
INTRODUCTION TO 
HIGH PERFORMANCE 
COMPUTING 

PART 3
HPC @ IT4INNOVATIONS
BUILDING CODE ON THE CLUSTER

Jakub Beránek



▪ Remote development

▪ Modules

▪ Available software on clusters

▪ Common toolchains (C/C++, Python)

▪ Containerization

▪ Gitlab, CI

OUTLINE



LOCAL VS REMOTE DEVELOPMENT
• Local code development is much easier

• Remote IDE - VSCode/Clion/... offer remote development over SSH
• The server compiles code on the cluster, but the UI runs on your PC

• sshfs - treat the remote filesystem as a local one
• git – synchronize code through a repository



BUILDING CODE AND DEPENDENCIES

You can find more information here

• You must build your program and its dependencies for your target cluster
• e.g. Karolina runs on Rocky Linux 8

• You DO NOT have admin privileges on the cluster
• Standard package managers (like yum/apt) cannot be used

You have several options how to compile your code and its dependencies
• Use the available pre-installed modules
• Compile your code and all its dependencies from scratch
• Use Apptainer containers
• Use Spack (HPC package manager)
• ...

All further command examples will assume execution on a login node

https://docs.it4i.cz/environment-and-modules/
https://docs.it4i.cz/software/tools/singularity
https://docs.it4i.cz/software/tools/spack


USING LMOD MODULES
• Each IT4I cluster has its own set of pre-installed modules available for immediate use
• Module

• Is a set of binaries, libraries, header files, …
• Has a set of modules that it depends on
• Might have several available versions (Python/2.7.9 vs Python/3.6.1)
• Might have a specific toolchain (GCC vs Intel toolchain)

• To use a module, you have to load it
• Loading a module modifies environment variables (PATH, LD_LIBRARY_PATH)
• This enables executing module binaries and linking to module libraries

• Lmod is used to load modules
• You can also create your own modules or ask support to install new modules for you

• Modules are defined using EasyBuild
• If you find a module that is not working, contact support

https://docs.it4i.cz/software/tools/easybuild
https://docs.it4i.cz/software/modules/new-software/


AVAILABLE MODULES

Full list of modules available at IT4I clusters is located here

• Language toolchains (Python, Java, C#, …)
• C/C++ compilers (GCC, Clang, Intel C++ compiler, CUDA nvcc, …)
• Communication libraries (MPI, GPI-2, ...)
• Parallel debuggers and profilers (Allinea Forge, VTune, PAPI, Scalasca, Score-P, Vampir, …)
• Parallelized libraries (FFTW, PETSc, Trilinos, Octave, ...)
• Specialized software for chemistry, bioinformatics, physics, visualization, 3D rendering, …

• GROMACS, Gaussian, Molpro, NWChem, Orca, Phono3py, OpenFOAM, ParaView, ...

https://docs.it4i.cz/modules-matrix


USING LMOD
Useful hints
• Always load specific versions of modules to avoid surprises

• ml GCC/6.3.0
• ml GCC

• Module load order matters (because of conflicting dependencies)
• ml A B might produce different results than ml B A

• Save module combinations that you commonly use into collections

• Filtering modules
• $ ml spider <package>
• ml command also provides tab completion

• ml command is case sensitive
• Match module toolchains (GCC vs Intel)
• Do not forget to load correct modules in your Slurm job script!



USING GPUS
• Available clusters with GPUs:

• Karolina: 72 nodes, 8 A100 (40 GiB) GPUs per node
• Barbora: 8 nodes, 4 V100 (16 GiB) GPUs per node
• DGX: 16 V100 (32 GiB) GPUs

• By default, Karolina jobs will allocate a single GPU
• Check if your tool has support for Multi-GPU setups

• Use prepared modules:
• $ ml CUDA/12.2.0
• $ ml av nvhpc

• When loading multiple GPU modules, match their versions!
• $ ml CUDA/12.2.0 cuDNN/8.9.2.26-CUDA-12.2.0



DGX-2
• Has a dedicated PBS queue

• Accessible from Barbora (qdgx queue)
• Check if your tool has direct support for it

• Dask-DGX

https://blog.dask.org/2019/06/09/ucx-dgx


COMPILING C/C++ PROGRAMS
1. Load necessary modules

• Compiler (e.g. GCC/6.3.0)
• Dependencies (e.g. MPICH/3.2.1-GCC-6.3.0-2.27)
• Build system (e.g. CMake/3.16.2)

