
Radim Vavřík

INTRODUCTION TO
HIGH PERFORMANCE
COMPUTING

PERFORMANCE ANALYSIS BASICS

Performance analysis and optimisation
▪ Motivation

▪ Hardware aspects

▪ Development process

▪ Best-practices

Performance tools and methodology
▪ Performance metrics

▪ CPU/GPU tools

▪ Live examples

POP CoE

OUTLINE

Cray-1 supercomputer (source: wikipedia.org)

▪ All presented tools/examples can be accessed and reproduced at IT4I
clusters anytime

▪ Please, setup your preferred GUI access:
1. VNC - server on a Karolina login node + client on laptop

▪ How to? https://docs.it4i.cz/general/accessing-the-clusters/graphical-user-interface/vnc/

▪ Recommended client https://www.realvnc.com/en/connect/download/viewer/

2. OOD - Open OnDemand GUI via web browser, IT4I VPN required
▪ How to? https://docs.it4i.cz/general/accessing-the-clusters/graphical-user-interface/ood/

▪ Connection link https://ood-karolina.it4i.cz/

3. X11 - Log in via terminal with X-Window system enabled
▪ How to? https://docs.it4i.cz/general/accessing-the-clusters/graphical-user-interface/x-window-

system/

▪ Usually worse UX for GUI apps due to network latency

▪ Most of the presented tools provide a remote profiling, e.g., generate output remotely
from CLI while analysis can be done locally in GUI - not covered today

TECHNICAL NOTES

https://docs.it4i.cz/general/accessing-the-clusters/graphical-user-interface/vnc/
https://www.realvnc.com/en/connect/download/viewer/
https://docs.it4i.cz/general/accessing-the-clusters/graphical-user-interface/ood/
https://ood-karolina.it4i.cz/
https://docs.it4i.cz/general/accessing-the-clusters/graphical-user-interface/x-window-system/

Who has any experience with a performance analysis tool?
▪ What was the tool?

Objectives today?
▪ Not to become an expert analyst

▪ Not to reach an incredible performance improvement of example codes

▪ Rather to get idea about the domain and introduce some tools

PERFORMANCE ANALYSIS

What does it mean?
▪ To get the most performance out of your hardware

▪ The process is called Performance Optimisation

Why should I care about performance?
▪ Industry – achieve goals faster and cheaper

▪ Academia – do more science
▪ The trend in grant competition (resource allocation) is to prove performance, scalability, etc.

EFFICIENT USE OF HPC

Know your application
▪ What does it compute? (domain, methods, algorithms)

▪ How is it parallelized? (programming models)

▪ What final performance is expected? (HW limits)

Know your hardware
▪ What are the target machines and how many? (laptop, workstation, cluster)

▪ Machine-specific optimisations?

Know your tools
▪ Strengths and weaknesses of each tool? (easy-to-use vs detailed information)

▪ Learn how to use them (examples with problems/patterns)

Know your process
▪ Constant learning

Apply the knowledge!

KEY INGREDIENTS

Filesystem
▪ I/O operations

Network
▪ internode communication

Memory subsystem
▪ NUMA effect

CPU cores
▪ thread/process affinity, pinning, caches

Vector registers
▪ vectorization, vector instructions

Accelerators
▪ GPU/MIC utilization, host-device data transfers

HARDWARE ASPECTS OF PERFORMANCE

Connect to login node via GUI
| salloc --account=DD-23-116 --reservation=dd-23-116_2024-06-

05T09:00:00_2024-06-05T12:30:00_5_qgpu

Submit an interactive job
| salloc --account=DD-23-116 --reservation=dd-23-116_2024-06-

05T09:00:00_2024-06-05T12:30:00_5_qgpu

GET READY

Useful to get familiar with the machine
| cat /proc/cpuinfo

▪ processor : 71 -> 72 logical processors per node

▪ cpu cores : 18 -> 18 physical cores per socket

▪ siblings : 36 -> 36 logical processors per socket

▪ -> 2 hyperthreads per core

▪ -> 2 sockets per node

| cpuinfo # Intel MPI utility

| cat /proc/meminfo

▪ MemTotal: 196510848 kB -> 187 GB

BASIC TOOLS

Use HTOP tool for interactive jobs

| htop –d 5 # delay 0.5s

▪ Configurable (e.g. core id, threads, process tree)

