
Quantum algorithms for
secure energy grids

Niels Neumann (TNO)

Agenda

Energy grid
challenges

Gate-Based Quantum
Solution

Quantum Annealing
Solution

2

Tasked to install at
least as many

assets in the next
10 years as in the

last 100 years

Shortage of
technicians and

supplies

The energy grid of Alliander

Customer
service

Ready for
further

expansion

Prevent
outages

Troubleshoot
fast

31. Introduction 2. Gated Quantum Computing 3. Quantum Annealing 4. Conclusion

N-1 Challenge
The N-1 principle
If one asset fails, then it must be possible to resolve the failure
by using the remaining assets in the network.

41. Introduction 2. Gated Quantum Computing 3. Quantum Annealing 4. Conclusion

N-1 Challenge

• Given a power network with edges
(cables) labelled as active or inactive.

• Upon active edge failure, find a
reconfiguration such that

• The network is re-connected,
with no cycles.

• At most 𝑘 switches are applied.

• Load-flow constraints are met.

• We say that a network is “N-1
compliant” if a reconfiguration exists
for all active edges.

51. Introduction 2. Gated Quantum Computing 3. Quantum Annealing 4. Conclusion

Example: reconfigure with 4 switches
(switch on 2; switch off 2).

6

N-1 Challenge

1. Introduction 2. Gated Quantum Computing 3. Quantum Annealing 4. Conclusion

Hours

71. Introduction 2. Gated Quantum Computing 3. Quantum Annealing 4. Conclusion

Number of network nodes

How hard is it?

N-1 Challenge

1. Apply all possible switches using quantum parallelism.

2. Apply a quantum operator to make the invalid reconfigurations vanish.

ψ⟩ = a1 ⟩ + a2 ⟩+ a3 ⟩ + … + a𝑁| ⟩

• The network is re-connected,
with no cycles.

• At most 4 switches are applied.

• Load-flow constraints are met.𝛼⟩ = b5 ⟩ + b77 ⟩+ b90 ⟩

Quantum algorithm for N-1

81. Introduction 2. Gated Quantum Computing 3. Quantum Annealing 4. Conclusion

Which Quantum Computer

Quantum
Annealers

Gated Quantum
Computers

1. Introduction 2. Gated Quantum Computing 3. Quantum Annealing 4. Conclusion 9

• Analogy between gate-based quantum
computers and digital computers

• Gate-based quantum computers can
perform universal computations

Gate-based quantum computing

101. Introduction 2. Gated Quantum Computing 3. Quantum Annealing 4. Conclusion

Near-term versus long-term hardware

Near-term

• Noisy-Intermediate Scale Quantum
(NISQ)

• Losses are significant
• Low decoherence time → small circuit

depth

• Gate errors + noisy measurements

• Limited qubit connectivity

• Special-purpose devices

Long-term

• Fault Tolerant (FT)

• Logical qubits

• Error-correcting codes are
imposed on groups of qubits

• ETA >15 years

• Universal computations

111. Introduction 2. Gated Quantum Computing 3. Quantum Annealing 4. Conclusion

Gate-based PoC

Part 1

1. Algorithm for enumerating reconfigurations for 𝑘 = 2
1. Generate spanning trees which are 𝑘 toggles away

2. Loop over every active edge
1. Loop over reconfigurations found in the previous step (that deactivate

the active edge being considered in this iteration)
1. Perform a load-flow check

2. If it passes, continue with the next active edges

Part 2

1. Repeat with 𝑘 > 2

121. Introduction 2. Gated Quantum Computing 3. Quantum Annealing 4. Conclusion

Gate-based PoC

Zoom into part 2 (𝑘 > 2)

1. Loop over every active edge
1. Skip if a reconfiguration for the considered active edge has already been

found in a previous iteration

2. Loop over reconfigurations found in the previous step (that deactivate
the active edge being considered in this iteration)

