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IO-SEA Hackathon
Hands-On Training with Data Access & Storage Interface (DASI)



Outline

▪ IO-SEA Project

▪ DASI Concept and Design

▪ API



▪ Aim: to implement solutions for scaling I/O 

intensive applications to exascale HPC systems

▪ Components:

▪ Object stores
▪ Hierarchical storage management (HSM)
▪ Ephemeral services

▪ DASI sits between the user applications and 

HSM as an application interface for abstracting 

the complex storage layer from users

IO-SEA Project



DASI Concept and Design
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bucket/8s09sno5tdyjopj92asy23

Non-semantic key

Semantic key

model: covid-spread

date: 20210112

experiment: 42

variable: R0

epoch: 123

/scratch/$USER/model-42/variable-R0/epoch-123/...

Semantics tied to storage implementation

▪ Data Access and Storage Interface (DASI) provides a scientifically 
meaningful way to manage data, and abstracts the underlying storage 
technologies

▪ The key used to index data is a semantic description of the data
▪ Not just a UUID
▪ The metadata is used to index and uniquely identify the data
▪ Ensures data is findable and accessible
▪ Domain-specific schemas of allowed keys are defined by 

configuration

DASI Concept



▪ You have probably already done basic semantic data access with files and folders…

… but a better implementation decouples the scientific identification from the storage resource

… and the applications don’t need to care how the objects are stored

▪ Allows optimal usage of storage backend without leaking details to user-space

POSIX paths/files

/../0000-0003-4013-3898/80s/20221010/g1/spa/...

user: 0000-0003-4013-3898 

project: 80s

datetime: 20221010

data_processing: g1

type: spa

Buckets/objects

Memory locations

Tapes/offsets

DASI

Semantic Data Access as an Abstraction



DASI Design

▪ DASI API

▪ Frontend abstraction
▪ Could allow directly implementing POSIX-like frontend

▪ DASI Core

▪ Converts requests into indexable identifiers
▪ Expands query requests (ranges, wildcards, etc.)

▪ DASI Index Abstraction

▪ Mapping between keys and object locations in datastore

▪ DASI Datastore Abstraction

▪ Object-store-like API for raw storage objects



DASI API and Usage
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Implementation of DASI

▪ DASI APIs Available

▪ C
▪ C++
▪ Python
▪ Command Line Interface (CLI)

▪ Configured through Collection Schemas

▪ Specify the semantic keys 
▪ Hierarchy of metadata keys 
▪ Each collection schema is a tree with three levels

▪ Data is addressed by specifying all the keys along a path from the 

root to a leaf

[ User, Project,      
[ Date, Time
[Processing], 

], 
]

Example Schema

User: jw
Project: IOSEA
Date: 20231101
Time: 12
Processing: training

Example Address



▪ Identify Data Collection

▪ Which data do you want to store together?
▪ What are your data objects?

▪ Define Metadata keys

▪ How do you uniquely identify an object?
▪ If needed, what are the different sets of keywords need?

▪ Determine Hierarchy

▪ Choose relevant order for the keywords
▪ Schema supports branching

Example: Cryo Electron 
Microscropy

Building a Schema

Keywords: User, Project, 
Date, Time, Processing, Type

Hierarchy: 
1. User, Project
2. Date, Time
3. Processing, Type



Example Schema

# Rule 1
[ User, Project,      # Level 1: specifies top level directory
[ Date, Time,       # Level 2: specifies filename
[Processing],     # Level 3: indexes entries in file

], 
]

# Rule 2
[ Institute, Project, 
[ Date, Location?,  # “?” used for optional key
[Type], 

]
]



dasi = Dasi(“config.yaml”) # location of schema file defined in config.yaml

# Save some data (bytestream) using associated metadata (key)

key = {“User”: “jw”, “Project”: “IOSEA”, “Date”: “20231101”, “Location”: “Reading”}

dasi.archive(key, data)

# Retrieve saved data

data = dasi.retrieve({User:{jw}, Project:{IOSEA}, Date:{20231101}, Location:{Reading}) ➔ [bytestream]

# Use list to query data stored in Dasi

dasi.list(({User:{jw}, Date: {20231101}}) ➔ [metadata]

DASI Python API



IO-SEA Use Cases

▪ ECMWF uses DASI for Integrated Forecast System weather 
forecasting workflow 

▪ Lattice Quantum Chromodynamics uses DASI for markov-
chain scientific checkpoint files

▪ Terrestrial Systems Multiple-Physics (TSMP) uses DASI for 
output from TSMP model components

▪ RAMSES code for modelling astrophysical phenomena uses 
DASI for post-processing

▪ CEITEC electron microscopy facility DASI for raw imagery and 
processed images