2. Build your program on a login node
• Once your binary is built, it can be accessed by all cluster nodes using the shared filesystem

3. Adjust your PATH/LD_LIBRARY_PATH environment variables
• PATH – directories where binaries are located
• LD_LIBRARY_PATH – directories where shared dynamic libraries are located

If a dependency is not available as a module, you must compile it yourself



C/C++ COMPILATION FLAGS AND TIPS (GCC)
• Make use of optimizations and available instruction sets

• Karolina has AVX2 (256-bit vectorization)
• Barbora has AVX-512 (512-bit vectorization)

• Useful flags
• Optimizations: -O2, -O3

• Benchmark what works best for your code
• Use native instruction set: -march=native
• Fast floating point math (at the cost of precision): -ffast-math
• Link-time optimization: -flto
• Profile-guided optimization: -fprofile-generate, -fprofile-use
• Enable OpenMP: -fopenmp

• Tip: you can check generated assembly at godbolt.org

https://godbolt.org/


COMMON C/C++ BUILD SYSTEMS
• Makefile

• Simply run make in the project directory
• CMake

1. Load CMake module
2. Create build files inside a build directory
3. Invoke Make (or other build systém, e.g. Ninja) to build the project

• CMake tip: use –DCMAKE_INSTALL_PREFIX=<dir> so that you can use make install



MPI
• Choose desired MPI implementation and module

• MPICH, OpenMPI, Intel MPI (impi)
• Keep the same impl. and version for compilation and execution

• Compile using mpicc or mpicxx
• Run your program

• $ mpirun -n 2 <program>
• More information about MPI in a later section

There is also MPI4Py for Python

https://mpi4py.readthedocs.io/en/stable/


PYTHON
• Works mostly out-of-the-box on all clusters
• Make sure to load the same Python version module

• When setting up your environment
• Inside Slurm jobs

• Avoid using system/user Python, use virtual environments instead
• Puts all your dependencies inside a single directory
• venv usage example



PYTHON (PERFORMANCE)
• Many useful cluster/HPC frameworks exist

• Parallelize computation or put it on GPU with a few lines of codes
• Distributing computation: Dask, Ray, PySpark, HyperLoom
• GPU-acceleration: RAPIDS (cuDF, cupy), numba

• Python compute bound programs can be accelerated by PyPy or Cython
• Profile performance using py-spy or Scalene

https://docs.dask.org/en/latest/
https://docs.ray.io/en/master/
https://spark.apache.org/docs/latest/quick-start.html
https://github.com/It4innovations/HyperLoom
https://rapids.ai/
https://numba.pydata.org/
https://www.pypy.org/
https://cython.org/
https://github.com/benfred/py-spy
https://github.com/emeryberger/scalene


CONTAINERIZATION USING APPTAINER

• Containers allow you to
• Prepare your code and all dependencies
• Distribute them easily in the form of an archive (image)
• Execute them in a sandboxed environment

• Popular container solution is Docker
• It cannot be used on IT4I clusters directly because of security issues

• You can use Apptainer instead
• Preferred deployment method on DGX-2
• Nvidia containers available at NGC

IT4I helper Apptainer wrappers (https://docs.it4i.cz/software/tools/singularity-it4i/)

https://ngc.nvidia.com/catalog/containers
https://docs.it4i.cz/software/tools/singularity-it4i/


GITLAB

• IT4I hosts a GitLab instance at https://code.it4i.cz
• Code storage, sharing and review (repositories, pull requests)
• Project management (issue tracker, wiki)
• Container repository
• Continuous integration

https://code.it4i.cz


GITLAB CI (CONTINUOUS INTEGRATION)
• Pipelines = scripts executed after a push to a repository

• IT4I has 5 shared runners that can run pipelines
• Check that your code was not broken by a commit

• Correctness (unit tests)
• Performance (benchmarks)
• Code style, lints, …

• Deploy built artifacts
• Configured with .gitlab-ci.yml

Gitlab CI documentation can be found here

https://docs.gitlab.com/ee/ci/quick_start/README.html


FURTHER READING
• Productivity tools workshop

• Git
• EasyBuild
• Gitlab CI
• Singularity
• Lmod
• kvm

https://code.it4i.cz/sccs/PtfHPC


Jakub Beránek
jakub.beranek@vsb.cz

IT4Innovations National Supercomputing Center
VSB – Technical University of Ostrava
Studentská 6231/1B
708 00 Ostrava-Poruba, Czech Republic
www.it4i.cz