BASIC TOOLS

nvidia-smi

BASIC TOOLS

1. Develop correct functionality (testing helps)

2. Identify bottlenecks (performance limiters) using performance tools

3. Optimise bottlenecks until satisfied
1. Build a hypothesis (ask a question)

2. Explain the behavior (answer the question)

3. Change the code (double-check correct functionality)

4. Verify optimisations using profiling tools

4. Repeat until job done

PERFORMANCE-AWARE DEVELOPMENT
PROCESS

▪ Do not optimise your code prematurely!

▪ Focus on main computational time-consuming phases (hotspots), omit
preprocessing/postprocessing phases

▪ The 80/20 rule:
▪ Programs typically spend 80% of their time in 20% of the code

▪ Programmers typically spend 20% of their effort to get 80% of the total speedup possible
for the application

▪ Keep track of your optimisation progress over time

▪ Always use compute nodes for profiling (not login nodes - shared)

▪ Use SW libraries

OPTIMISATION TIPS

General-purpose math libraries
▪ BLAS (MKL, OpenBLAS, ATLAS, cuBLAS, ...)

▪ LAPACK (MKL, OpenBLAS, ATLAS, cuSolver, ...)

▪ FFT (MKL, cuFFT, ...)

▪ ...

Domain-specific libraries
▪ Chemistry, Bio, Geo, Physics, CAE, Big data, ML/DL

HW-specific libraries
▪ GPU/MIC, Intel/AMD/IBM

Optimized implementation
▪ Usually much better performance than a custom code

▪ Do NOT reinvent a wheel!

▪ (But avoid overkill)

SOFTWARE LIBRARIES

Execution time (time, time.h, ...)
▪ real 0m10.245s (elapsed real time)

▪ user 0m19.890s (user CPU time using OMP_NUM_THREADS=2)

▪ sys 0m0.285s (system CPU time)

Processor speed (flop/s) and Memory throughput (GB/s)
▪ Calculated operations per time (e.g. c = a + b + c -> 2 operations)

▪ Transferred bytes per time (e.g. c = a + b + c -> 3 RD + 1 WR * 8 bytes)

Speedup and Efficiency
▪ SP = T1 / TP

▪ EP = SP / P

Scalability
▪ Strong vs weak scaling

Others: portability, programming ability, etc.

PERFORMANCE METRICS

▪ The theoretical HW limits, e.g. AMD EPYC 7H12 (Rome)

Processor speed:
▪ Number of compute nodes (Karolina-size machine) 720

▪ Number of sockets (CPUs) per node 2

▪ Frequency 2.6 GHz

▪ Number of cores per socket 64

▪ FMA instructions (a * b + c) 2

▪ FMA units per core 2

▪ SIMD (AVX2 256b) = 4x double precision 4

3 833 856 Gflop/s

3.8 Pflop/s

(2.6 Tflop/s per socket)

PEAK PERFORMANCE EXAMPLE

Memory bandwidth:
▪ Number of compute nodes (Karolina-size machine) 720

▪ Number of sockets (CPUs) per node 2

▪ # channels per socket 8

▪ DDR4 bus width 8 B

▪ Frequency 3200 MT/s

294 912 000 MB/s

294 TB/s

(204 GB/s per socket)

PEAK PERFORMANCE EXAMPLE

▪ Assume the perfect speedup SP = P, perfect efficiency EP = 1 (100%)

Strong scaling

Weak scaling

▪ Perfect E = 6.25 % ? Not very intuitive, alternative:

