
IO-SEA – Training – Infrastructure Monitoring Tools

May 10th, 2023

Patrick Küven, Support Analyst

Stephan Krempel, HPC Software Engineer

PARASTATION MODULO SOFTWARE SUITE

Enabling HPC

◉ ParTec is a strong HPC specialist for more than two decades

◉ ParaStation research project: 1995 (Univ. of Karlsruhe, Germany)

◉ ParTec founded as a spin-off in 1999

◉ HPC full service provider since 2004

◉ HPC full systems provider since 2021

◉ Pioneering the Modular Supercomputing Architecture (MSA) for >10 years

◉ ParaStation Modulo is extensively used in production environments

◉ Serves as the basis for co-design and co-development

◉ Also enables ParTec Support services: on-site/remote system operations

◉ ParaStation Modulo serves as a platform for research activities

◉ Used and further developed in Exascale-related projects
like DEEP, {DEEP, RED, IO}-SEA, EUPEX

◉ Also serves as a platform for MSA in Quantum- and AI-related projects
like HPCQS, QSolid and CoE RAISE

2

PARASTATION MODULO SOFTWARE SUITE

3

Tools for Provisioning

and Management

• System management CLI

• Image management

• Rolling updates

• Stateless & stateful

booting

• Post-install configuration

• Slurm integration

• Distributed database for

system configuration

• HealthChecker integration

Integrity of the

Computing Environment

• Automated error detection

& error handling

• Various hook-in points

• No interference with jobs

• TicketSuite integration

• Highly configurable

• 100+ tests (HW/SW):

• Node/System/Fabric level

Issue Tracking on

System Level

• Manual and automatic

ticket creation

• Prioritization

• Routing/Triage

• Documentation and

central information hub

• Maintenance planning

• Interfaces with external

ticketing systems

Execution Environment

and MPI Library

• MPI-4.0-compliant

• MPICH ABI compatible

• Supports multiple

interconnects in parallel

• Modularity support

• Network bridging

• PMIx support

• Full Slurm integration

PARASTATION CLUSTER TOOLS

Overview

◉ Install / update all types of cluster nodes

◉ On-disk, disk-less and container-based

installation

◉ Image-based

◉ Local modifications after cloning supported

◉ Supports multiple images per node

◉ Image may install on-disk, disk-less or in

container

◉ Rolling update supported

◉ Synchronization for configuration changes

◉ Automatic PXE boot of nodes for

◉ System install, or

◉ System diagnostics / maintenance

4

◉ Set of CLI tools for system management

◉ Configuration and image handling

◉ Console redirection and other IPMI functionality

◉ Redfish support under development

◉ Provides uniform interface, hides away hardware

differences

◉ Tight integration with HealthChecker and

TicketSuite

◉ High degree of automation

Image Handling

◉ Image comprises:

◉ Directory tree

◉ Local modifications (post-install scripts, overrides)

◉ Meta-information (name, timestamp, ...)

◉ Excludes (get/put)

◉ Automatically excluded: Remote and non-disk, file
systems, auto-generated files

◉ Additionally, exclude files (global, per cluster, per image) can
be specified

◉ Uses rsync to transfer images

◉ Image preparation

◉ On golden client (can also be a VM or container)

◉ Directly in image environment, using systemd-nspawn

◉ Locking mechanism to ensure consistency

◉ Support for admin-supplied changelog for each change

5

PARASTATION CLUSTER TOOLS

golden
client

master
node

admin
node 1

admin
node 1

c00n000

c00n001

c00nNNN

...

