
PARALLEL R

Tomas Martinovic

Parallel R 1/12

Rcpp

▶ It is a package originally develop by Dirk Eddelbuettel and
Romain François

▶ It aims to ease the extension of R with C++ code.
▶ It allows to load C++ code in an interactive session.
▶ It has framework to help when creating package with Rcpp.

Parallel R 2/12

Possible ways to interact

▶ You can create function directly in R code as a string put into
cppFunction() call.
▶ In this case Rcpp will do most of the heavy lifting for

You. (headers, compilation, linking)
▶ You can write C++ function and source it by calling

souceCpp().
▶ Adding verbose = TRUE will show the whole process.

▶ Creating a package with C++ files with //
[[Rcpp::export]] attribute.

Parallel R 3/12

Some other Rcpp features

▶ Rcpp syntactic sugar makes rewrite from R code easier,
thanks to possibility to sometimes use R like notation.

▶ Rcpp attributes allows not just easy C++ function exports,
but also define dependencies, change function names, define
initialization functions.

▶ Rcpp contains function to handle exception in the C++ code
and to check for user interruption.

▶ There is whole ecosystem of Rcpp packages that further
extends its capabilities.

Parallel R 4/12

Resources

▶ A Brief Introduction to Rcpp
▶ Rcpp Attributes
▶ Writing a package that uses Rcpp
▶ Rcpp syntactic sugar

Parallel R 5/12

https://cran.r-project.org/web/packages/Rcpp/vignettes/Rcpp-introduction.pdf
https://cran.r-project.org/web/packages/Rcpp/vignettes/Rcpp-attributes.pdf
https://cran.r-project.org/web/packages/Rcpp/vignettes/Rcpp-package.pdf
https://cran.r-project.org/web/packages/Rcpp/vignettes/Rcpp-sugar.pdf

Process

To use the Rcpp package in a C++ file and export a C++
function to R, you need to follow these steps:

▶ Install the Rcpp package if it is not already installed. You can
do this from within R by running
install.packages("Rcpp").

▶ Create a new .cpp file with your C++ code.
▶ Add Rcpp::export attribute to functions that should be

available for use from R.

Parallel R 6/12

CUDA specifics

▶ For CUDA we need to add specific .cu file containing the
code for the GPU. Such functions are called kernel functions.

▶ To be able to call this kernel function in our C++ function,
we will need to create .h file called header file, which
describes the function we want to call.

▶ Additionally, it is necessary to configure makevars file which
tells R which compiler to use

Parallel R 7/12

Files in package

▶ R function that calls a C++ function.
▶ C++ file
▶ cu file
▶ makevars
▶ header file
▶ DESCRIPTION
▶ NAMESPACE

Parallel R 8/12

Example of Mandelbrot set computation

Mandelbrot set is defined as fc(z) = z2 + c, where c is a complex
number corresponding to the point coordinates.

mandelbrot <- function(c, max_iter = 100) {
z <- c
for (i in 1:max_iter - 1) {

z <- z ˆ 2 + c
if (abs(z) > 2) {

return(i)
}

}
return(max_iter)

}

Parallel R 9/12

For loop R approach

dc <- cmax - cmin
x <- y <- 1:resolution - 1
x <- Re(cmin) + (x / resolution * Re(dc))
y <- Im(cmin) + (y / resolution * Im(dc))
points <-

outer(x, y, function(x, y)
complex(real = x, imaginary = y))

result_for <- matrix(NA,
dim(points)[1], dim(points)[2])

for (x in 1:dim(points)[1]) {
for (y in 1:dim(points)[2]) {

result_for[x, y] <- mandelbrot(points[x, y],
max_iter)

}
}

Parallel R 10/12

Converting mandelbrot function to C

int Mandel(double real, double im,
int max_iter = 100)

{
std::complex<double> c(real, im);
std::complex<double> z = c;

for (int i=0; i< max_iter; i++){
z = z * z + c;
if (std::abs(z) > 2) {

return i;
}

}
return max_iter;

}

Parallel R 11/12

Converting the image loop to Rcpp

...
std::complex<double> dc = cmax - cmin;
IntegerMatrix out(resolution);
for (int i=0; i < resolution; i++){

for(int j=0; j < resolution; j++){
double helper = static_cast<double>(i);
double helper2 = static_cast<double>(j);
double fx = helper / resolution * real(dc);
double fy = helper2 / resolution * imag(dc);
std::complex<double> c(real(cmin) + fx,

imag(cmin) + fy);
...

}
}

...
Parallel R 12/12