▪ “Perfect speedup” SP = 1

SPEEDUP EXAMPLE

SP = T1 / TP S16 = T1 / T16 = 32 / 2 = 16

SP = T1 / TP S16 = T1 / T16 = 32 / 32 = 1

EP = T1 / TP E16 = T1 / T16 = 32 / 32 = 1

EP = SP / P E16 = S16 / 16 = 16 / 16 = 1

EP = SP / P E16 = S16 / 16 = 1 / 16 = 0.0625

SP = 1 / EP = TP / T1 S16 = T16 / T1 = 32 / 32 = 1

▪ There are many tools that can be classified by the implemented approach

Data collecting mechanism
▪ Sampling - automatically collect data per time unit

▪ Instrumentation - manually/automatically add instructions to the source code to
collect data - intrusive

Form of data presentation
▪ Reports - general overview of the whole application

▪ Profiling - accumulated characteristics of metrics

▪ Tracing - details about selected events - intrusive

Analysis of the collected data
▪ Online - during the execution - rare

▪ Post mortem - after the execution

Modeling - simulate state, ideal network, HW failure, etc.

CLASSIFICATION OF PERFORMANCE TOOLS

Example of a trace, source: tools.bsc.es

https://tools.bsc.es/paraver

▪ Single-node/parallel, architecture, language, programming model, focus
(instrumentation, correctness checking, etc.)

Proprietary tools – licenses usually available on clusters
▪ ARM (Allinea) Performance Report

▪ ARM (Allinea) MAP

▪ Intel Application Performance Snapshot

▪ Intel Vtune

▪ AMD µProf

▪ Vampir

Open-source tools (VI-HPS)
▪ Extrae/Paraver

▪ Score-P/Scalasca/Cube

▪ MAQAO

▪ https://www.vi-hps.org/tools/tools.html (guide)

PERFORMANCE TOOLS - CPU

https://www.vi-hps.org/tools/tools.html

GUI tools
▪ NVIDIA Visual Profiler - deprecated

▪ NVIDIA Nsight Systems – system-level profiling

▪ NVIDIA Nsight Compute – CUDA kernel-level profiling

Command-line tools – useful if you cannot use GUI (e.g. batch job)
▪ NVIDIA nvprof - deprecated

▪ NVIDIA nsys

▪ AMD ROC-profiler – analogous to nvprof (Chrome for visualization)

PERFORMANCE TOOLS – GPU

▪ Global high-level overview of the application

▪ No source code or recompilation required

▪ Run: perf-report mpirun -n <#procs> <app>

▪ Auto-generated text and HTML output

▪ Report summary (Compute, MPI, Input/Output)

▪ CPU, MPI, I/O, OpenMP, Memory, Energy,
Accelerator breakdown sections

▪ Advanced configuration through command line
flags possible

ARM PERFORMANCE REPORTS

| ml Forge/21.1.3 impi/2019.9.304-iccifort-2020.4.304

| ml show Forge

| cp -r /apps/all/Forge/21.1.3/examples ~/forge_examples

| cd ~/forge_examples

| make

| mpirun -n 16 ./wave_c 10

| mkdir perf_reports && cd perf_reports

| perf-report mpirun -n 16 ../wave_c 10

| firefox wave_c_16p_1n_YYYY-MM-DD_hh-mm.html & # on login node

| OMP_NUM_THREADS=8 perf-report mpirun -n 2 ../wave_openmp 10

| firefox wave_openmp_2p_1n_8t_YYYY-MM-DD_hh-mm.html &

ARM PERFORMANCE REPORTS - EXAMPLE

▪ Low overhead sampling profiler for localisation of bottlenecks

▪ No recompilation required, only debugging symbols are useful (-g)

