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Notation and mathematical preliminaries

Mathematical preliminaries

Dirac notation

ket: |ψ〉 = (x1, . . . , xN )∗ ∈ X .

bra: 〈ψ| = (x1, . . . , xN )∗ ∈ X ∗.
bra-ket: 〈ψ|φ〉 ∈ C.

ket-bra: |ψ〉〈φ| – an operator from L(X ) = matrix of size
dim(X )× dim(X ).

Quantum state

Pure state – a vector |ψ〉 ∼ eiα |ψ〉 ∈ X normalized 〈ψ|ψ〉 = 1
equivalently a projective operator |ψ〉〈ψ|.
Mixed state – positive, normalized operator ρ of the form
ρ =

∑
i αi |ψi〉〈ψi|, αi ≥ 0 and

∑
i αi = 1.

Set of density operators

Ω(X ) = {ρ ∈ L(X ) : ρ = ρ†, ρ ≥ 0,Tr ρ = 1} (1)
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Mathematical preliminaries

State evolution as a quantum mapping

A quantum channel Φ is a linear mapping which is

completely positive: for every X ≥ 0 it holds (Φ⊗ 1)(X) ≥ 0.

trace-preserving: Tr(Φ(X)) = Tr(X) for every X.

Unitary channel

Let U ∈ U(X ) be a unitary operator. The unitary channel ΦU is defined as

ΦU (X) = UXU†. (2)
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Notation and preliminaries

POVM – Positive Operator Valued Measure

A POVM is a finite collection of positive semidefinite operators Ei ∈ Pos(X )

P = {E1, . . . , Em}

such that
∑m
i=1Ei = 1. The operators Ei are called effects.

P
Figure: Graphical representation of a
measurement P.

Figure: Graphical representation of a
measurement in computational basis.

Born rule

When a quantum state ρ is measured by the quantum measurement P then
the label i is obtained with probability

pi = Tr(ρEi). (3)
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Von Neumann measurements

A quantum measurement P = {E1, . . . , Em} is said to be a projective
measurement if Ei ∈ Proj(X ) for all i ∈ {1, . . . ,m}.

A projective measurement P = {E1, . . . , Em} with rank-one effects Ei is called
a von Neumann measurement.

Every von Neumann measurement PU can be parameterized by U ∈ U(X ) as

{U |i〉〈i|U†}dim(X )
i=1 , (4)

where U |i〉 is the i-th column of U.

PU

U†
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Notation and mathematical preliminaries

Numerical range and its properties

Numerical range

For any operator A ∈ L(X ) one defines its numerical range as a subset of
complex plane defined by

W (A) = {〈x|A |x〉 : |x〉 ∈ X , 〈x|x〉 = 1}. (5)

In quantum physics the numerical range W (A) contains all possible
expectation values of A.

More and more...

https://numericalshadow.org/
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Properties of numerical range

Convexity: Hausdorf-Toeplitz theorem

W (A) is a convex subset of C.

Compactness

W (A) is a compact subset of C.

Numerical range for normal matrices

W (A) contains the spectrum of A.

Numerical range for normal matrices

If AA† = A†A, then W (A) is convex hull of spectrum of A.

Numerical range for Hermitian matrices

If A = A†, then W (A) = [λmin, λmax] forms an interval in the real axis.
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Examples

Figure: Numerical range of non-normal

matrix X =


1 1 1 1
0 i 1 1
0 0 −1 1
0 0 0 i


Figure: Numerical range of normal

matrix X =


1 0 0 0
0 i 0 0
0 0 −1 0
0 0 0 −i


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Discrimination of quantum states

ρ0/ρ1 P
psucc(ρ0, ρ1) := max

P={E0,E1}
1

2
Tr(E0ρ0) +

1

2
Tr(E1ρ1). (6)

Holevo-Helstrom theorem

Let ρ0, ρ1 ∈ Ω(X ) be a quantum states. Then, we have

psucc(ρ0, ρ1) ≤ 1

2
+

1

4
‖ρ0 − ρ1‖1. (7)

Moreover, there exists a projective measurement P = {E0, E1} for which
Eq. (7) is achieved.

