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Introduction to HPC

What is HPC

Source: https://www.vyzkumne-infrastruktury.cz/en/2022/06/lumi-supercomputer-has-been-
inaugurated/
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Introduction to HPC

What is HPC

Source: Reghenzani, F. et al, IEEE Access, 8, 208566-208582.
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Introduction to HPC

Node structure

Source: https://docs.lumi-supercomputer.eu/hardware/lumig/
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Introduction to HPC

User experience
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Introduction to HPC

How to access HPC

HPCs are easily available.
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Introduction to HPC

EuroCC2

Network of EU Competence centers for HPC.

All members of EuroHPC JU involved.

Training, support for industry, talent attraction,...
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Introduction to R Basics about R

What is R

Software for Statistical Data Analysis

Based on S

Programming Environment

Interpreted Language

Data Storage, Analysis, Visualization

Free and Open Source Software
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Introduction to R Basics about R

How to obtain R

R current version 4.4.0 (released April 2024).

http://cran.r-project.org

Binary/Windows executable code
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Introduction to R Basics about R

Pros and Cons

Pros:

Free and Open Source

Strong User Community

Highly extensible, �exible

Implementation of high-end statistical methods

Flexible graphics and intelligent defaults

Cons

Steep learning curve

Slow for large datasets
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Introduction to R Basics about R

Data types

R Supports virtually any type of data

Numbers, characters, logicals (TRUE/ FALSE)

Arrays of virtually unlimited sizes

Simplest: Vectors and Matrices

Lists: Can Contain mixed type variables

Data Frame: Rectangular Data Set
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Introduction to R Basics about R

Data structures in R

Linear

vectors (all same type)

lists (mixed types)

Rectangular

data frame

matrix
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Introduction to R Basics about R

Running R

I recommend RStudio, an IDE for R.

It is available as RStudio Desktop and RStudio Server, which runs on
a remote server and allows accessing RStudio using a web browser.

Figure 1: https://rstudio.com/products/rstudio/download/
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Introduction to R Basics about R

RStudio on IT4I

Run RStudio on VM.

Connect to shiny.vsb.cz/auth
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Introduction to R Basics about R

Clone the data

Clone project from GITHUB
https://github.com/It4innovations/parallel-r-may-2024
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Introduction to R Basics about R

Creating the �rst script �le

Create and save simple data �le

N=1000;
Data=data.frame(group=character(N),ints=numeric(N),reals=numeric(N))
Data$group=sample(c("a","b","c"), 1000, replace=TRUE);
Data$ints=rbinom(N,10 ,0.5);
Data$reals=rnorm(N);

head(Data)
Data

write.table(Data , file='data/Data_Ex_1.txt', append = FALSE , dec = ".",col.names =
TRUE)

ls()
rm(list = ls())

Parallel R 17/53



Introduction to R Basics about R

Load and analyse the data

Load data

Data_read <-read.table(file='data/Data_Ex_1.txt',header = TRUE)
# first few rows
head(Data_read)
#10 th row
Data_read [10,]
# column group
Data_read$group
Data_read[,1]
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Introduction to R Basics about R

Analyse the data

Simple analysis

# compute means and counts by groups
group count_ints mean_ints
a | 337 | 5.014837
b | 338 | 5.032544
c | 325 | 4.990769

# primitive solution
Group_lev=levels(Data_read$group)

Tab_summary=data.frame(group=character (3),count_ints=integer (3),mean_ints=numeric (3))
Tab_summary$group <-Group_lev
for (i in c(1:3)){

sub_data = subset(Data_read ,group==Group_lev[i])
Tab_summary$count_ints[i]<-nrow(sub_data)
Tab_summary$mean_ints[i]<-mean(sub_data$ints)

}
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Introduction to R Basics about R

Analyze the data by split, aggregate, sapply

split, aggregate, sapply

s <- split(Data_read , Data_read$group)
Tab_summary1 <-t(sapply(s, function(x) return(c(mean(x$ints),length(x$group)) )))

