LQCD: Particle physics from a supercomputer

October 12, 2022 | Eric B. Gregory | FZJ

OVERVIEW

- A little bit of physics
- LQCD basics
- LQCD data challenges
- IO-SEA solutions

SOME QUICK PHYSICS

LQCD: Lattice quantum-chromodynamics

1 Å = 100,000 fm

SOME QUICK PHYSICS

LQCD: Lattice quantum-chromodynamics

1 Å = 100,000 fm

Proton is a *hadron*, a particle made of quarks bound together by the strong force.

We say protons have the *quantum numbers* of three quarks:

We say protons have the *quantum numbers* of three quarks:

Quarks have a color charge, so-called because:

red+blue+green= neutral

We say protons have the *quantum numbers* of three quarks....

Quarks have a color charge, so-called because:

Hadrons also have gluons contributing to their properties.

We say protons have the *quantum numbers* of three quarks....

Quarks have a color charge, so-called because

Hadrons also have gluons contributing to their properties.

For a complete understanding of a hadron, we must understand the quantum field fluctuations.

$$+M_{
m down}$$

$$\label{eq:mup} \begin{split} 2\times\textit{\textit{M}}_{\rm up} &+\textit{\textit{M}}_{\rm down} \\ 2\times(2.2~{\rm MeV}) &+(4.7~{\rm MeV}) &\approx 9~{\rm MeV} \end{split}$$

$$2 \times \textit{M}_{\mathrm{up}} + \textit{M}_{\mathrm{down}}$$
 $2 \times (2.2 \ \mathrm{MeV}) + (4.7 \ \mathrm{MeV}) \approx 9 \ \mathrm{MeV}$

But ...

$$\textit{M}_{\rm proton} = 938 \; \text{MeV}$$

 $\textit{M}_{\mathrm{proton}} = 938 \; \text{MeV}$

$$2 imes M_{
m up} + M_{
m down}$$
 $2 imes (2.2 \ {
m MeV}) + (4.7 \ {
m MeV}) pprox 9 \ {
m MeV}$ But ...

$$\textit{M}_{\mathrm{proton}} = 938 \; \text{MeV}$$

To understand properties of hadrons, we must take quantum fluctuations into effect.

Properties of hadrons

- mass
- internal structure
- decay probabilities
- · ...

- Properties of hadrons
 - mass
 - internal structure
 - decay probabilities
 - · ...
- Existence of unobserved states

- Properties of hadrons
 - mass
 - internal structure
 - decay probabilities
 - ...
- Existence of unobserved states
- BIG QUESTION:

Does

$$\{\text{experiment}\} - \{\text{theory}\} \stackrel{?}{=} \mathbf{0}$$

- Properties of hadrons
 - mass
 - internal structure
 - decay probabilities
 - ...
- Existence of unobserved states
- BIG QUESTION:

Does

$$\{\text{experiment}\} - \{\text{theory}\} \stackrel{?}{=} \mathbf{0}$$

Physics beyond the Standard Model?

QCD ON THE LATTICE

Model is discretized 4-D box of (Euclidean) space-time:

QCD ON THE LATTICE

Model is discretized 4-D box of (Euclidean) space-time:

• Quark fields $\phi(x)$ live on lattice sites 3 (or 3 × 4)-component, complex:

$$\phi(\mathbf{x}) = \left(\begin{array}{c} \phi_0 \\ \phi_1 \\ \phi_2 \end{array}\right)$$

QCD ON THE LATTICE

Model is discretized 4-D box of (Euclidean) space-time:

• Quark fields $\phi(x)$ live on lattice sites 3 (or 3 × 4)-component, complex:

$$\phi(\mathbf{x}) = \left(\begin{array}{c} \phi_0 \\ \phi_1 \\ \phi_2 \end{array}\right)$$

• Gauge fields $U_{\mu}(x) = \exp(iagA(x))$ live on links: (3×3)-component, complex

$$U_{\mu}(x) = \left(egin{array}{ccc} U_{00} & U_{01} & U_{02} \ U_{10} & U_{11} & U_{12} \ U_{20} & U_{21} & U_{22} \ \end{array}
ight)$$

October 12, 2022

Generate Markov chain of lattice gauge field configurations

Generate Markov chain of lattice gauge field configurations

Generate Markov chain of lattice gauge field configurations

- Generate Markov chain of lattice gauge field configurations
- Save each to disk