ρ0, ρ1 – orthogonal =⇒ ‖ρ0 − ρ1‖1 = 2 =⇒ psucc(ρ0, ρ1) = 1.
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Proof of Holevo–Helstrom theorem

1 Define
ρ =

1

2
ρ0 +

1

2
ρ1 and X =

1

2
ρ0 −

1

2
ρ1 (8)

2 Then
1

2
ρ0 =

ρ+X

2
and

1

2
ρ1 =

ρ−X
2

(9)

3 It implies

1

2
Tr(E0ρ0) +

1

2
Tr(E1ρ1) =

1

2
+

1

2
Tr ((E0 − E1)X) (10)

4 By Holder inequality and ‖E0 − E1‖ ≤ ‖E0 + E1‖ = 1, we have

1

2
+

1

2
Tr ((E0 − E1)X) ≤ 1

2
+

1

2
‖E0 − E1‖‖X‖1 ≤

1

2
+

1

2
‖X‖1

=
1

2
+

1

4
‖ρ0 − ρ1‖1

(11)
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Proof of Holevo–Helstrom theorem

1 To show that equality is achieved for a projective measurement {E0, E1}
one may consider the Jordan–Hahn decomposition

X :=
1

2
ρ0 −

1

2
ρ1 = P −Q (12)

for P,Q ≥ 0 such that PQ = 0.
2 Define

E0 = Πim(P ) and E1 = 1−Πim(P ) (13)

3 Observe that {E0, E1} is a projective measurement.
4 Calculate

Tr ((E0 − E1)X) = Tr(P ) + Tr(Q) = ‖X‖1 (14)

5 Therefore

1

2
Tr(E0ρ0) +

1

2
Tr(E1ρ1) =

1

2
+

1

2
‖X‖1 =

1

2
+

1

4
‖ρ0 − ρ1‖1 (15)
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Discrimination of quantum channels

Φ0/Φ1 i Q

Qi j
|ψ0〉

psucc(Φ0,Φ1) := max
ρ

max
Q={E0,E1}

1

2
Tr(E0(Φ0⊗1)(ρ))+

1

2
Tr(E1(Φ1⊗1)(ρ)) (16)

Holevo-Helstrom theorem

Let Φ0,Φ1 be quantum channels. Then, we have

psucc(Φ0,Φ1) =
1

2
+

1

4
‖Φ0 − Φ1‖�, (17)

where ‖Φ0 − Φ1‖� = max
|ψ〉:‖|ψ〉‖1=1

‖ ((Φ0 − Φ1)⊗ 1) (|ψ〉〈ψ|)‖1.
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HARD TASK !!!

Primal problem

maximize: Tr (XM)

subject to:
(

1Y ⊗ ρ X
X† 1Y ⊗ ρ

)
≥ 0,

ρ ∈ Ω(X ),

X ∈ L(X ⊗ Y).
Dual problem

minimize: ‖TrX (Y ) ‖∞

subject to:
(

Y −M
−M Y

)
≥ 0,

Y ∈ Pos(X ⊗ Y).

Table: Formulation of primal and dual problem for calculating the diamond norm of
the Hermiticity-preserving map with Choi operator M .
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Discrimination of unitary channels

Let ΦU ,Φ1 be two unitary channels. Then,

‖ΦU − Φ1‖� = 2
√

1− ν2,

where ν = {|x| : x ∈W (U†)}.

Observe if 0 ∈W (U†) =⇒ ΦU ,Φ1 – perfectly distinguishable

Consider U† with eigenvalues
1, eiπ/3, e2iπ/3.
Then, the figure represents
the numerical range W

(
U†
)
.
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Discrimination of von Neumann measurements

PU/P1l i

Vi j
|ψ0〉

psucc(PU ,P1) =
1

2
+

1

4
‖PU − P1‖�,

where ‖PU − P1‖� = max
|ψ〉:‖|ψ〉‖1=1

‖ ((PU − P1)⊗ 1) (|ψ〉〈ψ|)‖1.