Tab_summary2 <-cbind(aggregate(ints~group ,data = Data_read ,FUN=length),aggregate(ints~
group ,data = Data_read ,FUN=mean))

Tab_summary2 <-Tab_summary2 [,-3]
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Parallel R within one node

What system do I have

How many cores
library(parallel)
detectCores()
> detectCores()
[1] 20
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Parallel R within one node Advanced and Big data management with R

apply, lapply, sapply

apply, lapply, sapply

apply(X, MARGIN , FUN)
Here:
-x: an array or matrix
-MARGIN =1: the manipulation is performed on rows
-MARGIN =2: the manipulation is performed on columns
-MARGIN=c(1,2): the manipulation is performed on rows and columns
-FUN: tells which function to apply. Built functions like mean , median , sum , min , max and

even
user -defined functions can be applied
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Parallel R within one node Advanced and Big data management with R

apply

For data constructed above (Data_read) compute row and columns means
using apply

apply

Data_read <-read.table(file='data/Data_Ex_1.txt',header = TRUE)

Data_col_means_1 <- colMeans(Data_read[,-1])
Data_col_means_2 <- apply(Data_read[,-1],2,FUN =mean)

Data_row_means_1 <- rowMeans(Data_read[,-1])
Data_row_means_2 <- apply(Data_read[,-1],1,FUN =mean)

Data_both_squares <- apply(Data_read[,-1],c(1,2),FUN = function(x) return(x^2))
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Parallel R within one node Advanced and Big data management with R

lapply

lapply function takes list, vector or data frame as input and returns
only list as output
sapply function takes list, vector or data frame as input. It is similar
to lapply function but returns only vector as output.

For data constructed above (Data_read) compute row and columns sums
using lapply

lapply

Data_col_sums_1 <- apply(Data_read[,-1],2,FUN =sum)
Data_col_sums_2 <- lapply(Data_read[,-1],FUN =sum)

typeof(Data_col_sums_1)
typeof(Data_col_sums_2)

Data_abs <- lapply(Data_read[,-1],FUN =abs)
Data_sq <- lapply(Data_read[,-1],FUN = function(x){x^2})

typeof(Data_abs)
length(Data_abs)
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Parallel R within one node Advanced and Big data management with R

sapply

For data constructed above (Data_read) compute row and columns sums
using sapply

sapply

Data_col_sums_1 <- apply(Data_read[,-1],2,FUN =sum)
Data_col_sums_2 <- lapply(Data_read[,-1],FUN =sum)
Data_col_sums_3 <- sapply(Data_read[,-1],FUN =sum)

typeof(Data_col_sums_1)
typeof(Data_col_sums_2)
typeof(Data_col_sums_3)

Data_col_sums_4 <- lapply(list(Data_read$ints ,Data_read$reals),FUN =sum)
Data_col_sums_5 <- sapply(list(Data_read$ints ,Data_read$reals),FUN =sum)
Data_col_len_1 <- lapply(list(Data_read$ints ,Data_read$reals),FUN =length)
Data_col_len_2 <- sapply(list(Data_read$ints ,Data_read$reals),FUN =length)
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Parallel R within one node Advanced and Big data management with R

for loop

Let us compute sums of all elements of K random matrices of order N ×N

for

N=1000
K=60
set.seed (2021)
sum_rand=rep(0,K-1);
tic()
time_for_sys=system.time({

for (i in c(1:K)){
A=rand(N,N)
sum_rand[i]=sum(A)

}
})
time_for=toc()
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Parallel R within one node Advanced and Big data management with R

foreach do loop

Let us compute sums of all elements of K random matrices of order N ×N

for

set.seed (2021)
sum_rand=rep(0,K-1);
tic()
time_foreach_sys=system.time({

foreach (i = c(1:K)) %do% {
A=rand(N,N)
sum_rand[i]=sum(A)

}
})
time_foreach=toc()
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Parallel R within one node Advanced and Big data management with R

Libraries parallel, doParallel

parallel package comes in the base R installation

parallel works great for any task that you pass to the apply family
(e.g., lapply becomes parLapply).

doParallel package works great when you want to use parallel
variant of for-loops (foreach -do), and might be a little easier to use.
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Parallel R within one node Advanced and Big data management with R

doParallel

This library is meant for use with foreach, which lets you use a particular
type of for-loop, that looks like:

foreach(i=list_of_elements) %do% {thing with i}.

