
© Atos

Quantum Programming
Demo

Ivano Pullano
Global product manager - quantum computing
25/05/2022

Very general workflow in gate-based
computing
• Encode the problem input into the qubit

register
• Encode the algorithm into a set of

quantum gates
• Perform the calculation
• Readout the results for further processing

Programming workflow in Atos QLM
Gate-based quantum computing

2

Standard workflow in Atos QLM
• Use qat.lang.AQASM to build a Program

object including quantum/classical registers
and gates

• Use Program’s to_circ() method to build a
Circuit object including the final gate
implementation

• Use Circuit’s to_job() method to build a
Job object including the execution
parameters

• Build a QPU object using Atos’ quantum
emulators, third-party QPUs, or plugins

• Build the Result object with the QPU’s
submit(job) method

• Iterate on the Result object to extract the
needed parameters for further operation

Code
from qat.lang.AQASM import Program, H, CNOT
from qat.qpus import get_default_qpu

Create a circuit
qprog = Program()
qbits = qprog.qalloc(2)
H(qbits[0])
CNOT(qbits[0], qbits[1])
circuit = qprog.to_circ()

Create a job
job = circuit.to_job(nbshots=100)

Execute
result = get_default_qpu().submit(job)
for sample in result:
 print("State %s: probability %s +/- %s" % (sample.state, sample.probability, sample.err))

Output
State |00>: probability 0.53 +/- 0.050161355804659184
State |11>: probability 0.47 +/- 0.050161355804659184

Example of code

3

A basic Bell pair

Quantum Approximate Optimisation Algorithm

4

Quantum circuit

Classical program

Stopping
criterion outputClassical

output

quantum
output

Extension of any QPU object to a stack
my_stack = plugin1 | plugin2 | plugin3 | plugin4 | my_qpu

Custom execution stacks
Extend the capabilities of any computing backend

5

Linear Algebra emulator (LinAlg)
• Encode the state of the QPU into a state vector
• Since each qubit can interact with any other, you must consider all the possible combinations
• N qubits → 2N combinations, each one with a certain amplitude
• Encode each gate as a matrix that modifies the state vector
• The result is the vector that comes out of the various gates
• Huge RAM consumption

Matrix Product State emulator (MPS)
• Encode the state of the QPU into a sequence of single qubit states multiplied by a matrix that encodes

the interactions with the others
• Weak qubit interactions → small matrices → simple calculations
• Very good when qubits either do not interact each other, or they only interact with their neighbours

How to model very large problems with good fidelity
Atos quantum emulators

6

QPEG emulator
• Developed as a joint effort between Atos and CEA
• Group up qubits into a network of “tiny" QPUs
• Treat each QPU using LinAlg
• Treat the interaction between groups using MPS
• Apply gates in layers
• Moving the resource consumption from RAM to CPU
• Double-digit precision on the results

How to model very large problems with good fidelity
Atos quantum emulators

7

• myQLM documentation
https://qlm.bull.com/doc/qat-tutorial-myqlm/index.html

• Atos QLM documentation
https://qlm.bull.com/doc/qat-tutorial-qlm/index.html

• Quantum annealing benchmarking routines
https://qlm.bull.com/doc/qat-tutorial-qlm/advanced_combinatorial_optimization.html

• myQLM GitHub page
https://github.com/myQLM

Further resources

8

https://qlm.bull.com/doc/qat-tutorial-myqlm/index.html
https://qlm.bull.com/doc/qat-tutorial-qlm/index.html
https://qlm.bull.com/doc/qat-tutorial-qlm/advanced_combinatorial_optimization.html
https://github.com/myQLM