Diamond norm for von Neumann measurements

‖PU − P1‖� = min
E∈DU(X )

‖ΦUE − Φ1‖�, (18)

where ‖ΦU − Φ1‖� = 2
√

1− ν2, and ν (U) = minx∈W (U) |x|.
Puchała, Z., Pawela, Ł., Krawiec, A., Kukulski, R. Strategies for optimal single-shot discrimination of

quantum measurements. Physical Review A, 98(4), 042103, (2018).
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Calculating the optimal probability

min
E∈DU(X )

‖ΦUE − Φ1‖� = min
E∈DU(X )

2
√

1− ν2 (UE) = min
E∈DU(X )

2
√

1− min
ρ∈Ω(X )

|Tr ρUE|2

= 2
√

1− max
E∈DU(X )

min
ρ∈Ω(X )

|Tr ρUE|2

max
E∈DU(X )

min
ρ∈Ω(X )

|Tr ρUE|2 = min
ρ∈Ω(X )

max
E∈DU(X )

|Tr ρUE|2

= min
ρ∈Ω(X )

∑
i

| 〈i| ρU |i〉 |

Primal problem

minimize: ‖diag(U†ρ)‖1
subject to: ρ ∈ Ω(X ).

SDP for calculation the distance of von Neumann measurements ‖PU − P1‖�.
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Components of the optimal strategy

PU/P1l i

Vi j
|ψ0〉
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Optimal initial state
1 Assume that E0 ∈ DU(X ) satisfies the condition

||ΦUE0
− Φ1||� = ||PU − P1||� < 2. (19)

There exist states ρ1, ρd ∈ Ω(X ), such that

ρ1 = Π1ρ1Π1,

ρd = ΠdρdΠd,

diag(ρ1) = diag(ρd),

(20)

where Π1 and Πd be the projectors onto the subspaces spanned by the
eigenvectors λ1 and λd where λ1, λd be a pair of the most distant
eigenvalues of UE0. Furthermore, the discriminator |ψ0〉 =

∣∣∣√ρ>〉〉,
where ρ is defined as

ρ =
1

2
ρ1 +

1

2
ρd. (21)

2 PU and P1 are perfectly distinguishable if and only if there exists
ρ ∈ Ω(X ) such that

diag(U†ρ) = 0. (22)

Moreover, the quantum state
∣∣∣√ρ>〉〉 is a discriminator.
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Geometrical interpretation

Figure: The graphical representation of W
(
(UE0)†

)
. Let us take the most distant

eigenvalues of (UE0)† and create ρ = 1
2
Πmin + 1

2
Πmax and the discriminator has the

form |ψ0〉 =
∣∣∣√ρ>〉〉.
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Optimal final measurement
1 Let |ψ0〉 be the discriminator and let

X = (PU ⊗ IX ) (|ψ0〉〈ψ0|)− (P1 ⊗ IX ) (|ψ0〉〈ψ0|), (23)

2 From Hahn-Jordan decomposition, we write

X = P −Q, (24)

where P,Q ≥ 0 such that PQ = 0.
3 We create projectors Πim(P ) and Πim(Q) by

Πim(P ) =

d−1∑
i=0

|i〉〈i| ⊗Πim(P ),i, (25)

and

Πim(Q) =

d−1∑
i=0

|i〉〈i| ⊗Πim(Q),i, (26)

where Πim(P ),i,Πim(Q),i ∈ Proj(X ) are orthogonal projectors.
4 For i ∈ {0, . . . , d− 1}, we define Vi by

Vi =
{

Πim(P ),i,Πim(Q),i

}
. (27)
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PyQBench – an innovative Python library for benchmarking
gate-based quantum computers

pip install pyqbench

More and more...

Github: https://github.com/iitis/PyQBench
Documentation: https://pyqbench.readthedocs.io/en/latest/
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Some comments about PyQBench

PyQBench benchmarks based on the scheme of discrimination for any
qubit von Neumann measurements.

PyQBench allows the user to test various architectures, available through
qiskit and Amazon BraKet qiskit-braket-provider.

PyQBench offers a simplified, ready-to-use, command line interface
(CLI) for running benchmarks using a predefined parametrized Fourier
family of measurements.