Foreach allows this to be parallelized, using dopar:

foreach(i=listOfThings) %dopar% {thing with i}.

Note that: parallelization with dopar depends on which backend you use.
doParallel is one such backend - it tells foreach to use parallel.
There are others: doFuture, doMPI (another parallel backend, using
message passing interface), doSnow (another backend, using the snow
package for creating parallel processes),...
By default, doParallel uses multicore functionality on Unix-like
systems and snow functionality on Windows.
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Parallel R within one node Advanced and Big data management with R

Parallel foreach-dopar loop

Let us compute sums of all elements of K random matrices of order N ×N
using foreach ...dopar from foreach and doParallel

for

N=3000
set.seed (2021)
sum_rand=rep (0 ,11);
tic()
foreach (i = c(1:12)) %dopar% {

A=randn(N,N)
sum_rand[i]=sum(A)

}
time_foreach_dopar=toc()

Do you observe any di�erence?
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Parallel R within one node Advanced and Big data management with R

Creating cluster with doParallel

Option 1: (use doParallel)

Create cluster

clust <- makeCluster(n_cores -1)
registerDoParallel(clust)
getDoParName ()
.
.
stopCluster(clust)
#registerDoSEQ () # alternative - register sequential mode
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Parallel R within one node Advanced and Big data management with R

Creating cluster with doParallel

Option 2: use parallel

Create cluster

registerDoParallel(cores=n_cores -1)
getDoParName ()
.
.
registerDoSEQ () # alternative - register sequential mode

In linux: the �rst option uses snow library, second multicore library. In
windows: both use snow.
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Parallel R within one node Advanced and Big data management with R

Parallel foreach dopar loop - option 1

Let us compute sums of all elements of K random matrices of order N ×N
using foreach ...dopar from foreach, doParallel. Create cluster!

Option 1

set.seed (2021)
clust <- makeCluster(n_cores -1)
registerDoParallel(clust) # use multicore , set to the number of our cores - needed for

foerach dopar
getDoParName ()
sum_rand=rep(0,K-1);
tic()
time_foreachdopar_1_sys=system.time({

print("for each -dopar (cluster allocated)")
foreach (i = c(1:K)) %dopar% {

library(pracma)
A=rand(N)
sum_rand[i]=sum(A)

}}
)
time_foreach_dopar_1=toc()
stopCluster(clust)
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Parallel R within one node Advanced and Big data management with R

Parallel foreach dopar loop - option 2

Let us compute sums of all elements of K random matrices of order N ×N
using foreach ...dopar from foreach, doParallel. Create cluster!

Option 2

set.seed (2021)
registerDoParallel(n_cores -1) # use multicore , set to the number of our cores - needed

for foerach dopar
getDoParName ()
sum_rand=rep(0,K-1);
tic()
time_foreachdopar_2_sys=system.time({

print("for each -dopar (cluster allocated)")
foreach (i = c(1:K)) %dopar% {

library(pracma)
A=rand(N)
sum_rand[i]=sum(A)

}}
)
time_foreach_dopar_1=toc()
registerDoSEQ () #this registers sequential mode - equivalent
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Parallel R within one node Advanced and Big data management with R

Timings

Timings

user.self sys.self elapsed

time_for_sys 4.16 0.50 4.93

time_for_each_sys 4.21 0.37 4.92

time_for_each_dopar_sys 4.11 0.55 4.98

time_for_each_dopar_1_sys 0.13 0.01 1.90

time_for_each_dopar_2_sys 0.11 0.00 1.80
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Parallel R within one node Advanced and Big data management with R

Library parallel

encapsulates existing libraries multicore, snow

multicore functionality supports multiple workers only on those operating
systems that support the fork system call - this excludes Windows.

two ways of parallelization:

The socket approach: launches a new version of R on each core via
networking (e.g. the same as if you connected to a remote server), but
the connection is happening all on your own computer.

pros: (i) Works on any system (including Windows); (ii) Each
process on each node is unique so it can't cross-contaminate.
cons: (i) Each process is unique so it will be slower (ii) Things
such as package loading need to be done in each process
separately. Variables de�ned on your main version of R don't exist
on each core unless explicitly placed there. (iii) More complicated
to implement.

use parLapply, parSapply
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Parallel R within one node Advanced and Big data management with R

Library parallel

The forking approach copies the entire current version of R and moves it to
a new core.

(i) Faster than sockets. (ii) Because it copies the existing version of R,
your entire workspace exists in each process. (iii) Easy to implement.
Cons (i) Only works on POSIX systems (Mac, Linux, Unix, BSD) and
not Windows. (ii) it can cause issues speci�cally with random number
generation or when running in a GUI (such as RStudio). This doesn't
come up often.

use mclapply
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Parallel R within one node Advanced and Big data management with R

Parallel versions of lapply

By using library parallel and parSapply, mclapply compute sums of
all elements of K random matrices of order N × N. Create cluster!

parallel versions of apply

mat_sum <-function(x){
library(pracma)
A=rand(x)
return(sum(A))

}

time_lapply <-system.time({
set.seed (2021)
sum_rand_lapply=lapply(rep(N,K),FUN=mat_sum)

})

time_sapply <-system.time({
set.seed (2021)
sum_rand_sapply=sapply(rep(N,K),FUN=mat_sum)

})
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Parallel R within one node Advanced and Big data management with R

Parallel versions of lapply

parallel versions of apply

#forking
time_mcLapply <-system.time({

set.seed (2021)
sum_rand_mcLapply=mclapply(X=rep(N,K),FUN=mat_sum ,mc.cores = n_cores)

})

# socketing
clust <- makeCluster(n_cores , type="PSOCK")
time_parLapply <-system.time({

set.seed (2021)
sum_rand_parLapply=parLapply(clust ,rep(N,K),fun=mat_sum)

})
stopCluster(clust)

clust <- makeCluster(n_cores , type="PSOCK")
time_parSapply <-system.time({

set.seed (2021)
sum_rand_parSapply=parSapply(clust ,rep(N,K),FUN=mat_sum)

})
stopCluster(clust)
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Parallel R within one node Advanced and Big data management with R

Parallel versions of lapply

parallel versions of apply

times_apply <-rbind(time_lapply ,time_sapply ,time_parLapply ,time_parSapply ,time_
mcLapply)

> times_apply [,1:3]
user.self sys.self elapsed

time_lapply 1.741 0.011 1.751
time_sapply 1.726 0.007 1.731
time_parLapply 0.007 0.004 1.940
time_parSapply 0.005 0.005 1.842
time_mcLapply 0.004 0.238 1.679
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Parallel R within one node Advanced and Big data management with R

Libraries for shared memory parallelization in R

Parallel for-loop (foreach...dopar). Cluster created by
registerDoParallel(N) and registerDoSEQ(). Library foreach,

doParalel needed.

Parallel apply: parLapply, parSapply, mcLapply need library
parallel.
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Very paralleizable task

Perfectly paralelizable computing task

# simple very parallel
library(parallel)
library(tictoc)

f <- function (...) {
Sys.sleep (1)
"DONE"

}

tic()
res <- lapply (1:25, f)
t1=toc()
#> 5.025 sec elapsed

tic()
res <- mclapply (1:25 , f, mc.cores = 25)
t2=toc()
#> 1.019 sec elapsed
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Parallelization with Rmpi

What is Rmpi

Rmpi library: Interface for MPI (Message Passing Interface) in R.

Enables parallel and distributed computing in the R programming
language.

Facilitates communication and coordination between R processes
across multiple nodes.

Particularly useful for parallelizing computationally intensive tasks like
simulations or data processing.

Users can harness the power of parallel computing for improved
performance in certain applications.