Roll out image: pscluster image put <IMAGE>

Retrieve image: pscluster image get <IMAGE>

Node Installation (x86_64/aarch64)

◉ Requirements

◉ PXE boot support (legacy BIOS or UEFI)

◉ Remote control via IPMI enabled

(BMC configured)

◉ Redfish support under development

◉ Association: node ↔ MAC address of NIC

◉ Support for persistent installs (disk) and
volatile installs (RAM)

6

PARASTATION CLUSTER TOOLS

◉ Process

◉ PXE boots grub2 loader

◉ Loader boots kernel + initramfs

◉ Image kernel is used

◉ Initramfs

◉ Establish network connection

◉ Sync config

◉ Optionally: create disk layout

◉ Sync full image

◉ Run post-install scripts to configure the node

Node Installation

◉ Persistent installation to disk

◉ Disk layout described

◉ Support for LVM, SW RAID, different file system types …

◉ Volatile installation

◉ Aka “disk-less”

◉ Image is kept in-memory (tmpfs)

◉ “Look and feel” similar to persistent installs: update image, install rpms, …

◉ Same image might be used for persistent and volatile installs

◉ Special handling recommended for:

◉ Syslog: forwarded to admin node

◉ Kdump: forwarded/saved on admin node

7

PARASTATION CLUSTER TOOLS

Post-Install

◉ After image has been copied — node specifics need to be configured

◉ Hostname

◉ Network interfaces: management, IPoIB, file systems, special routes, name resolution, …

◉ BMC: user, password, network config, time & date, …

◉ Grub2 / boot configuration, initramfs,

◉ Solution: post install scripts, using psconfigure for common configuration tasks

◉ Turns data base (psconfig) entries into

◉ Commands (ipmitool lan set, nmcli, …)

◉ Configuration files (ifcfg-en, …)

◉ Parametrized, ready-made plugins already provided for common configuration taks

8

PARASTATION CLUSTER TOOLS

PARASTATION CLUSTER TOOLS

psconfigure / psconfig — Network Example

9

network:mngt
DevMTU = "1500"
DevName = "enp0s3"
DevNetMask = "255.255.255.0"
DevNetwork = "10.2.8.0"

network:ib
DevMTU = "1500"
DevName = "ib0"
DevNetMask = "255.255.255.0"
DevNetwork = "10.2.9.0"

host:cnode007
...
MngtNet = ptr(["network:mngt"])
MngtNet.DevHWAddress = "00:aa:bb:cc:dd:ee"
MngtNet.DevIPAddress = "10.2.8.77"
IPoIBNet. = ptr(["network:ib"])
IPoIBNet.DevIPAddress = "10.2.9.77"

DEVICE = "enp0s3"
TYPE = "ethernet"
IPADDR = "10.2.8.77"
NETMASK = "255.255.255.0"
HWADDR = "00:aa:bb:cc:dd:ee"

DEVICE = "ib0"
TYPE = "infiniband"
IPADDR = "10.2.9.77"
NETMASK = "255.255.255.0"

psconfigure … MngtNet …

psconfigure … IPoIBNet …

Container Installation

◉ pscluster supports installation of an image into a container

◉ Same image as for persistent and volatile installs

◉ Currently LXC containers are supported

◉ Install new container: pscluster node reinstall

◉ Copy image to container directory on hosting node

◉ Run post install scripts (container versions)

◉ Once the container is up and running:

◉ Update container: pscluster node update

◉ Get image: pscluster image get

10

PARASTATION CLUSTER TOOLS

Rolling Updates

◉ Image updates might be rolled out during production using a rolling update

◉ Image has to be prepared

◉ All related nodes are offlined at once with special note using:

psmaintenance -r -t now jwc0[0-9]n[000-287]

◉ As soon as the nodes become free they are handled by the checkbot:

◉ Update node

◉ Run post-update scripts

◉ Check node

◉ Online node

◉ Updates are synchronized with batch system / job runs

11

PARASTATION CLUSTER TOOLS

Central Information Hub

◉ Central location for problem management

◉ Usually dedicated to a single system

◉ Deployed in the early phase of the project

◉ Accessible by all involved people

◉ Based on “Trac” open source software

◉ Configured and further enhanced by ParTec

with plugins and CLI tools

◉ GitLab integration currently under development

◉ Various interfaces for easy integration and

synchronization

◉ Versatile, user-friendly on-the fly generation of

statistics

12

PARASTATION TICKET SUITE

Scalable Process Manager

13

PARASTATION MPI (PROCESS MANAGER)