For more advanced scenarios, PyQBench offers a way of employing
user-defined measurements as a Python library.
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Discrimination scheme for parameterized family of
Fourier measurements

The parametrized family of Fourier measurements {PUφ : φ ∈ [0, 2π]}, where

Uφ = H

(
1 0
0 eiφ

)
H†, (28)

and H is the Hadamard matrix od dimension two.
Optimal initial state (discriminator)

|ψ0〉 =
1√
2

(|00〉+ |11〉) . (29)

The optimal final measurements Q0 and Q1 are von Neumann
measurements defined as Qi = PVi , where

V0 =

 i sin
(
π−φ
4

)
−i cos

(
π−φ
4

)
cos
(
π−φ
4

)
sin
(
π−φ
4

)  , V1 = V0 ·X (30)

psucc(PUφ ,P1) =
1

2
+
|1− eiφ|

4
. (31)
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Implementation of von Neumann measurement

PU/P1l i

Vi j
|ψ0〉

Figure: Scheme of discrimination of von Neumann measurements PU and P1.

PU

U†

Figure: Implementation von Neumann measurement PU on quantum computer.
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Implementation of controlled measurement

PU/P1l i

Vi j
|ψ0〉

U†/1l i

V †
k

j

|ψ0〉

Figure: Scheme of discrimination PU
and P1 using postselection.

V †
0 ⊕ V †

1

U†/1l
V †
0

V †
1

i

j
|ψ0〉

Figure: Scheme of discrimination PU and
P1 using direct sum V †0 ⊕ V

†
1 .
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Postselection

U†/1l i

V †
k

j

|ψ0〉

{(P, k, i, j) : P = {PU ,P1}, i ∈ {0, 1}, j ∈ {0, 1}, k ∈ {0, 1}}
We discard all the experiments for which i 6= k. The total number of valid
experiments is:

Ntotal = #{(Q, k, i, j) : k = i}. (32)

If we define

NPU = #{(Q, k, i, j) : Q = PU , k = i, j = 0}, (33)

NP1 = #{(Q, k, i, j) : Q = P1, k = i, j = 1}, (34)

then the empirical success probability can be computed as

psucc(PU ,P1) =
NPU +NP1

Ntotal
. (35)
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Direct sum

V †
0 ⊕ V †

1

U†/1l
V †
0

V †
1

i

j
|ψ0〉

{(P, i, j) : P = {PU ,P1}, i ∈ {0, 1}, j ∈ {0, 1}}
The number of successful trials for U and 1, respectively, can be written as

NPU = #{(Q, i, j) : Q = PU , j = 0}, (36)

NP1 = #{(Q, i, j) : Q = P1, j = 1}. (37)

Then, the probability of correct discrimination between PU and P1 is given by

psucc =
NPU +NP1

Ntotal
, (38)

where Ntotal is the number of trials.
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Workflow of CLI

1 Preparing configuration files describing the backend and the experiment
scenario.

2 Submitting/running experiments. Depending on the experiment scenario,
execution can be synchronous, or asynchronous.

3 (optional) Checking the status of the submitted jobs if the execution is
asynchronous.

4 Resolving asynchronous jobs into the actual measurement outcomes.
5 Converting obtained measurement outcomes into tabulated form.
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Defining the experiment file and backend (YML)backend. Let us first describe the experiment configuration file, which might look
as follow.

Listing 7.2: Defining the experiment file
type: discrimination-fourier
qubits:

- target: 0
ancilla: 1

- target: 1
ancilla: 2

- target: 14
ancilla: 16

angles:
start: 0
stop: 2 * pi
num_steps: 32

gateset: ibmq
method: direct_sum
num_shots: 8192

The experiment file contains the following fields:

• type: a string describing the type of the experiment. Currently, the only
option of type is discrimination-fourier.

• qubits: a list enumerating pairs of qubits on which the experiment should
be run. For experiment file defined in Listing 7.2, the benchmark will run
on three pairs of qubits. The first pair consists of target 0 and ancilla 1,
the second one is target 1 and ancilla 2, whereas the last pair is target
14 and ancilla 16. We describe a pair by using target and ancilla keys
rather than using a plain list to emphasize that the role of qubits in the
experiment is distinguishable.

• angles: an object describing the range of angles for Fourier parameterized
family. The described range is always uniform, starts at the start, ends
at stop and contains num_steps points, including both start and stop.
The start and stop can be arithmetic expressions using pi literal. For
instance, the experiment defined in Listing 7.2 contains 33 points: k · π

16
,

where k = 0, . . . , 32.