- Generate Markov chain of lattice gauge field configurations
- Save each to disk
- Load configuration files from disk

- Generate Markov chain of lattice gauge field configurations
- Save each to disk
- Load configuration files from disk
- On each, calculate quark propagators: $p(x) = M^{-1}(x, y)q(y)$

- Generate Markov chain of lattice gauge field configurations
- Save each to disk
- Load configuration files from disk
- On each, calculate quark propagators: $p(x) = M^{-1}(x, y)q(y)$

- Generate Markov chain of lattice gauge field configurations
- Save each to disk
- Load configuration files from disk
- On each, calculate quark propagators: $p(x) = M^{-1}(x, y)q(y)$

- Generate Markov chain of lattice gauge field configurations
- Save each to disk
- Load configuration files from disk
- On each, calculate quark propagators: $p(x) = M^{-1}(x, y)q(y)$
- Contract propagators to generate hadron correlators C(t)

- Generate Markov chain of lattice gauge field configurations
- Save each to disk
- Load configuration files from disk
- On each, calculate quark propagators: $p(x) = M^{-1}(x, y)q(y)$
- Contract propagators to generate hadron correlators C(t)

- Generate Markov chain of lattice gauge field configurations
- Save each to disk
- Load configuration files from disk
- On each, calculate quark propagators: $p(x) = M^{-1}(x, y)q(y)$
- Contract propagators to generate hadron correlators C(t)

LQCD WORKFLOW

- Generate Markov chain of lattice gauge field configurations
- Save each to disk
- Load configuration files from disk
- On each, calculate quark propagators: $p(x) = M^{-1}(x, y)q(y)$
- Contract propagators to generate hadron correlators C(t)
- Average over ensemble gives expectation value
- Fit correlators to extract physical quantities, e.g., hadron masses

LQCD I/O AND DATA CHALLENGES

- lacktriangledown More lattice gauge field configurations $N_{
 m conf}$ \longrightarrow smaller statistical uncertianties
- More points in parameter space (m_q, β) \longrightarrow smaller systematic uncertanties
- LQCD is a very homogeneous problem with many available levels of concurrencies.
- Algorithms are highly scalable.

LQCD I/O AND DATA CHALLENGES

- Bigger lattice size: $V = N_x^3 \times N_t$
- lacktriangle More lattice gauge field configurations $N_{
 m conf}$
- More points in parameter space (m_q, β)

- → smaller systematic uncertainties
- \longrightarrow smaller statistical uncertianties
 - → smaller systematic uncertanties
- LQCD is a very homogeneous problem with many available levels of concurrencies.
- Algorithms are highly scalable.

If given the opportunity, LQCD practitioners will (easily) fill up your machine in search of more precise/accurate results.

LQCD I/O AND DATA CHALLENGES

Lattice size $V = N_x^3 \times N_t$

HMC step

A lattice gauge configuration file has:

$$V \times 4 \times (3 \times 3) \times 2$$
 real numbers (72 reals /site).
 $\uparrow \qquad \uparrow \qquad \uparrow$ dimensions color complex

For $V = 64^3 \times 128$, double precision:

 2.4×10^9 doubles; ~ 20 GB/file

Few $\times 10^3$ gauge configuration files per ensemble

Spectrum step

A propagator (or eigenvector) file has

$$V \times 4 \times 3 \times 4 \times 3 \times 2$$
 real numbers (288 reals /site)

$$\uparrow$$
 \uparrow \uparrow \uparrow spin color spin color complex

For $V = 64^3 \times 128$, double precision:

 \sim 10 — 100 per gauge configuration.

 9.7×10^9 doubles; ~ 80 GB/file.

LQCD IN THE IO-SEA ENVIRONMENT

Data workflow on a traditional storage hierarchy

LQCD IO-SEA DATASETS

Group data in data sets (one possible solution):

LQCD EPHEMERAL SERVICES

POSIX NFS service

- Requires no re-coding of the LQCD I/O library
- Primary service to be used with LQCD application

BB-NFS

May provide benefit; will test on prototype

DASI interface

- Novel system of organizing data
- Possibly useful in organizing a sharable archive of lattice gauge field configurations
- Semantic keys include coupling constant β , quark masses m_q , lattice volume,...
- Would only use a stand-alone application, rather than re-coding

