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N-1 Challenge
The N-1 principle
If one asset fails, then it must be possible to resolve the failure
by using the remaining assets in the network.
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N-1 Challenge

• Given a power network with edges 
(cables) labelled as active or inactive.

• Upon active edge failure, find a 
reconfiguration such that

• The network is re-connected, 
with no cycles.

• At most 𝑘 switches are applied.

• Load-flow constraints are met.

• We say that a network is “N-1 
compliant” if a reconfiguration exists 
for all active edges.
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Example: reconfigure with 4 switches 
(switch on 2; switch off 2).

6

N-1 Challenge
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Hours
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Number of network nodes

How hard is it?

N-1 Challenge



1. Apply all possible switches using quantum parallelism.

2. Apply a quantum operator to make the invalid reconfigurations vanish.

ψ⟩ = a1 ⟩ + a2 ⟩+ a3 ⟩ + … + a𝑁| ⟩

• The network is re-connected, 
with no cycles.

• At most 4 switches are applied.

• Load-flow constraints are met.𝛼⟩ = b5 ⟩ + b77 ⟩+ b90 ⟩

Quantum algorithm for N-1
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Which Quantum Computer

Quantum 
Annealers

Gated Quantum 
Computers
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• Analogy between gate-based quantum 
computers and digital computers

• Gate-based quantum computers can 
perform universal computations

Gate-based quantum computing
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Near-term versus long-term hardware

Near-term

• Noisy-Intermediate Scale Quantum 
(NISQ)

• Losses are significant
• Low decoherence time → small circuit 

depth

• Gate errors + noisy measurements

• Limited qubit connectivity

• Special-purpose devices

Long-term

• Fault Tolerant (FT)

• Logical qubits

• Error-correcting codes are 
imposed on groups of qubits

• ETA >15 years

• Universal computations
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Gate-based PoC

Part 1

1. Algorithm for enumerating reconfigurations for 𝑘 = 2
1. Generate spanning trees which are 𝑘 toggles away

2. Loop over every active edge
1. Loop over reconfigurations found in the previous step (that deactivate 

the active edge being considered in this iteration)
1. Perform a load-flow check

2. If it passes, continue with the next active edges

Part 2

1. Repeat with 𝑘 > 2
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Gate-based PoC

Zoom into part 2 (𝑘 > 2) 

1. Loop over every active edge
1. Skip if a reconfiguration for the considered active edge has already been 

found in a previous iteration

2. Loop over reconfigurations found in the previous step (that deactivate 
the active edge being considered in this iteration)

1. Perform a load-flow check

2. If it passes, continue with the next active edge QUANTUM
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• Assume an active edge fails

Gate-based PoC
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• Assume an active edge fails

• Generate potential reconfigurations

Gate-based PoC

…
idx = 0 idx = 1 idx = 2 idx = 𝑀 − 1
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• Assume an active edge fails

• Generate potential reconfigurations

• Define an operator 𝑈𝑓 to check for load-flow 
constraints for a potential reconfiguration

• 𝑈𝑓 idx 0 = idx |𝑓(idx)⟩

• 𝑓 idx = ቊ
1
0

if load-flow check passes

otherwise

Gate-based PoC

|idx⟩

|0⟩

|idx⟩

|𝑓(idx)⟩
𝑈𝑓

…
idx = 0 idx = 1 idx = 2 idx = 𝑀 − 1
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• Assume an active edge fails

• Generate potential reconfigurations

• Define an operator 𝑈𝑓 to check for load-flow 
constraints for a potential reconfiguration

• 𝑈𝑓 idx 0 = idx |𝑓(idx)⟩

• 𝑓 idx = ቊ
1
0

• Use Grover’s algorithm to find “good” switches.
Reduces complexity: 𝒪 𝑀 → 𝒪 𝑀 .

if load-flow check passes

otherwise

Gate-based PoC

|idx⟩

|0⟩

|idx⟩

|𝑓(idx)⟩
𝑈𝑓

…
idx = 0 idx = 1 idx = 2 idx = 𝑀 − 1
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Best classical speedup: linear Hope for quantum speedup: quadratic

18

Quantum hope
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|idx⟩

|0⟩

|idx⟩

|𝑓(idx)⟩
𝑈𝑓High-level design

Detailed design

|idx⟩

|0⟩

|0⟩
𝑈G

𝑈load−flow

𝑈G
−1

|0⟩

|idx⟩

|𝑓(idx)⟩

Gate-based PoC
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idx ⊗ 0 ⊗ 0

idx ⊗ 

𝑒∈𝐺

𝑒 𝑔(idx, 𝑒) ⊗ 0

𝑡1:

