrace[f],

libcudatrace, libcudampitrace[f], libcudaompitrace[f], libocltrace, liboclmpitrace[f], …

Not going through all the features but trial and error approach ;)

PERFORMANCE ANALYSIS

How to control the features?
§ extrae.xml to control the features – application specific

Extrae documentation!
https://tools.bsc.es/doc/html/extrae/index.html

Why so much configuration?
§ Size of traced data grows enormously with scale and walltime
§ We have to limit the amount of information obtained
§ Controlled by the configuration of the tool
§ Tradeoff between size of trace files and detail of information

Can be challenging, you‘ll see ;)

PERFORMANCE ANALYSIS

https://tools.bsc.es/doc/html/extrae/index.html

Submit an interactive job
§ Open your VNC session or login to one of the Barbora login nodes with X-Window systém enabled

| qsub –q R603003 –l select=1:mpiprocs=36 –IX

| export TMPDIR=/scratch/project/dd-22-26/tmp #Barbora specific

Obtain the hands on
| cp -r /mnt/proj1/dd-22-26/perf-handson/ ~

| cd ~/perf-handson/false-cc

GET READY

FalseCC - mock-up application
§ Simple C code
§ Pure MPI
§ Implements the following pattern:
1. Data packing
2. Set of non-blocking sends/receives between neighbors that may overlap each other
3. Wait for communication
4. Computation

§ Simulates bad Transfer efficiency due to long waiting for messages
§ Observed in many real-world applications

| vim false-cc.c

FALSE-CC

Built and run the application
§ To check it works and get a baseline timing

| ml OpenMPI/4.1.1-GCC-11.2.0

| make

| mpirun -n 8 ./false-cc.exe

| mpirun -n 16 ./false-cc.exe

| mpirun -n 32 ./false-cc.exe

§ We can observe the weak scaling
§ The runtime should be constant in an ideal case

FALSE-CC

MPI Processes Time [s]

8 0.5

16 0.7

32 1.2

Prepare and run tracing
| module use /mnt/proj1/dd-22-26/perf-tools/modules/all/

| ml EXTRAE/3.8.3-OpenMPI-4.1.1

| cp $EXTRAE_HOME/share/example/MPI/extrae_explained.xml .

| cp $EXTRAE_HOME/share/example/MPI/ld-preload/trace.sh .
§ Edit the path to extrae_explained.xml
§ Enable libmpitrace.so library for C apps

| vim Makefile
§ Add -finstrument-functions to CFLAGS (Optional. Be careful with real codes, can be too intrusive!)

| make clean && make

| mpirun -n 2 ./trace.sh ./false-cc.exe # Ouch :(
§ .prv, .pcf, .row trace files generated, but…

FALSE-CC - EXTRAE

Learn to fix all the errors and warnings!
| unset OMP_NUM_THREADS # May not be needed, depends on terminal
| ./get-uf.sh false-cc.exe # generate user functions
| vim extrae_explained.xml

§ Disable OpenMP tracing
§ Edit the absolute path to user-functions list
§ Tune the CPU counters sets using the following utility (tip: always keep INS and CYC)

| papi_best_set # tip: omnipresent INS and CYC
| papi_avail –a # might be helpful
| mpirun -n 2 ./trace.sh ./false-cc.exe

Did you expected a second trace?

FALSE-CC - EXTRAE

Extrae tips & tricks
§ Disable trace overwriting by merge attribute

| <merge … overwrite=“no” />

§ Customize the trace file name enclosing the string by merge tags
| <merge … >my_custom_name.prv</merge>

§ Or use a variable
| export TRACE_FILE=my_custom_name.prv

| <merge … >$TRACE_FILE$</merge>

§ Save some (a lot of) disk space removing the raw data
| <merge … keep-mpits =“no” />

FALSE-CC - EXTRAE

Execute the traced scalability runs
§ To obtain the data for analysis

| TRACE_FILE=false-cc-8p.prv mpirun -n 8 ./trace.sh ./false-cc.exe

| TRACE_FILE=false-cc-16p.prv mpirun -n 16 ./trace.sh ./false-cc.exe

| TRACE_FILE=false-cc-32p.prv mpirun -n 32 ./trace.sh ./false-cc.exe 5000

§ Note sizes of the trace files

FALSE-CC - EXTRAE

Start analysing with Paraver
| ml use /mnt/proj1/dd-22-26/perf-
tools/modules/all/

| ml Paraver/4.9.2-foss-2021a

| wxparaver&
§ Load the trace false-cc-16p.prv
§ Explore the Main window

FALSE-CC - PARAVER

Timeline window
§ Click on New single timeline window icon
§ Explore the controls

§ Zoom to selection - Drag&Drop
§ Zoom to selected threads - Ctrl+D&D
§ Zoom in – Scroll up
§ Zoom out – Scroll down
§ Move in time - Shift+D&D
§ Info Panel – Double click
§ Undo Zoom – Ctrl+U
§ Redo Zoom – Ctrl+R
§ Fit Time Scale

FALSE-CC - PARAVER

Identify structure
§ To understand the main characteristics and for easier navigation during analysis
§ Typical structure:

§ Initialization – sometimes important to analyze, very often can be ommited
§ Iterative phase – usually the most interesting part for analysis
§ Finalization – can be ommited in most cases

FALSE-CC - PARAVER

Initialization Iterative phase Finalization

Select a region of interest (RoI)
§ To focus on important part and eliminate disruptions
§ Identify one iteration – the repetitive pattern