1. Metrics view (CPU, MPI, I/O, memory, vectorization)

2. Source code viewer

3. Selected lines view

4. Output, files, callpaths

5. Sparkline charts

| map

| map mpirun -n <#procs> <app> [args]

| map --profile mpirun -n <#procs> …

| map <profile.map>

| perf-report <profile.map>

ARM MAP

▪ All charts are timelines
▪ Horizontal axis time

▪ Vertical axis are processes

▪ Useful code is green

▪ MPI is blue

▪ breakout recalculated

when zooming

▪ Multiple presets available
▪ CPU

▪ MPI

▪ I/O

▪ memory

▪ …

ARM MAP

| ml Forge/21.1.3 impi/2019.9.304-

iccifort-2020.4.304

| mkdir ~/forge_examples/map && cd

~/forge_examples/map

| OMP_NUM_THREADS=8 map mpirun -n 2

../wave_openmp 10

▪ Optionally limit duration

▪ Optionally adapt metrics

▪ Click Run

ARM MAP - EXAMPLE

▪ Shows the performance of an algorithm (application) with respect to the
HW limits of the architecture

▪ Identify if an algorithm is compute bound or memory bound

▪ Based on Operational intensity - a ratio of FLOPS (arithmetic operations)
performed with required amount of data (operands)

ROOFLINE MODEL

▪ Primarily to support vectorization of codes

▪ Performs dynamic analysis of codes

▪ Identify data access patterns

▪ But also computes Operational intensity vs. Performance (flops)

▪ It helps to identify what loops to focus on (Big red dots first)

▪ Ideally, during optimisations the dot moves top right

INTEL ADVISOR

| mkdir ~/forge_examples/advisor

| ml Advisor

▪ To analyse MPI application:
| mpirun -n 2 advixe-cl --collect survey --project-dir

advisor/wave_c/ -- ./wave_c 10

| mpirun -n 2 advixe-cl --collect tripcounts --project-dir

advisor/wave_c/ --flop --no-trip-counts -- ./wave_c 10

| advixe-gui advisor/wave_c/

▪ Show my results -> Summary -> Survey & Roofline

INTEL ADVISOR - EXAMPLE

Maqao?

likwid?

INTEL ADVISOR - EXAMPLE

Scalable system-wide performance analysis tool

▪ Low-overhead multi-node, multi-GPU profiling

▪ Assess on timeline to narrow down frames/areas of the app to focus

▪ Locate optimization opportunities

▪ Determine CPU vs. GPU bottlenecks, idle time

▪ Visualize millions of events on a very fast GUI timeline

▪ Or gaps of unused CPU and GPU time

▪ Balance your workload across multiple CPUs and GPUs

▪ Expert system GPU utilization analysis

▪ Detailed information, documentation, free download
https://developer.nvidia.com/nsight-systems

NVIDIA NSIGHT SYSTEMS

https://developer.nvidia.com/nsight-systems

Multi-level information

▪ CPU cores utilization

▪ MPI calls

▪ Threading

▪ OS runtime calls

▪ NVTX

▪ CUDA API calls

▪ HtD / DtH data transfers

▪ CUDA kernels / OpenACC

▪ CUDA streams

▪ CUDA libraries (cuBLAS, …), GPU HW metrics, UCX, NIC, …

NVIDIA NSIGHT SYSTEMS

NVIDIA NSIGHT SYSTEMS

GUI profiling and analysis
| nsight-sys

▪ File -> New Project

▪ Select target for profiling… -> acnXX.karolina.it4i.cz (your allocated GPU node)

▪ Enter Command line and Working directory (absolute path to the binary required)

▪ Select tracing modules (CPU, OS, CUDA, GPU, …)

▪ Start

Cmd line profiling + GUI analysis
| nsys profile -t cuda,osrt --stats=true -o simpleMultiGPU

./simpleMultiGPU

| nsight-sys

▪ File -> Open -> Select simpleMultiGPU.nsys-rep

PROFILING WITH NSIGHT SYSTEMS

| git clone https://github.com/NVIDIA/cuda-samples.git

| ml CUDAcore/11.6.0 Qt5/5.14.2-GCCcore-10.2.0

| cd cuda-samples/Samples/0_Introduction/concurrentKernels/

| make SMS=70

▪ Perform profiling of concurrentKernels example with:
▪ CPU context switch

▪ OS runtime libraries

▪ CUDA

▪ GPU metrics

▪ An extra example:
| cd cuda-samples/Samples/0_Introduction/simpleMultiGPU/

simpleMultiGPU # at least 2 GPUs required

| make SMS=70

NVIDIA NSIGHT SYSTEMS - EXAMPLE

https://github.com/NVIDIA/cuda-samples.git

An EU H2020 Centre of Excellence (CoE)
▪ On Performance Optimisation and Productivity