1. Perform a load-flow check

2. If it passes, continue with the next active edge QUANTUM

131. Introduction 2. Gated Quantum Computing 3. Quantum Annealing 4. Conclusion

• Assume an active edge fails

Gate-based PoC

141. Introduction 2. Gated Quantum Computing 3. Quantum Annealing 4. Conclusion

• Assume an active edge fails

• Generate potential reconfigurations

Gate-based PoC

…
idx = 0 idx = 1 idx = 2 idx = 𝑀 − 1

151. Introduction 2. Gated Quantum Computing 3. Quantum Annealing 4. Conclusion

• Assume an active edge fails

• Generate potential reconfigurations

• Define an operator 𝑈𝑓 to check for load-flow
constraints for a potential reconfiguration

• 𝑈𝑓 idx 0 = idx |𝑓(idx)⟩

• 𝑓 idx = ቊ
1
0

if load-flow check passes

otherwise

Gate-based PoC

|idx⟩

|0⟩

|idx⟩

|𝑓(idx)⟩
𝑈𝑓

…
idx = 0 idx = 1 idx = 2 idx = 𝑀 − 1

161. Introduction 2. Gated Quantum Computing 3. Quantum Annealing 4. Conclusion

• Assume an active edge fails

• Generate potential reconfigurations

• Define an operator 𝑈𝑓 to check for load-flow
constraints for a potential reconfiguration

• 𝑈𝑓 idx 0 = idx |𝑓(idx)⟩

• 𝑓 idx = ቊ
1
0

• Use Grover’s algorithm to find “good” switches.
Reduces complexity: 𝒪 𝑀 → 𝒪 𝑀 .

if load-flow check passes

otherwise

Gate-based PoC

|idx⟩

|0⟩

|idx⟩

|𝑓(idx)⟩
𝑈𝑓

…
idx = 0 idx = 1 idx = 2 idx = 𝑀 − 1

171. Introduction 2. Gated Quantum Computing 3. Quantum Annealing 4. Conclusion

Best classical speedup: linear Hope for quantum speedup: quadratic

18

Quantum hope

1. Introduction 2. Gated Quantum Computing 3. Quantum Annealing 4. Conclusion

|idx⟩

|0⟩

|idx⟩

|𝑓(idx)⟩
𝑈𝑓High-level design

Detailed design

|idx⟩

|0⟩

|0⟩
𝑈G

𝑈load−flow

𝑈G
−1

|0⟩

|idx⟩

|𝑓(idx)⟩

Gate-based PoC

191. Introduction 2. Gated Quantum Computing 3. Quantum Annealing 4. Conclusion

idx ⊗ 0 ⊗ 0

idx ⊗

𝑒∈𝐺

𝑒 𝑔(idx, 𝑒) ⊗ 0

𝑡1:

𝑡2:

idx ⊗

𝑒∈𝐺

𝑒 𝑔 idx, 𝑒 ⊗ 𝑓(idx)𝑡3:

𝑡4:

• idx: index of spanning tree to check

• 𝐺: set of active and inactive edges

• 𝑔(idx, 𝑒):

• 1: if edge 𝑒 is active in
reconfiguration idx

• 0: otherwise

• 𝑓(idx):

• 1: if load-flow check passes

• 0: otherwiseidx ⊗ 0 ⊗ 𝑓(idx)