§ Find 10 representative iterations using zooming features
§ Recommended to ommit first and last iterations of the iterative phase

FALSE-CC - PARAVER

1 iteration

Make a cut
§ Let the left and right borders be in the Running state

(blue) for all the threads
§ Cloning timelines might be helpful
§ Right click inside the timeline window and select the

option Clone
§ In the original window, find the appropriate beginning of

an iteration
§ In the cloned window, find the appropriate end of the

10th iteration
§ hint: the first Running state after Synchronization

§ Copy the End time from the Properties of cloned window
and paste it into the End time of the original window

§ Right click inside the original window and select Run ->
Cutter -> Apply

§ Repeat for false-cc-8p.prv

FALSE-CC - PARAVER

Run Stats
§ To get an initial statistics of the (large) trace
§ Click on Run Application icon
§ Select Stats application
§ Select the false-cc-32p.prv trace
§ Run
§ Open Histogram of bursts via the generated

*.gnuplot link

FALSE-CC - PARAVER

Bursts?
§ Sequence of useful instructions inside the Running state
§ e.g. between 2 MPI calls, inside OpenMP a parallel section, etc.

Useful?
§ Useful means user code outside the MPI or OpenMP runtime

§ Tip: Events bounding the states can be displayd via right click -> View -> Event Flags

FALSE-CC - PARAVER

Histogram of bursts
§ The green bars are the total amount of time

incurred by computation bursts of the
different durations

§ 60% of the total time in ~50ms bursts
§ 30% of the total time in ~10ms bursts

§ The purple line shows the total amount of
bursts of a given duration

§ Most of the bursts shorter than 10us

§ We can infer a duration such that the number
of bursts above is reasonably small though
they represent the most of the runtime – will
be used in the next step!

FALSE-CC - PARAVER

Perform filtering
§ To get a filtered trace of full duration run with a

subset of the original information
§ Load the false-cc-32p.prv trace

§ Reduce trace size -> Yes
§ Select Filter
§ Discard Records: Event and Communication
§ Keep states: Running
§ Min. burst time: 10000 (=10us based on Stats)
§ Apply

FALSE-CC - PARAVER

Make a cut from filtered trace
§ Open the Useful duration timeline from Main menu ->

Hints -> Useful
§ Zoom into the full green area
§ Rescale the colors via right click -> Fit Semantic Scale ->

Fit Both or click in the bottom left corner
§ Repeat zooming and rescaling until a pattern can be

recognized
§ Repeat the cutting steps from the previous traces using

Useful duration timelines
§ Important: select the original non-filtered trace as the

input in the Cutter dialog

FALSE-CC - PARAVER

Perform basic analysis
§ Automatically evaluates the basic metrics of the whole trace – thus cuts needed
§ Shows the directions for deeper analysis

| ml EXTRAE/3.8.3-OpenMPI-4.1.1

| mkdir basic-analysis && cd basic-analysis

| modelfactors.py ../false-cc-8p.chop10it.prv ../false-cc-
16p.chop10it.prv ../false-cc-32p.chop10it.prv

§ This may take quite a long time for larger data

FALSE-CC – BASIC ANALYSIS

Evaluate basic analysis results
§ 100% ideal efficiency
§ 90% means loosing 10% of potential performance
§ 80% all the lower efficiencies should be investigated

§ The limiting factors are clearly IPC scaling, Transfer
efficiency, and Serialization

FALSE-CC – BASIC ANALYSIS

Analyze the limiting factors
§ We will focus on the Transfer efficiency now
§ Open the false-cc-32p.chop10it.prv
§ Main menu -> Hints -> MPI -> MPI calls
§ Main menu -> Hints -> User functions -> User functions
§ Synchronize windows via right click -> Synchronize -> 1 (both windows)
§ Zoom to only one iteration and few processes
§ Enable Communication Lines in MPI call window via right click -> View
§ Send and Receive take very small time before
the Waitalls
§ Processes 1, 3, .. do two waitalls after the first pack
§ Processes 2, 4, .. do two waitalls after the
second pack
§ They could start unpacking and computing instead

FALSE-CC – PARAVER

False-CC – mock-up fix
§ The problem of the original version is equal treatment of receive and send operations
§ Received data needed for computation, but send operations can wait
§ The fix is to postpone the waiting on send buffers until its reuse

Apply the fix and repeat the tracing and analysis
| cp -r /mnt/proj1/dd-22-26/

perf-handson-fixed/ ~

| cd ~/perf-handson/false-cc-fixed
§ You can descrease the number of iterations
and ommit filtering

| TRACE_FILE=false-cc-fix-8p.prv mpirun -n 8 ./trace.sh ./false-cc.exe

| TRACE_FILE=false-cc-fix-16p.prv mpirun -n 16 ./trace.sh ./false-cc.exe

| TRACE_FILE=false-cc-fix-32p.prv mpirun -n 32 ./trace.sh ./false-cc.exe

FALSE-CC

Extra time? Analyze another limiting factor
§ Very low IPC can be found in Pack and Unpack

functions
§ Check the cache misses!

§ Compare traces of different scales

FALSE-CC – PARAVER

Learning materials
§ Paraver tutorials (Need to be installed for the first time)
§ Extrae docs https://tools.bsc.es/doc/html/extrae/index.html
§ Pop website https://pop-coe.eu/further-information/learning-material
§ VI-HPS https://www.vi-hps.org/training

FALSE-CC

https://tools.bsc.es/doc/html/extrae/index.html
https://pop-coe.eu/further-information/learning-material
https://www.vi-hps.org/training