◉ Scalable network of MPI process management daemons

◉ One instance running on each of the computational nodes

◉ Responsible for process startup and control

◉ Responsible for intra-job resource assignment

◉ Provides precise resource monitoring

◉ Provides a PMIx server to the application

◉ Guarantees proper cleanup after jobs

◉ psslurm: Full integration for Slurm

◉ Implemented as plugin (i.e., loadable shared library)

to the ParaStation Management daemon

◉ Replaces node-local Slurm daemons

◉ Enforces resource limits

◉ Collects misc. information, e.g., accounting, energy,

file system usage, ... and forwards it to the slurmctld

slurmctld

Head Node

Job

List

sbatch /

salloc /

srun

Login Node

Job

Script

ParaStation

Daemon

Compute Node

ParaStation

Daemon

Compute Node

ParaStation Daemon

Core

Framework

PSACC

PSPMIX

PSSLURM

Source code available on GitHub:
https://github.com/ParaStation/psmgmt

https://github.com/ParaStation/psmgmt

Scalable Process Manager

◉ Advantages of the psslurm integration

◉ Benefit from proven functionality, stability, and

scalability of the ParaStation Process Manager

for starting and controlling parallel application

jobs

◉ Benefit from extra features in heterogeneous

environments

◉ Reduce the number of daemons on the compute

nodes

◉ Integration with ParaStation HealthChecker via

parallel prologue / epilogue

◉ Fully controlled code base: Allows to quickly fix

problems and to add unique features

14

PARASTATION MPI (PROCESS MANAGER)

PARASTATION MPI

15

Architecture

◉ Based on MPICH 4.1

◉ Support MPICH tools for tracing, debugging, etc.

◉ Integrates into MPICH on the MPID layer by implementing an
ADI3 device

◉ The PSP Device is powered by pscom—a low-level point-to-point
communication library

◉ Support the MPICH ABI Compatibility Initiative

◉ Tightly integrated with the ParaStation process manager
(e.g., for the provision of process sets)

◉ Support for various transports / protocols via pscom plugins

◉ Support for InfiniBand, Omni-Path, BXI, etc.

◉ Concurrent usage of different transports

◉ Transparent bridging between any pair of networks enabled by gateway capabilities

◉ Proven to scale up to ~3,500 nodes and more than 140,000 processes per job

psp

pscom

pscom Interface

pscom Plugin Interface

SHM UCX PSGW· · ·

MPI Applications

MPI Interface

Hardware Interfaces

Hardware

MPIR
(hardware-independent)

ADI3

MPID
(hardware-dependent)

M
P

IC
H

MODULAR SUPERCOMPUTING ARCHITECTURE

Neuromorphic

Module

NN NN

Quantum

Module

QN QN

Data Analytics

Module

AN AN AN

Booster

Module

BN BN

BN BN BN

BN BN BN

BN

Cluster

Module

CN

CNCN

CN

Storage

Module

SN

SNSN

SN

MSA

16

◉ Generalization of the Cluster-Booster Concept

◉ Heterogeneity on the system level

◉ Effective resource sharing

◉ Any number of (specialized) modules possible

◉ Cost-effective scaling

◉ Extensibility of existing modular systems by adding modules

◉ Fit application diversity

◉ Large-scale simulations

◉ Data analytics

◉ Machine/Deep Learning, AI

◉ Hybrid-quantum Workloads

◉ Achieve leading scalability and energy efficiency

◉ Exascale-ready!

◉ Unified software environment for running across all modules

◉ Enabled by the ParaStation Modulo software suite

◉ Support for multi-level hierarchy-aware collectives

◉ Optimize communication patterns to the topology of the MSA

◉ Assumption: Inter-module communication is the bottleneck

◉ Dynamically update the communication patterns
(experimental)

◉ API extensions for accessing modularity information

◉ New MPI split type for communicators
(MPIX_COMM_TYPE MODULE)

◉ Provide the module id via the MPI_INFO_ENV object

◉ MPI Network Bridging

◉ Connect any pair of interconnect and protocol

◉ Transparent to the application layer

MSA AWARENESS

C C

C C

B B

B B

D D

Binary Tree

(default)
C C

C C

B B

B B

D D

Hierarchical

(MSA-aware)

17

◉ Transparent communication across networks

◉ Use a gateway when two processes are not directly connected through the same network

◉ Bridging between any pair of interconnects supported by pscom (e.g., InfiniBand, Omni-Path, BXI, etc.)