LQCD IN THE IO-SEA ENVIRONMENT

The "Workflow Description File":

```
# lgcd-BC-workflow.vaml
                                                                                                                                                                                     steps:
workflow.
                                                                                                                                                                                                            - name: "step_B_props-b{{\uBETA\u}}"
                       - name: LOCD BC
                                                                                                                                                                                                                  location: gpu_module
                                                                                                                                                                                                                                                                                            # generate props on GPUs
                                                                                                                                                                                                                  command: "sbatch....{{....PROP BATCH SCRIPT..}}"
services.
                                                                                                                                                                                                                  services.
                       - name: nfs-gauge-files
                                                                                                                                                                                                                                   - "nfs-gauge-files" RW
                             type: NFS
                                                                                                                                                                                                                                   - "nfs_propagators" RW
                                                                                                                                                                                                            - "nfs_input-and-logs" RW
                             attributes:
                                  namespace: "beta_{{\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBeTA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBETA_\uBE
                                  mountpoint: "/mnt/USER/gauge-fields/B{{...BETA...}}/"
                                                                                                                                                                                                            - name: "step_C_contractions-b{{__BETA__}}"
                                  flavor: medium
                                                                                                                                                                                                                  location: cpu_module
                                                                                                                                                                                     # hadron correlator contractions on CPUs
                                                                                                                                                                                                                 command: "sbatch, make_had_corrs-b{{,BETA,}}.sh,,--export=id={{,ID,}}
                       - name: nfs_propagators
                             type: NFS
                                                                                                                                                                                                                  services:
                             attributes:
                                                                                                                                                                                                                                   - "nfs_propagators" RO
                                  namespace: "propagators-b{{__BETA__}}}"
                                                                                                                                                                                                                                   - "nfs_hadron_correlators" WO
                                  mountpoint: "/mnt/USER/propagators/B{{...BETA...}}/"
                                                                                                                                                                                                                                   - "nfs_input-and-logs" WO
                                  flavor: medium
                       - name: nfs_input-and-logs
                             type: NFS
                             attributes:
                                  namespace: "input-and-logs-b{{_UBETA_U}}}"
                                  mountpoint: "/mnt/USER/input-and-logs/B{{__BETA__}}/"
                                  flavor: medium
                       - name: nfs hadron correlators
                             type: NFS
                             attributes:
                                   namespace: "hadron-correlators-b{{..BETA...}}"
                                  mountpoint: "/mnt/USER/corrs/B{{\uBETA\u}}/"
                                  flavor, medium
```

LQCQ IN THE IO-SEA ENVIRONMENT

#1/hin/hash

```
heta=3.6
#create namespaces for all hadron correlators:
iosea-ns create --auto-create-dataset hadron-correlators-b${beta}
#create namespace for input and log files for B & C
iosea-ns create -- auto-create-dataset input-and-logs-b${beta}
# create empty namespace/dataset for propagators
iosea-ns create --auto-create-dataset propagators-b${beta}
start=500 # first 500 gauge files are not thermalized
skip=20
              # we think it takes 20 updates for gauge fields to de-correlate
for (( num=start; num <= 2000; num+=skip ))
    # also add input files for B and C to input-and-logs NS:
    iosea-ns put input-and-logs-b${beta} input_propsolve_beta_b${beta}_${num}.xml
    iosea-ns put input-and-logs-b${beta} input_had-corrs_beta_${beta}_${num}.xml
done
# start session
#session name: props-corrs-b3.6
iosea-wf start WORKFLOW=lqcd-BC-workflow-b${beta}.yaml SESSION=prop-corrs_b${beta} BETA=$beta
```


LQCD IN THE IO-SEA ENVIRONMENT

SUMMARY & OUTLOOK

- I/O challenges will increase as faster HPC platforms & algorithms allow larger problems to be tackled.
- IO-SEA ephemeral services should improve LQCD I/O bottlenecks and allow us to get the most from compute time allocations.
- Testing on prototypes to begin in the coming months.

LQCD COMMUNITY SOFTWARE

 \leftarrow different physics goals \rightarrow \leftarrow different simulation codes \rightarrow

 \leftarrow different architectures \rightarrow

LQCD COMMUNITY SOFTWARE

 \leftarrow different physics goals \rightarrow \leftarrow different simulation codes \rightarrow

QLUA	CPS	TML	LQCD	MILC	CHROMA
QUDA			QPHIX		
QDP-c	JIT	QD	P++	QIO	
QMP					

 \leftarrow different architectures \rightarrow