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OVERVIEW

A little bit of physics
LQCD basics
LQCD data challenges
IO-SEA solutions
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SOME QUICK PHYSICS
LQCD: Lattice quantum-chromodynamics
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QCD
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QCD

Proton is a hadron, a particle made of quarks bound together by the strong force.
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QCD
We say protons have the quantum numbers of
three quarks:
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QCD
We say protons have the quantum numbers of
three quarks....

Quarks have a color charge, so-called because

red+blue+green= neutral

Hadrons also have gluons contributing to their
properties.

For a complete understanding of a hadron, we
must understand the quantum field fluctuations.
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QUANTUM FLUCTUATIONS ARE IMPORTANT!

2×Mup +Mdown

2× (2.2 MeV) + (4.7 MeV) ≈ 9 MeV

But ...

Mproton = 938 MeV

To understand properties of hadrons, we must take quantum fluctuations into effect.
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WHAT CAN WE HOPE TO CALCULATE?

Properties of hadrons
mass
internal structure
decay probabilities
...

Existence of unobserved states
BIG QUESTION:

Does

{experiment} − {theory} ?
= 0
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WHAT CAN WE HOPE TO CALCULATE?

Properties of hadrons
mass
internal structure
decay probabilities
...

Existence of unobserved states
BIG QUESTION:

Does

{experiment} − {theory} ?
= 0

Physics beyond the Standard Model?
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QCD ON THE LATTICE

Model is discretized 4-D box of (Euclidean) space-time:

Quark fields φ(x) live on lattice sites
3 (or 3× 4)-component, complex:

φ(x) =

 φ0
φ1
φ2


Gauge fields Uµ(x) = exp(iagA(x))
live on links: (3×3)-component, complex

Uµ(x) =

 U00 U01 U02
U10 U11 U12
U20 U21 U22



µ

ν
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LQCD WORKFLOW
Generate Markov chain of lattice gauge field
configurations

Save each to disk

Load configuration files from disk

On each, calculate quark propagators:
p(x) = M−1(x , y)q(y)

Contract propagators to generate hadron
correlators C(t)

Average over ensemble gives expectation
value

Fit correlators to extract physical quantities,
e.g., hadron masses
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LQCD WORKFLOW

C(t)
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LQCD I/O AND DATA CHALLENGES

Bigger lattice size: V = N3
x × Nt −→ smaller systematic uncertainties

More lattice gauge field configurations Nconf −→ smaller statistical uncertianties
More points in parameter space (mq , β) −→ smaller systematic uncertanties

LQCD is a very homogeneous problem with many available levels of concurrencies.
Algorithms are highly scalable.
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Bigger lattice size: V = N3
x × Nt −→ smaller systematic uncertainties

More lattice gauge field configurations Nconf −→ smaller statistical uncertianties
More points in parameter space (mq , β) −→ smaller systematic uncertanties

LQCD is a very homogeneous problem with many available levels of concurrencies.
Algorithms are highly scalable.

If given the opportunity, LQCD practitioners will (easily) fill up your machine in
search of more precise/accurate results.
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LQCD I/O AND DATA CHALLENGES
Lattice size V = N3

x × Nt

HMC step
A lattice gauge configuration file has:

V × 4× (3× 3)× 2 real numbers (72 reals /site).
↑ ↑ ↑

dimensions color complex
For V = 643 × 128, double precision: 2.4× 109 doubles; ∼ 20 GB/file
Few ×103 gauge configuration files per ensemble

Spectrum step
A propagator (or eigenvector) file has

V × 4× 3× 4× 3× 2 real numbers (288 reals /site)
↑ ↑ ↑ ↑ ↑

spin color spin color complex
For V = 643 × 128, double precision: 9.7× 109 doubles; ∼ 80 GB/file.
∼ 10 — 100 per gauge configuration.

October 12, 2022 Slide 14



LQCD IN THE IO-SEA ENVIRONMENT
Data workflow on a traditional storage hierarchy

propagator generation

Linear solver/

input input

combine propagators

generate correlators

~10  props/cfg
2

~10  files/campaign
5

input checkpoint dump

repository?

offline analysis

every 5 mins

15kB 5GB

~MB

Temporary

Campaign

Forever

remote shareable 

2 /minute

~10% used in calculations

1 / min

~16GB

A B C D

configuration

generation

Markov−chain
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LQCD IO-SEA DATASETS
Group data in data sets (one possible solution):

physics result

hadron correlator file

gauge field file
HMC input file

input & log files

propagator file
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LQCD EPHEMERAL SERVICES

POSIX NFS service
Requires no re-coding of the LQCD I/O library
Primary service to be used with LQCD application