◉ Static routing

◉ Use the same gateway for different destinations

◉ Virtual GW connections provide full transparency to the application layer

◉ Successfully deployed in production environments

◉ Implemented first for the
JURECACluster-Booster System

◉ Bridging between Mellanox EDR and
Intel Omni-Path

MPI NETWORK BRIDGING

18

Malleability for MPI Applications

◉ Malleability features developed in the context of DEEP-SEA

◉ Adding or removing of HPC resources during job run time

◉ Support MPI-4 sessions in ParaStation MPI (extend MPI4 to support dynamic

sessions)

◉ Job-intiated: Job releases resources or asks the scheduler for more resources

◉ Scheduler-initiated: Scheduler decides to re-organize resource usage, e.g. to

optimize job queue

◉ Externally initiated: Meta scheduler makes decisions, e.g., based on application

models

◉ Triggering mechanism and protocol between scheduler and MPI application is

subject to research and collaboration

◉ Currently under discussion: employing and possibly extending PMIx

◉ Changes to Slurm scheduler likely needed

◉ Standardization of MPI and PMIx extensions targeted

20

PARASTATION MPI

• New policies ruling which jobs

get compressed and which get
expanded while balancing

• System utilization

• Science throughput
• Turnaround times

• Energy efficiency
• How to incentivate users to walk

the extra mile?

• Requires rewards
mechanism in fair-share

usage model

Operational Challenge

• Bi-directional interface with MPI

runtime is required
• Deal with rectangular node x

walltime shapes that are

compressible/expandable over
time

• Requires new scheduling
algorithms & policies

Scheduler Challenge

• Checkpoint/Restart (CP/RS) with

modified resource specs already
works today for many apps

• Handshake with scheduler

required for automation
• Scheduler needs more

information about jobs
• Dynamic MPI Session support is

needed to be able to re-initialize

MPI apps on-the-fly (avoiding
CP/RS)

• Application re-factoring
required

Application Challenge

THE MALLEABILITY CHALLENGE

21

WHAT‘S NEXT?

C U R R E N T A N D F U T U R E D E V E L O P M E N T S

MALLEABILITY

– Dynamic resizing of jobs

– Support for application-driven

(active) and scheduler-driven
(passive) malleability

– Leverage PMIx (e.g.,
PMIx_Allocation_request)

– Build upon the MPI Sessions
interface

MPI-4

– Improve/extend MPI-4 support

– Tighter integration with the

process manager (e.g., for the
provision of psets)

– Bring developments upstream

OPTIMIZATION

– Performance optimizations

(e.g., further improve BXI
support)

– Expose low-level RMA for
improved one-sided

communication

– Extend support for hierarchical
collectives (e.g., UCC support)

22

OUTLOOK

PARASTATION MODULO SOFTWARE SUITE

23

Execution Environment

and MPI Library

• MPI-4.0-compliant

• MPICH ABI-compatible

• Supports multiple

interconnects in parallel

• Modularity support

• Network bridging

• PMIx support

• Full Slurm integration

Tools for Provisioning

and Management

• System management CLI

• Image management

• Rolling updates

• Stateless & stateful

booting

• Post-install configuration

• Slurm integration

• Distributed database for

system configuration

• HealthChecker integration

Integrity of the

Computing Environment

• Automated error detection

& error handling

• Various hook-in points

• No interference with jobs

• TicketSuite integration

• Highly configurable

• 100+ tests (HW/SW):

