
VSB TECHNICAL | IT4INNOVATIONS |||| UNIVERSITY | NATIONAL SUPERCOMPUTING OF OSTRAVA | CENTER

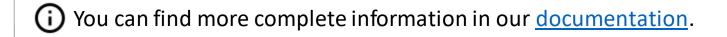
INTRODUCTION TO HIGH PERFORMANCE COMPUTING

PART 2 HPC @ IT4INNOVATIONS ACCESSING AND USING IT4I CLUSTERS

Ondřej Vysocký, Jakub Beránek Milan Jaroš

Based on materials of Branislav Jansík, IT4Innovations

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education



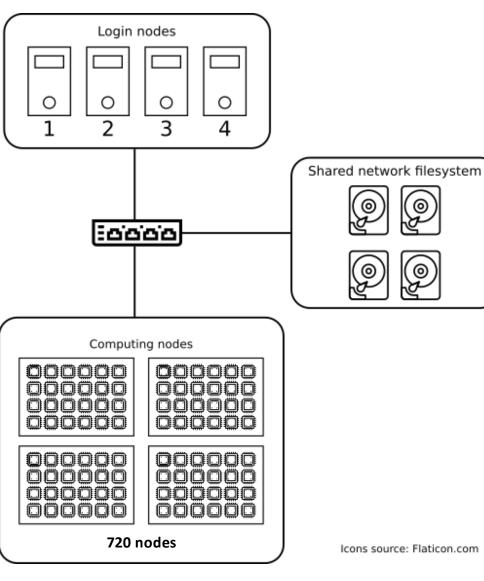
USING IT4I CLUSTERS

- □ Access the cluster
- ↑↓ Transfer data to the shared filesystem
- Prepare your program and its dependencies
- ✤ Run your program on the cluster

We will use Karolina, but the approach is identical for other IT4I clusters

OPERATING SYSTEM

- IT4I clusters are Linux-based systems (Rocky linux)
 - Basic Linux command line knowledge is required


Command	Description
ls	List files in a directory
<pre>cd <directory></directory></pre>	Change current directory
<pre>cat <file></file></pre>	Display contents of a file
mkdir <name></name>	Create a directory
rm <path></path>	Delete a file or a directory

- You can find basic Linux command line reference e.g. <u>here</u>.
- Some <u>virtualization support</u> is provided (QEMU, Windows)

VSB TECHNICAL | IT4INNOVATIONS |||| UNIVERSITY OF OSTRAVA | CENTER

KAROLINA CLUSTER

- Login nodes
 - Prepare programs
 - Submit jobs
- Compute nodes
 - Execute jobs
- Shared filesystem
 - Code
 - Job inputs and outputs
 - Shared between login and compute nodes

ACCESSING THE CLUSTER



To use Karolina, you must first connect to one of its login nodes

```
# set permissions tor ssh key (execute before the first login)
[home:~]$ chmod 600 <path-to-ssh-key>
# connect to a login node
[home:~]$ ssh -i <path-to-ssh-key> <username>@karolina.it4i.cz
# you are connected now
[username@login1.karolina ~]$
```

- You can use login nodes to
 - Inspect and manage data on the shared filesystem
 - Compile your programs and their dependencies
 - Manage computations on the cluster
- DO NOT execute long-running computations on the login nodes \times
- Login nodes are round-robin, you can select a specific node (login1.karolina.it4i.cz)

GUI ACCESS

If you prefer to use a GUI client, you have two options

- X forwarding
 - Open individual X windows on your PC
 - \$ ssh -X karolina.it4i.cz
- VNC
 - Full GUI environment on the cluster
 - 1. Select a VNC port P (here we use 55)
 - Must be unique per login node
 - 2. Connect to a login node with SSH tunneling on port 5900 + P
 - \$ ssh -L5955:localhost:5955 karolina.it4i.cz
 - 3. Run vncpasswd
 - 4. Run vncserver :55
 - 5. Connect to VNC on port :55 on your local machine
 - \$ vncviewer localhost:5955
- Open On Demand
- More information can be found <u>here</u>.

RUNNING YOUR PROGRAM ON THE CLUSTER

- 1. Move your computation inputs to the shared filesystem
- 2. Build and prepare your application
- 3. Describe your computation and put it into a queue
 - Select computational project and cluster
 - Estimate the duration of your computation

TRANSFERRING DATA TO SHARED FILESYSTEM

- Karolina uses a <u>network filesystem</u> shared by all compute and login nodes
 - You can write a file on a login node and then read/overwrite it from a compute node
- Connect to a login node and download data from the internet (git, wget, ...)
- Transfer data from your local computer using SCP

```
# copy a local file to the cluster
[home:~]$ scp -i <path-to-ssh-key> <local-file> <username>@karolina.it4i.cz:<target-file>
```

Mount the shared filesystem on your local computer

```
# install sshfs
[home:~ ]$ sudo apt install sshfs
# mount the external filesystem
[home:~ ]$ sudo mkdir /mnt/karolina
[home:~ ]$ sudo sshfs -i <path-to-ssh-key> <username>@karolina.it4i.cz: /mnt/karolina
# change directory to the mounted direcotry
[home:~ ]$ cd /mnt/karolina/
```

WHERE TO PUT DATA?