• gateset: a string describing the set of gates used in the decomposition of
circuits in the experiment. The PyQBench contains explicit implementations
of circuits The possible options are [ibmq, lucy, rigetti], corresponding

97

to decompositions compatible with IBM Q devices, OQC Lucy device, and
Rigetti devices. Alternatively, one might wish to turn off the decomposition
by using a special value generic.

• method: a string, either postselection or direct_sum determining which
implementation of the conditional measurement is used.

• num_shots: an integer defines how many shots are performed in the experi-
ment for a particular angle, qubit pair and circuit. Note, for this experiment
we run 2· num_steps · num_shots circuits to achieved the empirical proba-
bility of correct discrimination. Note that if one wishes to compute the total
number of shots in the experiment, it is necessary to take into account that
the postselection method uses twice as many circuits as the direct sum
method.

The second configuration file describes the backend. Different Qiskit backends
typically require different data for their initialization. Hence, there are multiple
possible formats of the backend configuration files understood by PyQBench. We
refer the interested reader to the PyQBench’s documentation [108].

Below we describe an example YAML file describing IBM Q backend named
Kolkata using synchronous execution. Note, IBMQ backends typically require an
access token to IBM Quantum Experience. Since it would be unsafe to store it in
plain text, the token has to be configured separately in IBMQ_TOKEN environmental
variable.

Listing 7.3: Defining IBMQ backend
name: ibmq_kolkata
asynchronous: false
provider:

hub: ibm-q-psnc
group: open
project: main

Running the experiment and collecting measurements data

After preparing YAML files defining experiment and backend, running the bench-
mark can be launched by using the following command line invocation:

qbench disc-fourier benchmark experiment_file.yml backend_file.yml

The output file will be printed to stdout. Optionally, the –output OUTPUT param-
eter might be provided to write the output to the OUTPUT file instead.

98

Figure: Defining the experiment file and backend (YML).
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Steps

Integration with hardware providers and software simulators

PyQBench is built around the Qiskit [15] ecosystem. Hence, both the CLI tool
and the qbench library can use any Qiskit–compatible backend. This includes,
IBM Q backends (available by default in Qiskit) and Amazon Braket devices and
simulators (available through qiskit-braket-provider package [117,118]).

When using PyQBench as library, instances of Qiskit backends can be passed to
functions that expect them as parameters. However, in CLI mode, the user has to
provide a YAML file describing the backend. An example of using both approaches
can be found in Section 7.3.2 and Section 7.3.1, and the detailed description is
presented in PyQBench’s documentation.

7.3.1 PyQBench as a CLI tool

To introduce PyQBench as a CLI tool we use the parametrized family of Fourier
measurements defined in Section 6.2.

Workflow

For the parametrized Fourier family of measurements, PyQBench offers a simplified
way of conducting benchmarks using a command line interface (CLI). The workflow
with PyQBench’s CLI can be summarized as the following list of steps:

1. Preparing configuration files describing the backend and the experiment
scenario.

2. Submitting/running experiments. Depending on the experiment scenario,
execution can be synchronous, or asynchronous.

3. (optional) Checking the status of the submitted jobs if the execution is
asynchronous.

4. Resolving asynchronous jobs into the actual measurement outcomes.

5. Converting obtained measurement outcomes into tabulated form.

The (CLI) of PyQBench has nested structure and the general form of the CLI
invocation is shown in the following Listing 7.1.

Listing 7.1: Invocation of qbench script
qbench <benchmark-type> <command> <parameters>

95Figure: Command syntax of qbench.

qbench disc-fourier benchmark experiment_file.yml backend_file.yml
--output sync_results.yml

Note that if we would like to run an experiment asynchronously, it is enough to
fix in experiment.yml the type asynchronous as true.

(Optional) Getting status of asynchronous jobs

PyQBench provides also a helper command that will fetch the statuses of asyn-
chronous jobs. The command is:

qbench disc-fourier status async_results.yml

and it will display dictionary with histogram of statuses.