BB-NFS
May provide benefit; will test on prototype

DASI interface
Novel system of organizing data
Possibly useful in organizing a sharable archive of lattice gauge field configurations
Semantic keys include coupling constant β, quark masses mq , lattice volume,...
Would only use a stand-alone application, rather than re-coding
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LQCD IN THE IO-SEA ENVIRONMENT
The “Workflow Description File”:

# lqcd -BC-workflow.yaml

workflow:

- name: LQCD_BC

services:

- name: nfs -gauge -files

type: NFS

attributes:

namespace: "beta_{{ BETA }} _gauge_cfg_files"

mountpoint:"/mnt/USER/gauge -fields/B{{ BETA }}/"

flavor: medium

- name: nfs_propagators

type: NFS

attributes:

namespace: "propagators -b{{ BETA }}"

mountpoint: "/mnt/USER/propagators/B{{ BETA }}/"

flavor: medium

- name: nfs_input -and -logs

type: NFS

attributes:

namespace: "input -and -logs -b{{ BETA }}"

mountpoint: "/mnt/USER/input -and -logs/B{{ BETA }}/"

flavor: medium

- name: nfs_hadron_correlators

type: NFS

attributes:

namespace: "hadron -correlators -b{{ BETA }}"

mountpoint: "/mnt/USER/corrs/B{{ BETA }}/"

flavor: medium

steps:

- name: "step_B_props -b{{ BETA }}"

location: gpu_module # generate props on GPUs

command: "sbatch  {{  PROP_BATCH_SCRIPT }}"

services:

- "nfs -gauge -files" RW

- "nfs_propagators" RW

- "nfs_input -and -logs" RW

- name: "step_C_contractions -b{{ BETA }}"

location: cpu_module

# hadron correlator contractions on CPUs

command: "sbatch make_had_corrs -b{{ BETA }}.sh --export=id={{ ID }}"

services:

- "nfs_propagators" RO

- "nfs_hadron_correlators" WO

- "nfs_input -and -logs" WO
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LQCQ IN THE IO-SEA ENVIRONMENT
#!/bin/bash

beta =3.6

#create namespaces for all hadron correlators:

iosea -ns create --auto -create -dataset hadron -correlators -b${beta}

#create namespace for input and log files for B & C

iosea -ns create --auto -create -dataset input -and -logs -b${beta}

# create empty namespace/dataset for propagators

iosea -ns create --auto -create -dataset propagators -b${beta}

start =500 # first 500 gauge files are not thermalized

skip =20 # we think it takes 20 updates for gauge fields to de -correlate

for (( num=start; num <=2000; num+=skip ))

do

# also add input files for B and C to input -and -logs NS:

iosea -ns put input -and -logs -b${beta} input_propsolve_beta_b${beta}_${num}.xml

iosea -ns put input -and -logs -b${beta} input_had -corrs_beta_${beta}_${num}.xml

done

# start session

#session name: props -corrs -b3.6

iosea -wf start WORKFLOW=lqcd -BC -workflow -b${beta}.yaml SESSION=prop -corrs_b${beta} BETA=$beta
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LQCD IN THE IO-SEA ENVIRONMENT

#run B step

for (( num=start; num <=2000; num+=skip ))

do

iosea -wf run SESSION=prop -corrs_b${beta} STEP=step_B_props -b${beta} \

PROP_BATCH_SCRIPT="solve_propagators -b${beta}-${num}.sh"

done

#check status of jobs:

iosea -wf status SESSION=prop -corrs_b${beta}

#run the C step

for (( num =500; num <=2000; num+=skip ))

do

iosea -wf run SESSION=prop -corrs_b${beta} STEP=step_C_contractions -b${beta}} ID=$num

done

#check status of jobs

iosea -wf status SESSION=prop -corrs_b${beta}

#stop the session and release the datanode

iosea -wf stop SESSION=prop -corrs_b${beta}
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SUMMARY & OUTLOOK

I/O challenges will increase as faster HPC platforms & algorithms allow larger problems to be
tackled.
IO-SEA ephemeral services should improve LQCD I/O bottlenecks and allow us to get the
most from compute time allocations.
Testing on prototypes to begin in the coming months.
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LQCD COMMUNITY SOFTWARE

←− different physics goals −→
←− different simulation codes −→

←− different architectures −→
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LQCD COMMUNITY SOFTWARE

←− different physics goals −→
←− different simulation codes −→

QLUA CPS TMLQCD MILC CHROMA
QUDA QPHIX

QDP-JIT QDP++ QIO
QMP

←− different architectures −→
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