|idx⟩

|0⟩

|0⟩
𝑈G

𝑈load−flow

𝑈G
−1

𝑡1 𝑡2 𝑡3 𝑡4

|0⟩

|idx⟩

|𝑓(idx)⟩

201. Introduction 2. Gated Quantum Computing 3. Quantum Annealing 4. Conclusion

Results | k=2: 1 failure, 1 switch on
• Active edges

• Inactive toggle-edge = {0-(1,2), 1-(2,4), 2-(2,3), 3-(3,4), 4-(4,5)}

20

1

5

1 load flow
compliant

option

3

4

211. Introduction 2. Gated Quantum Computing 3. Quantum Annealing 4. Conclusion

Results | k=2: 1 failure, 1 switch on
• Active edges

• Inactive toggle-edge = {0-(1,2), 1-(2,4), 2-(2,3), 3-(3,4), 4-(4,5)}

20

1

5

3 load flow
compliant

options
3

4

221. Introduction 2. Gated Quantum Computing 3. Quantum Annealing 4. Conclusion

Results | k=6
• 1 failure, 2 switch offs,

3 switch ons

• Active edges, inactive edges

20

1

5

(1 load flow
compliant combi)
edges turned on

3

4

(1 load flow
compliant

combi)
edges turned

off

1 Grover
iteration

6 Grover
iterations

231. Introduction 2. Gated Quantum Computing 3. Quantum Annealing 4. Conclusion

Conclusions

24

• Gate-based quantum approach can solve the N-1 problem

• Quadratic scaling in number of load-flow checks

• Implementation details matter for performance in practice

• Size of search space ↔ number of Grover iterations

• Encoding of network in quantum state

• Load-flow check now implemented as oracle

1. Introduction 2. Gated Quantum Computing 3. Quantum Annealing 4. Conclusion

Which Quantum Computer

Quantum
Annealers

25

Gated Quantum
Computers

1. Introduction 2. Gated Quantum Computing 3. Quantum Annealing 4. Conclusion

Why Quantum Annealing

• What does a quantum annealer do?
• Solves Ising model problems

• Solves QUBOs (Quadratic
Unconstrained Binary Optimization)

• Why do we care?
• QUBOs are NP-Hard

• Formulate other NP-Hard problems as
QUBOs

261. Introduction 2. Gated Quantum Computing 3. Quantum Annealing 4. Conclusion

Adiabatic Quantum Computing

𝐻𝐼 𝐻𝑃

271. Introduction 2. Gated Quantum Computing 3. Quantum Annealing 4. Conclusion

Adiabatic Quantum Computing

𝐻𝐼 𝐻𝑃

Solution should represent
the answer to the question

Described
by “QUBO”

281. Introduction 2. Gated Quantum Computing 3. Quantum Annealing 4. Conclusion

Quantum Annealing

• Same concept
• Faster annealing schedule

• Some noise is allowed
(e.g. temperature)

• Consequence
• (Temporarily) leave the ground state

• Stay near optimum with quantum
tunnelling

291. Introduction 2. Gated Quantum Computing 3. Quantum Annealing 4. Conclusion

Workflow (on the Quantum Annealer)

1. Initialisation
• Setup of the control system

2. Anneal
• 𝐻𝐼 → 𝐻𝑃

3. Readout
• Measure the qubits

4. Resampling
• Any quantum computation is probabilistic
• Nonzero (often significant) chance to not

be in the ground state

Order of 𝜇s

Order of ms

301. Introduction 2. Gated Quantum Computing 3. Quantum Annealing 4. Conclusion

QUBO formulation

• Quadratic Unconstrained Binary Optimization

min
𝒙

𝒙𝑇𝑄𝒙

Binary vector
Real valued matrix

311. Introduction 2. Gated Quantum Computing 3. Quantum Annealing 4. Conclusion

Quantum Annealing Based PoC

1. Search for edges with k=2 classically

2. For the remaining edges sample a QUBO which
• Minimizes k
• Penalizes non spanning tree configurations
• Penalizes non load flow compliant configurations
• Link 𝑃𝑡𝑟𝑒𝑒 to 𝑃𝑙𝑜𝑎𝑑

+ 𝑃𝑎𝑢𝑥(𝒙)+ 𝑃𝑙𝑜𝑎𝑑(𝒙)+ 𝑃𝑡𝑟𝑒𝑒(𝒙)min
𝑥∈ 0,1 𝑛

𝐻 𝒙

321. Introduction 2. Gated Quantum Computing 3. Quantum Annealing 4. Conclusion

min
𝑥∈ 0,1 𝑛

𝐻 𝒙 + 𝑃𝑡𝑟𝑒𝑒 𝒙 + 𝑃𝑙𝑜𝑎𝑑(𝒙) + 𝑃𝑎𝑢𝑥(𝒙)