𝑡2:

idx ⊗ 

𝑒∈𝐺

𝑒 𝑔 idx, 𝑒 ⊗ 𝑓(idx)𝑡3:

𝑡4:

• idx: index of spanning tree to check

• 𝐺: set of active and inactive edges

• 𝑔(idx, 𝑒): 

• 1: if edge 𝑒 is active in 
reconfiguration idx

• 0: otherwise

• 𝑓(idx):

• 1: if load-flow check passes

• 0: otherwiseidx ⊗ 0 ⊗ 𝑓(idx)

|idx⟩

|0⟩

|0⟩
𝑈G

𝑈load−flow

𝑈G
−1

𝑡1 𝑡2 𝑡3 𝑡4

|0⟩

|idx⟩

|𝑓(idx)⟩
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Results | k=2: 1 failure, 1 switch on
• Active edges

• Inactive toggle-edge = {0-(1,2), 1-(2,4), 2-(2,3), 3-(3,4), 4-(4,5)}

20

1

5

1 load flow 
compliant 

option

3

4
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Results | k=2: 1 failure, 1 switch on
• Active edges

• Inactive toggle-edge = {0-(1,2), 1-(2,4), 2-(2,3), 3-(3,4), 4-(4,5)}

20

1

5

3 load flow 
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4
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Results | k=6
• 1 failure, 2 switch offs,

3 switch ons

• Active edges, inactive edges

20

1

5

(1 load flow 
compliant combi)
edges turned on

3

4

(1 load flow 
compliant

combi)
edges turned 

off

1 Grover 
iteration

6 Grover 
iterations
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Conclusions

24

• Gate-based quantum approach can solve the N-1 problem

• Quadratic scaling in number of load-flow checks

• Implementation details matter for performance in practice

• Size of search space ↔ number of Grover iterations

• Encoding of network in quantum state

• Load-flow check now implemented as oracle
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Which Quantum Computer

Quantum 
Annealers

25

Gated Quantum 
Computers
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Why Quantum Annealing

• What does a quantum annealer do?
• Solves Ising model problems

• Solves QUBOs (Quadratic 
Unconstrained Binary Optimization)

• Why do we care?
• QUBOs are NP-Hard

• Formulate other NP-Hard problems as 
QUBOs
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Adiabatic Quantum Computing

𝐻𝐼 𝐻𝑃
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Adiabatic Quantum Computing

𝐻𝐼 𝐻𝑃

Solution should represent 
the answer to the question

Described 
by “QUBO”
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Quantum Annealing

• Same concept
• Faster annealing schedule

• Some noise is allowed 
(e.g. temperature)

• Consequence
• (Temporarily) leave the ground state

• Stay near optimum with quantum 
tunnelling
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Workflow (on the Quantum Annealer)

1. Initialisation
• Setup of the control system

2. Anneal
• 𝐻𝐼 → 𝐻𝑃

3. Readout
• Measure the qubits

4. Resampling
• Any quantum computation is probabilistic
• Nonzero (often significant) chance to not 

be in the ground state

Order of 𝜇s

Order of ms
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QUBO formulation

• Quadratic Unconstrained Binary Optimization

min
𝒙

𝒙𝑇𝑄𝒙

Binary vector
Real valued matrix
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Quantum Annealing Based PoC

1. Search for edges with k=2 classically

2. For the remaining edges sample a QUBO which
• Minimizes k
• Penalizes non spanning tree configurations
• Penalizes non load flow compliant configurations
• Link 𝑃𝑡𝑟𝑒𝑒 to 𝑃𝑙𝑜𝑎𝑑

+ 𝑃𝑎𝑢𝑥(𝒙)+ 𝑃𝑙𝑜𝑎𝑑(𝒙)+ 𝑃𝑡𝑟𝑒𝑒(𝒙)min
𝑥∈ 0,1 𝑛

𝐻 𝒙
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min
𝑥∈ 0,1 𝑛

𝐻 𝒙 + 𝑃𝑡𝑟𝑒𝑒 𝒙 + 𝑃𝑙𝑜𝑎𝑑(𝒙) + 𝑃𝑎𝑢𝑥(𝒙)
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𝑃𝑡𝑟𝑒𝑒 - Search for spanning trees

High Level Idea

• Every tree is a rooted tree

• Properties of rooted trees fit QUBO formulation
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• Every node has exactly one depth

• There is exactly one root node

• Every non-root node is connected to exactly one node with lower depth

• There are no connections between nodes with the same depth
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𝑃𝑡𝑟𝑒𝑒 - Search for spanning trees
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min
𝑥∈ 0,1 𝑛

𝐻 𝒙 + 𝑃𝑡𝑟𝑒𝑒 𝒙 + 𝑃𝑙𝑜𝑎𝑑(𝒙) + 𝑃𝑎𝑢𝑥(𝒙)
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𝑃𝑙𝑜𝑎𝑑 - check load-flow compliance

How do classical algorithms work?