▪ Promoting best practices in parallel programming

Providing FREE Services
▪ Precise understanding of application and system behaviour

▪ Suggestion/support on how to refactor code in the most
productive way

Horizontal
▪ Transversal across application areas, platforms, scales

For EU academic AND industrial codes and users

POP COE

www.pop-coe.eu pop@bsc.es @POP_HPC youtube.com/POPHPC

http://www.pop-coe.eu/
mailto:pop@bsc.es

Performance Assessment
▪ Primary service

▪ Identifies performance issues of customer code

▪ If needed, identifies the root causes of the issues found and qualifies and quantifies
approaches to address them (recommendations)

▪ Medium effort (1-3 months)

▪ Performance report

Proof-of-Concept
▪ Follow-up service

▪ Experiments and mock-up tests for customer codes

▪ Kernel extraction, parallelisation, mini-apps experiments to show effect of
proposed optimisations

▪ Larger effort (3-6 months)

Note: Effort shared between our analysts and customer

POP COE

VI-HPS – Association of institutions developing tools and providing training
▪ Overview of the tools with a description: https://www.vi-hps.org/cms/upload/material/general/ToolsGuide.pdf

Intel performance tools: VTune and Advisor
▪ Running VTune on IT4I systems requires loading of special kernel modules, see the docs

Nvidia tools for GPUs: Nsight Systems and Nsight Compute

Database of code patterns and best practices developed in POP: co-design

Further reading:
▪ https://software.intel.com/content/www/us/en/develop/articles/predicting-and-measuring-

parallel-performance.html

▪ https://developer.arm.com/documentation/101136/2020/Performance-Reports?lang=en

▪ https://developer.arm.com/documentation/101136/2020/MAP?lang=en

▪ https://software.intel.com/content/www/us/en/develop/articles/intel-advisor-roofline.html

▪ https://scc.ustc.edu.cn/zlsc/tc4600/intel/2018.1.163/advisor/welcomepage/get_started.htm

▪ https://llvm.org/docs/Benchmarking.html

USEFUL LINKS

https://www.vi-hps.org/
https://www.vi-hps.org/cms/upload/material/general/ToolsGuide.pdf
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/advisor.html
https://docs.it4i.cz/software/debuggers/intel-vtune-profiler
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-compute
https://co-design.pop-coe.eu/
https://software.intel.com/content/www/us/en/develop/articles/predicting-and-measuring-parallel-performance.html
https://developer.arm.com/documentation/101136/2020/Performance-Reports?lang=en
https://developer.arm.com/documentation/101136/2020/MAP?lang=en
https://software.intel.com/content/www/us/en/develop/articles/intel-advisor-roofline.html
https://scc.ustc.edu.cn/zlsc/tc4600/intel/2018.1.163/advisor/welcomepage/get_started.htm
https://llvm.org/docs/Benchmarking.html

Radim Vavřík
radim.vavrik@vsb.cz

IT4Innovations National Supercomputing Center
VSB – Technical University of Ostrava
Studentská 6231/1B
708 00 Ostrava-Poruba, Czech Republic
www.it4i.cz

http://www.it4i.cz/

ANALYSIS WITH NSIGHT SYSTEMS

Only small portion of application accelerated

GPU idle or low utilization level of details (because of pthread creation)

ANALYSIS WITH NSIGHT SYSTEMS

Fusion opportunities: CPU launch cost + small GPU work size ~ GPU idle

ANALYSIS WITH NSIGHT SYSTEMS

cudaMemcpyAsync behaving synchronous – DtH pageable memory ->
Mitigate with pinned memory

ANALYSIS WITH NSIGHT SYSTEMS

GPU idle caused by stream synchronization

ANALYSIS WITH NSIGHT SYSTEMS