331. Introduction 2. Gated Quantum Computing 3. Quantum Annealing 4. Conclusion

𝑃𝑡𝑟𝑒𝑒 - Search for spanning trees

High Level Idea

• Every tree is a rooted tree

• Properties of rooted trees fit QUBO formulation

341. Introduction 2. Gated Quantum Computing 3. Quantum Annealing 4. Conclusion

• Every node has exactly one depth

• There is exactly one root node

• Every non-root node is connected to exactly one node with lower depth

• There are no connections between nodes with the same depth

11

0

2 2

1 11

0

2

1 11

0

2

111

0

2 2

1

35

𝑃𝑡𝑟𝑒𝑒 - Search for spanning trees

1. Introduction 2. Gated Quantum Computing 3. Quantum Annealing 4. Conclusion

min
𝑥∈ 0,1 𝑛

𝐻 𝒙 + 𝑃𝑡𝑟𝑒𝑒 𝒙 + 𝑃𝑙𝑜𝑎𝑑(𝒙) + 𝑃𝑎𝑢𝑥(𝒙)

361. Introduction 2. Gated Quantum Computing 3. Quantum Annealing 4. Conclusion

𝑃𝑙𝑜𝑎𝑑 - check load-flow compliance

How do classical algorithms work?

• Solve a linear system 𝐴𝒖 = 𝒇

• Check if 𝑢 violated constraints

Optimization Formulation

• Encode constraints into û(𝒙)

• Check if min
𝒙
| 𝐴û 𝒙 − 𝐟 |2 is close to zero

• If close to zero → load-flow compliant

371. Introduction 2. Gated Quantum Computing 3. Quantum Annealing 4. Conclusion

min
𝑥∈ 0,1 𝑛

𝐻 𝒙 + 𝑃𝑡𝑟𝑒𝑒 𝒙 + 𝑃𝑙𝑜𝑎𝑑(𝒙) + 𝑃𝑎𝑢𝑥(𝒙)

381. Introduction 2. Gated Quantum Computing 3. Quantum Annealing 4. Conclusion

Results

Input Graph Simulated Annealing Output

Proof of Concept!
• QUBO finds spanning trees
• QUBO also checks the load-flow
• QUBO gives the reconfiguration

391. Introduction 2. Gated Quantum Computing 3. Quantum Annealing 4. Conclusion

Why just Simulated Annealing?

𝜆1

𝑣∈𝑉

𝑖=0

𝐼−3

𝑥𝑣,𝑖 1 − 𝑥𝑣,𝑖+1 +
𝑣,𝑢 ∈𝐸

𝑖=0

2𝐼−3

𝑦𝑣𝑢,𝑖 1 − 𝑦𝑣𝑢,𝑖+1

+𝜆2 1 −
𝑣∈𝑉

𝑥𝑣,0
2

+𝜆3
𝑣∈𝑉

𝑖=1

𝐼−1

𝑥𝑣,𝑖 − 𝑥𝑣,𝑖−1 −
𝑢: 𝑣,𝑢 ∈𝐸

𝑦𝑣𝑢,𝑖−1 − 𝑦𝑣𝑢,𝑖−2 −
𝑢: 𝑢,𝑣 ∈𝐸

𝑦𝑢𝑣,𝐼+𝑖−2 − 𝑦𝑢𝑣,𝐼+𝑖−3

2

+𝜆4
𝑣,𝑢 ∈𝐸

𝑖=0

𝐼−2

𝑦𝑣𝑢,𝑖 − 𝑦𝑣𝑢,𝑖−1 2 − 𝑥𝑣,𝑖+1 + 𝑥𝑣,𝑖 − 𝑥𝑢,𝑖 + 𝑥𝑢,𝑖−1 + 𝑦𝑣𝑢,𝐼+𝑖−1 − 𝑦𝑣𝑢,𝐼+𝑖−2 2 − 𝑥𝑣,𝑖 + 𝑥𝑣,𝑖−1 − 𝑥𝑢,𝑖+1 + 𝑥𝑢,𝑖

min
𝑥∈ 0,1 𝑛

𝐻 𝒙 + 𝑃𝑡𝑟𝑒𝑒 𝒙 + 𝑃𝑙𝑜𝑎𝑑(𝒙) + 𝑃𝑎𝑢𝑥(𝒙)

Current QA hardware is very
sensitive to these hyperparameters
(compared to classical solvers)