• Solve a linear system 𝐴𝒖 = 𝒇

• Check if 𝑢 violated constraints

Optimization Formulation

• Encode constraints into û(𝒙)

• Check if min
𝒙
| 𝐴û 𝒙 − 𝐟 |2 is close to zero

• If close to zero → load-flow compliant
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min
𝑥∈ 0,1 𝑛

𝐻 𝒙 + 𝑃𝑡𝑟𝑒𝑒 𝒙 + 𝑃𝑙𝑜𝑎𝑑(𝒙) + 𝑃𝑎𝑢𝑥(𝒙)
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Results

Input Graph Simulated Annealing Output

Proof of Concept!
• QUBO finds spanning trees
• QUBO also checks the load-flow
• QUBO gives the reconfiguration
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Why just Simulated Annealing?

𝜆1 

𝑣∈𝑉



𝑖=0

𝐼−3

𝑥𝑣,𝑖 1 − 𝑥𝑣,𝑖+1 +
𝑣,𝑢 ∈𝐸



𝑖=0

2𝐼−3

𝑦𝑣𝑢,𝑖 1 − 𝑦𝑣𝑢,𝑖+1

+𝜆2 1 −
𝑣∈𝑉

𝑥𝑣,0
2

+𝜆3
𝑣∈𝑉



𝑖=1

𝐼−1

𝑥𝑣,𝑖 − 𝑥𝑣,𝑖−1 −
𝑢: 𝑣,𝑢 ∈𝐸

𝑦𝑣𝑢,𝑖−1 − 𝑦𝑣𝑢,𝑖−2 −
𝑢: 𝑢,𝑣 ∈𝐸

𝑦𝑢𝑣,𝐼+𝑖−2 − 𝑦𝑢𝑣,𝐼+𝑖−3

2

+𝜆4
𝑣,𝑢 ∈𝐸



𝑖=0

𝐼−2

𝑦𝑣𝑢,𝑖 − 𝑦𝑣𝑢,𝑖−1 2 − 𝑥𝑣,𝑖+1 + 𝑥𝑣,𝑖 − 𝑥𝑢,𝑖 + 𝑥𝑢,𝑖−1 + 𝑦𝑣𝑢,𝐼+𝑖−1 − 𝑦𝑣𝑢,𝐼+𝑖−2 2 − 𝑥𝑣,𝑖 + 𝑥𝑣,𝑖−1 − 𝑥𝑢,𝑖+1 + 𝑥𝑢,𝑖

min
𝑥∈ 0,1 𝑛

𝐻 𝒙 + 𝑃𝑡𝑟𝑒𝑒 𝒙 + 𝑃𝑙𝑜𝑎𝑑(𝒙) + 𝑃𝑎𝑢𝑥(𝒙)

Current QA hardware is very 
sensitive to these hyperparameters
(compared to classical solvers)
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Results

Quantum Annealing

• Downsize the problem
• 4 Nodes

• No Load-flow check

min
𝑥∈ 0,1 𝑛

𝐻 𝒙 + 𝑃𝑡𝑟𝑒𝑒 𝒙 + 𝑃𝑙𝑜𝑎𝑑(𝒙) + 𝑃𝑎𝑢𝑥(𝒙)

411. Introduction 2. Gated Quantum Computing 3. Quantum Annealing 4. Conclusion



Quantum Annealing

• Needs 46 qubits

• 246 ≈ 7 ⋅ 1013 (70 trillion) possible outcomes

• 𝑃𝑡𝑟𝑒𝑒 𝒙 = 0 for 4 outcomes

Input Graph

421. Introduction 2. Gated Quantum Computing 3. Quantum Annealing 4. Conclusion



Quantum Annealing
Input Graph Quantum Annealing Output
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How often did we find them?

0 10 20 30 40 50
QUBO Energy
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Quantum Annealing Quantum Annealing Output
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Can we improve this?

• Yes!

Common misconception:

• Quantum Annealing always 
returns a (local) minimum

• Greedy postprocessing
• Steepest Descent

451. Introduction 2. Gated Quantum Computing 3. Quantum Annealing 4. Conclusion



Conclusion and Outlook

• Formulated a “N-1 QUBO”

• Successfully solved the QUBO with Simulated Annealing

• Solved part of the QUBO with Quantum Annealing

Quantum Annealing for N-1 is promising

• Challenges:
• Problem size

• Choice of hyper-parameters
Current hardware limitations
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Outlook: Challenges and Hardware

• Problem size
• Number of qubits

• Number of couplers

• Choice of hyper-parameters
• Quality of the Qubits
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Questions?
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