• Node/System/Fabric level

Issue Tracking on

System Level

• Manual and automatic

ticket creation

• Prioritization

• Routing/Triage

• Documentation and

central information hub

• Maintenance planning

• Interfaces with external

ticketing systems

Components

◉ Local Checking of Nodes

◉ Core component

◉ Flexible and expandable framework

◉ Global System Checking

◉ Detecting problems not local to single nodes

◉ Associated Tool “Checkbot”

◉ “Automatic admin”

◉ Actually, part of ParaStation Cluster Tools

24

KEEPING NODES HEALTHY – PARASTATION HEALTHCHECKER

Automated Health Checking

◉ Expandable framework

◉ Assess health

◉ Hardware

◉ Software

◉ Configuration

◉ Non-destructive

◉ Multiple usage scenarios

◉ On trigger, e.g., job driven (prologue/epilogue), on reboot, manual stress-test

◉ Periodically, run at regular intervals

◉ Node-local vs. global checking

◉ Aims at maximizing system usability

25

KEEPING NODES HEALTHY – PARASTATION HEALTHCHECKER

Local Checking of Nodes

◉ Autonomous local checks → Unlimited scalability

◉ Framework provides unlimited flexibility

◉ Parallel execution of tests

◉ Enabled to check remote conditions as well

◉ Example: Network connectivity of the node

◉ Timeout handling at different levels

◉ PreActions (at test and test set level)

◉ Perform clean-up actions

◉ Fix transient problems

◉ PostActions (at test and test set level)

◉ Offline nodes; reschedule jobs

◉ Create tickets

26

KEEPING NODES HEALTHY – PARASTATION HEALTHCHECKER

The Parastation HealthChecker can

◉ put a node into a defined state;

◉ check a node for a defined state;

◉ take actions based on the result of these checks.

It's just a matter of configuration.

Terminology

27

KEEPING NODES HEALTHY – PARASTATION HEALTHCHECKER

Term Description Example

Check Prepared configurable test unit, usually a script cpu_speed.sh, memory_free.sh, userprocesses.sh

Test Configured test unit, part of a test set,

uses check

[cpu_speed_3GHz], [memory_free_8GB],

[userprocesses]

Test Set Several tests executed together reboot, prologue, epilogue, stress-test

PreAction Action executed before a (test or) test set run process_cleanup.sh

PostAction Action executed after a (test or) test set run slurm_set_offline.sh

28

KEEPING NODES HEALTHY – PARASTATION HEALTHCHECKER

Local Checking of Nodes

OK

WARNING

ERROR

TIMEOUT

Example: Kill User Processes

◉ PreAction: process_cleanup.sh
process_cleanup.sh root,pscd

kill all processes not owned by allowed users

◉ Test: [userprocesses] using check userprocesses.sh
userprocesses.sh root,pscd

check if there are processes not owned by allowed users

◉ PostAction: slurm_set_offline.sh
slurm_set_offline.sh

drain local node if test userprocesses failed

29

KEEPING NODES HEALTHY – PARASTATION HEALTHCHECKER

Example: Test Set Configuration in psconfig

[hctestset:prologue]

PreActions = ["process_cleanup", "ipc_cleanup", "psid_cleanup", …]

Tests = ["kernel_modules", "cpu_count", "memory_free",

"memory_badpages", "HCA_pcispeed", "infiniband_phy_state",

"infiniband_state", "infiniband_speed", "infiniband_counters",

"net_ping_ib", "daemons", "disk_free", "disk_linkspeed", …]

PostActions = ["node_set_offline"]

Timeout = "58"

TimeoutActionCommand = "/opt/parastation/lib/actions/set_offline.sh"

Break = "never"

30

KEEPING NODES HEALTHY – PARASTATION HEALTHCHECKER

Example: Test Configuration in psconfig

[+hctest:psid]

.parents = ["class:hctest"]

Command = "/opt/parastation/lib/checks/psid.sh 510 510"

Hardware = ["*"]

NodeTypes = ["compute*", "master", "admin"]

Timeout = "10"

Inherited keys:

KillWaitTime = "1"

NoRepeatTime = "0"

