
This project has received funding from the European High-Performance Computing Joint Undertaking (JU)
under grant agreement No 955811. The JU receives support from the European Union’s Horizon 2020
research and innovation programme and France, the Czech Republic, Germany, Ireland, Sweden, and the
United Kingdom.

IO-SEA Hackathon
Hands-On Training with Data Access & Storage Interface (DASI)

Outline

▪ IO-SEA Project

▪ DASI Concept and Design

▪ API

▪ Aim: to implement solutions for scaling I/O

intensive applications to exascale HPC systems

▪ Components:

▪ Object stores
▪ Hierarchical storage management (HSM)
▪ Ephemeral services

▪ DASI sits between the user applications and

HSM as an application interface for abstracting

the complex storage layer from users

IO-SEA Project

DASI Concept and Design

4

bucket/8s09sno5tdyjopj92asy23

Non-semantic key

Semantic key

model: covid-spread

date: 20210112

experiment: 42

variable: R0

epoch: 123

/scratch/$USER/model-42/variable-R0/epoch-123/...

Semantics tied to storage implementation

▪ Data Access and Storage Interface (DASI) provides a scientifically
meaningful way to manage data, and abstracts the underlying storage
technologies

▪ The key used to index data is a semantic description of the data
▪ Not just a UUID
▪ The metadata is used to index and uniquely identify the data
▪ Ensures data is findable and accessible
▪ Domain-specific schemas of allowed keys are defined by

configuration

DASI Concept

▪ You have probably already done basic semantic data access with files and folders…

… but a better implementation decouples the scientific identification from the storage resource

… and the applications don’t need to care how the objects are stored

▪ Allows optimal usage of storage backend without leaking details to user-space

POSIX paths/files

/../0000-0003-4013-3898/80s/20221010/g1/spa/...

user: 0000-0003-4013-3898

project: 80s

datetime: 20221010

data_processing: g1

type: spa

Buckets/objects

Memory locations

Tapes/offsets

DASI

Semantic Data Access as an Abstraction

DASI Design

▪ DASI API

▪ Frontend abstraction
▪ Could allow directly implementing POSIX-like frontend

▪ DASI Core

▪ Converts requests into indexable identifiers
▪ Expands query requests (ranges, wildcards, etc.)

▪ DASI Index Abstraction

▪ Mapping between keys and object locations in datastore

▪ DASI Datastore Abstraction

▪ Object-store-like API for raw storage objects

DASI API and Usage

8

Implementation of DASI

▪ DASI APIs Available

▪ C
▪ C++
▪ Python
▪ Command Line Interface (CLI)

▪ Configured through Collection Schemas

▪ Specify the semantic keys
▪ Hierarchy of metadata keys
▪ Each collection schema is a tree with three levels

▪ Data is addressed by specifying all the keys along a path from the

root to a leaf

[User, Project,
[Date, Time
[Processing],

],
]

Example Schema

User: jw
Project: IOSEA
Date: 20231101
Time: 12
Processing: training

Example Address

▪ Identify Data Collection

▪ Which data do you want to store together?
▪ What are your data objects?

▪ Define Metadata keys

▪ How do you uniquely identify an object?
▪ If needed, what are the different sets of keywords need?

▪ Determine Hierarchy

▪ Choose relevant order for the keywords
▪ Schema supports branching

Example: Cryo Electron
Microscropy

Building a Schema

Keywords: User, Project,
Date, Time, Processing, Type

Hierarchy:
1. User, Project
2. Date, Time
3. Processing, Type

Example Schema

Rule 1
[User, Project, # Level 1: specifies top level directory
[Date, Time, # Level 2: specifies filename
[Processing], # Level 3: indexes entries in file

],
]

Rule 2
[Institute, Project,
[Date, Location?, # “?” used for optional key
[Type],

]
]

dasi = Dasi(“config.yaml”) # location of schema file defined in config.yaml

Save some data (bytestream) using associated metadata (key)

key = {“User”: “jw”, “Project”: “IOSEA”, “Date”: “20231101”, “Location”: “Reading”}

dasi.archive(key, data)

Retrieve saved data

data = dasi.retrieve({User:{jw}, Project:{IOSEA}, Date:{20231101}, Location:{Reading}) ➔ [bytestream]

Use list to query data stored in Dasi

dasi.list(({User:{jw}, Date: {20231101}}) ➔ [metadata]

DASI Python API

IO-SEA Use Cases

▪ ECMWF uses DASI for Integrated Forecast System weather
forecasting workflow

▪ Lattice Quantum Chromodynamics uses DASI for markov-
chain scientific checkpoint files

▪ Terrestrial Systems Multiple-Physics (TSMP) uses DASI for
output from TSMP model components

▪ RAMSES code for modelling astrophysical phenomena uses
DASI for post-processing

▪ CEITEC electron microscopy facility DASI for raw imagery and
processed images