Resolving asynchronous jobs

Finally, if the status of jobs is DONE, for asynchronous experiments, the stored
intermediate data has to be resolved in actual measurements’ outcomes. The
following command will wait until all jobs are completed and then write a result
file.

qbench disc-fourier resolve async-results.yml resolved.yml

The resolved results resolved.yml using asynchronous mode would look just like
if the experiment was run synchronously.

Tabulating results

As a last step in the processing workflow, no matter which method we choose
(synchronous or asynchronous), the results file has to be passed to tabulate
command:

qbench disc-fourier tabulate results.yml results.csv

A part of sample CSV file is provided in Table 7.1.

99
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Results using synchronous mode

The output file will be printed to stdout. Optionally, the - -output OUTPUT

parameter might be provided to write the output to the OUTPUT file instead.

qbench disc-fourier benchmark experiment_file.yml backend_file.yml

--output async_results.yml

The result of running the above command can be twofold:

• If backend is asynchronous, the output will contain intermediate data
containing, amongst others, job ids correlated with the circuit they
correspond to.

• If the backend is synchronous, the output will contain measurement
outcomes (bitstrings) for each of the circuits run.

For synchronous experiment, the part of output looks similar to the one
below. The whole YAML file can be seen in Appendix E.

data:

- target: 0

ancilla: 1

phi: 0.0

results_per_circuit:

- name: id

histogram: {’00’: 28, ’01’: 26, ’10’: 21, ’11’: 25}

mitigation_info:

target: {prob_meas0_prep1: 0.052200000000000024,

prob_meas1_prep0: 0.0172}

ancilla: {prob_meas0_prep1: 0.05900000000000005,

prob_meas1_prep0: 0.0202}

mitigated_histogram: {’00’: 0.2637212373658018, ’01’:

0.25865061319892463, ’10’: 0.2067279352110304, ’11’:

0.2709002142242433}

The data includes target, ancilla, phi, and results per circuit. The
first three pieces of information have already been described. The last data
results per circuit gives us the following additional information:

• name: the information which measurement is used during experiment,
either string "u" for PU or string "id" for P1l. In this example we
consider P1l.

• histogram: the dictionary with measurements’ outcomes. The keys
represent possible bitstrings, whereas the values are the number of oc-
currences.
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Results from asynchronous mode

containing, amongst others, job ids correlated with the circuit they corre-
spond to.

Listing 18: Resolved results

metadata:

experiments:

type: discrimination-fourier

qubits:

- {target: 0, ancilla: 1}

- {target: 1, ancilla: 2}

angles: {start: 0.0, stop: 6.283185307179586, num_steps: 3}

gateset: ibmq

method: direct_sum

num_shots: 100

backend_description:

name: ibmq_quito

asynchronous: true

provider: {group: open, hub: ibm-q, project: main}

data:

- job_id: 63e7f17a17b7ed49ca24e05b

keys:

- [0, 1, id, 0.0]

- [0, 1, u, 0.0]

- [0, 1, id, 3.141592653589793]

- [0, 1, u, 3.141592653589793]

- [0, 1, id, 6.283185307179586]

- [0, 1, u, 6.283185307179586]

- [1, 2, id, 0.0]

- [1, 2, u, 0.0]

- [1, 2, id, 3.141592653589793]

- [1, 2, u, 3.141592653589793]

- [1, 2, id, 6.283185307179586]

- [1, 2, u, 6.283185307179586]

Finally, if the status of jobs is DONE, we resolve the measurements from the
submitted jobs obtaining the following file.

Listing 19: Results (asynchronous)

metadata:

experiments:

type: discrimination-fourier

qubits:

- target: 0
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Steps

Integration with hardware providers and software simulators

PyQBench is built around the Qiskit [15] ecosystem. Hence, both the CLI tool
and the qbench library can use any Qiskit–compatible backend. This includes,
IBM Q backends (available by default in Qiskit) and Amazon Braket devices and
simulators (available through qiskit-braket-provider package [117,118]).

When using PyQBench as library, instances of Qiskit backends can be passed to
functions that expect them as parameters. However, in CLI mode, the user has to
provide a YAML file describing the backend. An example of using both approaches
can be found in Section 7.3.2 and Section 7.3.1, and the detailed description is
presented in PyQBench’s documentation.

7.3.1 PyQBench as a CLI tool

To introduce PyQBench as a CLI tool we use the parametrized family of Fourier
measurements defined in Section 6.2.