31

KEEPING NODES HEALTHY – PARASTATION HEALTHCHECKER

32

KEEPING NODES HEALTHY – PARASTATION HEALTHCHECKER

Local Checking of Nodes

Testset

PreAction

Test A

PostAction

Test B

Test C

Test D

Barrier

33

KEEPING NODES HEALTHY – PARASTATION HEALTHCHECKER

Local Checking of Nodes

Testset

PreAction

Test A

PostAction

Test B

Test C Test C#2

 compute_cpu

Test C#1

login

Test C#3

 compute_gpu

Test B

*

Test A#2

compute_gpu

Test A#1

compute_cpu

Test D

compute_*

Test D

Barrier

e.g. #CPUs == 96

e.g. #CPUs == 32

e.g. NTP working

e.g. free Memory >= 120 GB

e.g. free Memory >= 500 GB

e.g. free Memory >= 250 GB

e.g. ParaStation daemon running

34

KEEPING NODES HEALTHY – PARASTATION HEALTHCHECKER

Local Checking of Nodes

Testset

PreAction

Test A

PostAction

Test B

Test C Test C#2

 compute_cpu

Test C#1

login

Test C#3

 compute_gpu

Test B

*

Test A#2

compute_gpu

Test A#1

compute_cpu

Test D

compute_*

Test D

Barrier

running on CPU compute node

Barrier

Test A#1

compute_cpu

Test B

*

Test C#2

 compute_cpu

Test D

compute_*

35

KEEPING NODES HEALTHY – PARASTATION HEALTHCHECKER

Local Checking of Nodes

Testset

PreAction

Test A

PostAction

Test B

Test C Test C#2

 compute_cpu

Test C#1

login

Test C#3

 compute_gpu

Test B

*

Test A#2

compute_gpu

Test A#1

compute_cpu

Test D

compute_*

Test D

Barrier

running on CPU compute node

Barrier

Test A#1

compute_cpu

Test B

*

Test C#2

 compute_cpu

Test D

compute_*

running on login node

Barrier

Test B

*

Test C#2

login

36

KEEPING NODES HEALTHY – PARASTATION HEALTHCHECKER

Local Checking of Nodes

Testset

PreAction

Test A

PostAction

Test B

Test C Test C#2

 compute_cpu

Test C#1

login

Test C#3

 compute_gpu

Test B

*

Test A#2

compute_gpu

Test A#1

compute_cpu

Test D

compute_*

Test D

Barrier

running on CPU compute node

Barrier

Test A#1

compute_cpu

Test B

*

Test C#2

 compute_cpu

Test D

compute_*

running on login node

Barrier

Test B

*

Test C#2

login

For *Actions it‘s the same.

Design Advantages

◉ Only define one test set for one situation/trigger point

◉ Use predefined checks to easily define similar tests

◉ Limit and overload tests and actions

to make the same test set suitable for different node types

◉ Benefit from many years of experience through a large collection of prepared checks

37

KEEPING NODES HEALTHY – PARASTATION HEALTHCHECKER

System Global Checking

◉ Continuous/periodic checks are performed on service nodes

◉ No healthcheck actions on compute nodes during job run

◉ Checks health of other components, e.g.,

◉ Monitoring of machine check events

◉ Monitoring of log files

◉ Compute nodes’ logfiles are forwarded to admin nodes

◉ OpenSM logs

◉ Periodic runs of ibdiagnet

◉ Interfacing other monitoring components

38

KEEPING NODES HEALTHY – PARASTATION HEALTHCHECKER

Checkbot

◉ Runs periodically on a master node for nodes offlined by pshealthcheck

◉ Can also be triggered manually for a list of nodes (e.g., repaired nodes)

◉ Actions

◉ Powers on nodes (optional)

◉ Updates nodes (optional)

◉ Runs pshealthcheck

◉ Runs “fix” scripts on nodes for failed checks → trying to fix transient problems

◉ Takes “good” nodes back online

◉ Updates all related tickets

◉ Clears maintenance tag in database

◉ Clears node “identify” LED

39

PARASTATION CLUSTER TOOLS

Local Checking of Nodes

40

KEEPING NODES HEALTHY – PARASTATION HEALTHCHECKER

Tests, to address problematic aspects (non-exhaustive list):

• BIOS version and installation date
• Number of available CPUs

• CPU speed and type
• Running services (e.g., syslog, xinetd, systemd status,...)