401. Introduction 2. Gated Quantum Computing 3. Quantum Annealing 4. Conclusion

Results

Quantum Annealing

• Downsize the problem
• 4 Nodes

• No Load-flow check

min
𝑥∈ 0,1 𝑛

𝐻 𝒙 + 𝑃𝑡𝑟𝑒𝑒 𝒙 + 𝑃𝑙𝑜𝑎𝑑(𝒙) + 𝑃𝑎𝑢𝑥(𝒙)

411. Introduction 2. Gated Quantum Computing 3. Quantum Annealing 4. Conclusion

Quantum Annealing

• Needs 46 qubits

• 246 ≈ 7 ⋅ 1013 (70 trillion) possible outcomes

• 𝑃𝑡𝑟𝑒𝑒 𝒙 = 0 for 4 outcomes

Input Graph

421. Introduction 2. Gated Quantum Computing 3. Quantum Annealing 4. Conclusion

Quantum Annealing
Input Graph Quantum Annealing Output

431. Introduction 2. Gated Quantum Computing 3. Quantum Annealing 4. Conclusion

How often did we find them?

0 10 20 30 40 50
QUBO Energy

20

40

60

80

100

120

140

C
o

u
n

t

meets constraints
violates constraints

Quantum Annealing Quantum Annealing Output

441. Introduction 2. Gated Quantum Computing 3. Quantum Annealing 4. Conclusion

Can we improve this?

• Yes!

Common misconception:

• Quantum Annealing always
returns a (local) minimum

• Greedy postprocessing
• Steepest Descent

451. Introduction 2. Gated Quantum Computing 3. Quantum Annealing 4. Conclusion

Conclusion and Outlook

• Formulated a “N-1 QUBO”

• Successfully solved the QUBO with Simulated Annealing

• Solved part of the QUBO with Quantum Annealing

Quantum Annealing for N-1 is promising

• Challenges:
• Problem size

• Choice of hyper-parameters
Current hardware limitations

461. Introduction 2. Gated Quantum Computing 3. Quantum Annealing 4. Conclusion

Outlook: Challenges and Hardware

• Problem size
• Number of qubits

• Number of couplers

• Choice of hyper-parameters
• Quality of the Qubits

471. Introduction 2. Gated Quantum Computing 3. Quantum Annealing 4. Conclusion

Questions?

	Slide 1: Quantum algorithms for secure energy grids Niels Neumann (TNO)
	Slide 2: Agenda
	Slide 3
	Slide 4
	Slide 5: N-1 Challenge
	Slide 6: N-1 Challenge
	Slide 7: N-1 Challenge
	Slide 8: Quantum algorithm for N-1
	Slide 9: Which Quantum Computer
	Slide 10: Gate-based quantum computing
	Slide 11: Near-term versus long-term hardware
	Slide 12: Gate-based PoC
	Slide 13: Gate-based PoC
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Quantum hope
	Slide 19
	Slide 20
	Slide 21: Results | k=2: 1 failure, 1 switch on
	Slide 22: Results | k=2: 1 failure, 1 switch on
	Slide 23: Results | k=6
	Slide 24: Conclusions
	Slide 25: Which Quantum Computer
	Slide 26: Why Quantum Annealing
	Slide 27: Adiabatic Quantum Computing
	Slide 28: Adiabatic Quantum Computing
	Slide 29: Quantum Annealing
	Slide 30: Workflow (on the Quantum Annealer)
	Slide 31: QUBO formulation
	Slide 32: Quantum Annealing Based PoC
	Slide 33
	Slide 34: cap P sub t r e e - Search for spanning trees
	Slide 35: cap P sub t r e e - Search for spanning trees
	Slide 36
	Slide 37: cap P sub l o a. d - check load-flow compliance
	Slide 38
	Slide 39: Results
	Slide 40: Why just Simulated Annealing?
	Slide 41: Results
	Slide 42: Quantum Annealing
	Slide 43: Quantum Annealing
	Slide 44: How often did we find them?
	Slide 45: Can we improve this?
	Slide 46: Conclusion and Outlook
	Slide 47: Outlook: Challenges and Hardware
	Slide 48: Questions?