Latest version from Dec 2023, see
https://cran.r-project.org/web/packages/Rmpi/Rmpi.pdf
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Parallelization with Rmpi

Few basic command

Rmpi::mpi.comm.size(0): returns the number of active processes in
current computing task/job

Rmpi::mpi.comm.rank(0): returns the ID of current process
(number from {0, 1, 2, . . . , size− 1}
Rmpi::mpi.get.processor.name() - returns the name of compute
node where the process
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Parallelization with Rmpi

Hello word example

Compute smallest eigenvalue of n × n random symmetric matrices

library(Rmpi)
n=30
size <- Rmpi::mpi.comm.size (0)
rank <- Rmpi::mpi.comm.rank (0)
host <- Rmpi::mpi.get.processor.name()
if (rank == 0){

cat("size ","rank ","host ","max_eigen_value\n")
cat(size ,rank ,host ,"NaN\n")

} else {
where=getwd()
A=matrix(rnorm(n^2),nrow=n)
A=A+t(A)
a = max(eigen(A)$values)
cat(size ,rank ,host ,a,"\n")

}
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Parallelization with Rmpi

How to distribute this task across cluster

Save the scripts from previous slide into separate �le, called e.g.
Rmpi_master_slave.R

Create separate .batch �le, where the parallelization is de�ned, e.g.,
Job_Rmpi_master_slave.sbatch
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Parallelization with Rmpi

How to distribute this task across cluster

Compute smallest eigenvalue of n symmetric matrices of size N × N

#!/bin/bash
#SBATCH --export=ALL ,LD_PRELOAD=
#SBATCH --job -name Rmpi
#SBATCH --partition=rome --mem =24GB --time =02:00
#SBATCH --nodes=8
#SBATCH --ntasks -per -node 48 ## maximum is 48
#SBATCH --output=logs/%x_%j.out

module load OpenMPI/4.1.4-GCC -11.3.0
module load R/4.2.1-foss -2022a
srun Rscript Rmpi_master_slave.R
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Parallelization with Rmpi

Go to Barbora

Create directory
mkdir /home/rstudio/mnt/

copy to it �les
Job_Rmpi_master_slave.sbatch, Rmpi_master_slave.R

mount this directory
sshfs -o IdentityFile=/home/rstudio/.ssh/id_ed25519 it4i-jpovh@barbora.it4i.cz:. /home/rstudio/mnt/

connect to barbora with ssh
ssh -i /home/rstudio/.ssh/id_ed25519 it4i-jpovh@barbora.it4i.cz
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Parallelization with Rmpi

Connect to Barbora

Run
sbatch Job_Rmpi_master_slave.sbatch
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Parallelization with Rmpi

Results in log �le

[1] "size rank host max_eigen_value"

[1] "384 0 cn48 NaN"

[1] "384 110 cn50 8.25199803297607"

[1] "384 173 cn52 8.01187455128492"

[1] "384 68 cn49 8.05800653948316"

[1] "384 200 cn53 8.81600769867893"

[1] "384 258 cn54 8.12244071842822"

[1] "384 332 cn55 7.61927646789373"

[1] "384 338 cn56 4.9472190383247"
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Parallelization with Rmpi

How parallelise without slurm?

Compute smallest eigenvalue of n symmetric matrices of size N × N

rm(list=ls()) # R code: parallel version
library(snow)
library(Rmpi)
nclus =6
cl <-snow:: makeMPIcluster(nclus) #alter either n or mc to affect run time
n=30
N_per_proc =100
#x=matrix(runif(n),n,1)
#x=cbind(1,x)
min_eig_values=function(n,N){

a=c()
for (ind in 1:N){

A=matrix(rnorm(n^2),nrow=n)
A=A+t(A)
a[ind] = max(eigen(A)$values)

}
return(a)

}
ptim=proc.time()[3]
b=clusterCall(cl ,min_eig_values ,n=n,N=N_per_proc)
b=unlist(b)
hist(b)
tim=proc.time()[3]-ptim
#Rmpi::mpi.quit()
snow:: stopCluster(cl)
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