• Disk space
• Disk health (SMART)
• InfiniBand bandwidth

• InfiniBand error counters and connectivity
• Kernel version

• Working LDAP
• Checksum of critical configuration files
• Free memory (kernel memory leakage!)

• Memory bus speed and size
• Mounted file systems

• DNS configuration and availability
• Network counters
• Ethernet connectivity and speed

• Software versions
• ...

Health Checking in Practice

41

KEEPING NODES HEALTHY – PARASTATION HEALTHCHECKER

in

Monitoring Agent
Health Checking

Data Nodes

42

DEMO

Workflow

QUESTIONS?

THANK YOU FOR YOUR ATTENTION

43

	Folie 1
	Folie 2: PARASTATION MODULO SOFTWARE SUITE
	Folie 3: PARASTATION MODULO SOFTWARE SUITE
	Folie 4: PARASTATION CLUSTER TOOLS
	Folie 5: PARASTATION CLUSTER TOOLS
	Folie 6: PARASTATION CLUSTER TOOLS
	Folie 7: PARASTATION CLUSTER TOOLS
	Folie 8: PARASTATION CLUSTER TOOLS
	Folie 9: PARASTATION CLUSTER TOOLS
	Folie 10: PARASTATION CLUSTER TOOLS
	Folie 11: PARASTATION CLUSTER TOOLS
	Folie 12: PARASTATION TICKET SUITE
	Folie 13: PARASTATION MPI (PROCESS MANAGER)
	Folie 14: PARASTATION MPI (PROCESS MANAGER)
	Folie 15: PARASTATION MPI
	Folie 16: MODULAR SUPERCOMPUTING ARCHITECTURE
	Folie 17: MSA AWARENESS
	Folie 18: MPI NETWORK BRIDGING
	Folie 20: PARASTATION MPI
	Folie 21: THE MALLEABILITY CHALLENGE
	Folie 22: WHAT‘S NEXT?
	Folie 23: PARASTATION MODULO SOFTWARE SUITE
	Folie 24: KEEPING NODES HEALTHY – PARASTATION HEALTHCHECKER
	Folie 25: KEEPING NODES HEALTHY – PARASTATION HEALTHCHECKER
	Folie 26: KEEPING NODES HEALTHY – PARASTATION HEALTHCHECKER
	Folie 27: KEEPING NODES HEALTHY – PARASTATION HEALTHCHECKER
	Folie 28: KEEPING NODES HEALTHY – PARASTATION HEALTHCHECKER
	Folie 29: KEEPING NODES HEALTHY – PARASTATION HEALTHCHECKER
	Folie 30: KEEPING NODES HEALTHY – PARASTATION HEALTHCHECKER
	Folie 31: KEEPING NODES HEALTHY – PARASTATION HEALTHCHECKER
	Folie 32: KEEPING NODES HEALTHY – PARASTATION HEALTHCHECKER
	Folie 33: KEEPING NODES HEALTHY – PARASTATION HEALTHCHECKER
	Folie 34: KEEPING NODES HEALTHY – PARASTATION HEALTHCHECKER
	Folie 35: KEEPING NODES HEALTHY – PARASTATION HEALTHCHECKER
	Folie 36: KEEPING NODES HEALTHY – PARASTATION HEALTHCHECKER
	Folie 37: KEEPING NODES HEALTHY – PARASTATION HEALTHCHECKER
	Folie 38: KEEPING NODES HEALTHY – PARASTATION HEALTHCHECKER
	Folie 39: PARASTATION CLUSTER TOOLS
	Folie 40: KEEPING NODES HEALTHY – PARASTATION HEALTHCHECKER
	Folie 41: KEEPING NODES HEALTHY – PARASTATION HEALTHCHECKER
	Folie 42: DEMO
	Folie 43: QUESTIONS?