Workflow

For the parametrized Fourier family of measurements, PyQBench offers a simplified
way of conducting benchmarks using a command line interface (CLI). The workflow
with PyQBench’s CLI can be summarized as the following list of steps:

1. Preparing configuration files describing the backend and the experiment
scenario.

2. Submitting/running experiments. Depending on the experiment scenario,
execution can be synchronous, or asynchronous.

3. (optional) Checking the status of the submitted jobs if the execution is
asynchronous.

4. Resolving asynchronous jobs into the actual measurement outcomes.

5. Converting obtained measurement outcomes into tabulated form.

The (CLI) of PyQBench has nested structure and the general form of the CLI
invocation is shown in the following Listing 7.1.

Listing 7.1: Invocation of qbench script
qbench <benchmark-type> <command> <parameters>

95Figure: Invocation of qbench script.

qbench disc-fourier benchmark experiment_file.yml backend_file.yml
--output sync_results.yml

Note that if we would like to run an experiment asynchronously, it is enough to
fix in experiment.yml the type asynchronous as true.

(Optional) Getting status of asynchronous jobs

PyQBench provides also a helper command that will fetch the statuses of asyn-
chronous jobs. The command is:

qbench disc-fourier status async_results.yml

and it will display dictionary with histogram of statuses.

Resolving asynchronous jobs

Finally, if the status of jobs is DONE, for asynchronous experiments, the stored
intermediate data has to be resolved in actual measurements’ outcomes. The
following command will wait until all jobs are completed and then write a result
file.

qbench disc-fourier resolve async-results.yml resolved.yml

The resolved results resolved.yml using asynchronous mode would look just like
if the experiment was run synchronously.

Tabulating results

As a last step in the processing workflow, no matter which method we choose
(synchronous or asynchronous), the results file has to be passed to tabulate
command:

qbench disc-fourier tabulate results.yml results.csv

A part of sample CSV file is provided in Table 7.1.
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The resulting CSV file

target ancilla phi ideal_prob disc_prob mit_disc_prob

0 1 0 0.5 0.503 0.503
0 1 0.202 0.550 0.542 0.544
0 1 0.405 0.602 0.598 0.602
0 1 0.608 0.647 0.636 0.639
0 1 0.811 0.697 0.679 0.684
0 1 1.013 0.743 0.726 0.731
0 1 1.216 0.786 0.769 0.775
0 1 1.419 0.826 0.803 0.810
0 1 1.621 0.862 0.843 0.851
0 1 1.824 0.895 0.873 0.882

Table 7.1: The resulting CSV file contains table with columns target, ancilla, phi,
ideal_prob, disc_prob and, optionally, mit_disc_prob. Each row in the table
describes results for a tuple of (target, ancilla, phi). The reference optimal
value of discrimination probability is present in ideal_prob column, whereas the
obtained, empirical discrimination probability can be found in the disc_prob
column. The mit_disc_prob column contains empirical discrimination probability
after applying the Mthree error mitigation [119,120], if it was applied.

Plotting results

For the experiment defined in Listing 7.2 we also present plots presented in Fig.
7.5 and Fig. 7.6.

Remark 3 It is worth stressing why the benchmark using qubits (1, 2) returns
poor results in comparison to other experiments. One may suppose a bug in code
or implementation method. This benchmark, however, is compatible with error
description provided by IBM Q vendor who indicates faulty implementation of
CNOT gate. More precisely, the CNOT error between qubits (0, 1) and (14, 16)
fluctuates around 10−3 in contrast to the value CNOT error for pair (1, 2) which is
equal to one.
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Results

IMB Q Kolkata with 27 qubits
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Figure: Discrimination experiment defined for the parameterized family of von
Neumann measurement using postselection (left figure) and direct sum (right figure).
The theoretical probability is given by black line. Red line represents the empirical
probability. The blue line represents the empirical probability after using the
package Mthree error mitigation.
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Open question

How to implement discrimination scheme for
parametrized family of Fourier measurements of

dimension d?

Uφ = Fd


φ1 0 · · · 0
0 φ2 · · · 0
... ... . . . ...
0 0 · · · φd

Fd
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Thank you for your attention!
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