- **HOME** workspace (NFS)
 - Located at ~ (your home directory)
 - Limited size, rather slow, backed up
 - Use for config files, build artifacts, source code repositories, small project data
- PROJECT workspace (NFS)
 - Very large (~15 PiB), rather slow (40 GiB/s)
 - Shared between clusters
 - Divided into three parts (/mnt/proj1, /mnt/proj2, /mnt/proj3)
 - Each project has its own directory (deleted after project ends)
 - Find your project location with \$ it4i-get-project-dir <project-id>
 - Central storage for all project data, use for important/large project data
- SCRATCH workspace (Lustre)
 - Located at /scratch/work/project/<project-id>
 - Large, fast, no backups
 - Use for reading job inputs and writing job results
 - Main project storage, access given to all project members

Of More information about storage at Salomon can be found <u>here</u> Storage details vary significantly among the clusters, check documentation for your cluster UII UNIVERSITY OF OSTRAV

TECHNICAL | IT4INNOVATIONS JNIVERSITY | NATIONAL SUPERCOMPUTING DF OSTRAVA | CENTER

WHERE TO PUT DATA?

- **TEMP** workspace
 - Located at /scratch/temp
 - Temporary I/O intensive operations, data removed after 90 days
- **RAMDISK** workspace ٠
 - Located at /ramdisk/\$SLURM_JOB_ID
 - RAM disk (filesystem backed by memory), for I/O intensive operations •
 - Available only during a job ٠
- CESNET
 - archiving large amounts of data, more information here ٠

(i) More information about storage at IT4I clusters can be found <u>here</u> Storage details vary significantly among the clusters, check documentation for your cluster

MORE STORAGE INFORMATION


- Filesystems of individual clusters are not directly shared
 - Clusters are connected via network, e.g. you can \$ ssh barbora from Karolina
- Watch storage limits
 - \$ it4i-disk-usage -g
 - <u>https://scs.it4i.cz</u> -> Agendas -> User

Cluster	File System	Space used	Space limit	Entries	Entries limit	Last Update
Anselm	/scratch	0 Bytes	93.13 TB	0	10 Million	2020-12-04 13:55
Anselm	/home	2.828 GB	238.4 GB	51.1 Thousand	500 Thousand	2020-12-04 13:55
Barbora	/home	7.221 GB	23.84 GB	44.1 Thousand	500 Thousand	2020-12-04 14:50
Barbora	/scratch	477.6 GB	9.313 TB	413 Thousand	10 Million	2020-12-04 14:50
Salomon	/home	153.7 GB	238.4 GB	456 Thousand	500 Thousand	2020-12-04 14:50
Salomon	/scratch/temp	0 Bytes	N/A	0	N/A	2020-12-02 07:40
Salomon	/scratch/work	237.8 GB	N/A	55.6 Thousand	N/A	2020-12-02 07:40
Salomon	/scratch	238 GB	93.13 TB	55.6 Thousand	10 Million	2020-12-04 14:50

Quota Status

- Storage lifecycle
 - HOME deleted after 1 year without any active project
 - SCRATCH data of a project deleted some time after the project ends

COMPILING/PREPARING DEPENDENCIES

- You must compile your program and its dependencies for your target cluster
- This will be described following day

SELECTING PROJECT AND CLUSTER

- Choose the correct computational project for your experiment
- Check how much node-hours are left in the project
 - \$ it4ifree
 - <u>https://scs.it4i.cz/</u>
- Check the status of clusters
 - https://extranet.it4i.cz/rsweb/karolina

IT4	In	no	va	atic	ns	ł	۲ar	oli	na										Com	psys	Barbo	ra
Clust	ter	Q	ueue	s	Jobs	6	Nod	es	Job	sΣ	No	des X	Ξ	Proje	ects	R	eserv	/atio	ns	Lic	enses	
My c	luste	er	Му	quer	ies	M	y jobs	6	My jo	bs Σ												
	0.11-			1.000		C1	PU		ad CPL				Curto									
		catior		Load	-		_				vnalysis		Custo									
	1	2	3	4 5	6	<u> </u>	89	10	11 12	2 13	14 15	5 16	17 1	8 19	20	21 2	2 23	24	25 2	6 27	28 2	9 30
cn 24					H	-		Н				Н			-							
31 61					H			Н														
91	-							Н		Н		Н			-							
121	ē												ā	ē	ē	ā	i	ē	ī		ā	
151	ē										ŌŌ			Ī	ē					ō	Ō	
181																						
211																						
241																						
271				_	Ц																	
301			_	+-	H					н					-							
331	-			+-	H										-							
361 391	-														-							
421	-			-	H										-			-				
451															-						-	
481	ē						ī		ōī		ōī	i	ō	ī	ē			ē	ō	i	ō	
511																						
541																						
571																						
601																						
631																						
661					H	_																
691	_				Ц																	
acn																						
31																						
61								-					TEC	UNT			T T 4 T		1/6777	ONC		

QUEUING SYSTEM

- Each IT4I cluster is shared by many users
- To perform a computation (a job), you must go through a <u>queue</u>
 - We use a queuing system called Slurm
- There are several queues with different properties
 - **qcpu_exp** (quick experiments, does not charge for use, up to 1 hour jobs)
 - **qcpu** (common computations, up to 2 days jobs)
 - **qcpu_long** (long-running computations, up to 6 day jobs)
 - **qgpu** (dedicated hardware, e.g. NVIDIA GPUs)
 - You can find the complete queue list <u>here</u>
- To access most queues you will need to specify a computational <u>project</u> that you are a part of
 - Computational resources that you spend are deducted from the used project
 - Cost of a computation: Time x Node count
 - After all resources run out, you can still use the qcpu_free queue up to 120% of the original resources

USING SLURM

- You can submit jobs on the cluster in two modes
 - Batch mode (default): you specify a script which is executed once you get to the front of a queue
 - Interactive mode: your terminal will be connected to the first computing node in the job via SSH
- Submission is performed using the **salloc** command
- You have to give **salloc** some basic parameters to define a job:
 - Number of computing nodes used in the job: -N 4
 - Maximum running time (called <u>walltime</u>): -t 2:30:00
 - Queue (partition): -p qcpu_exp
 - Project (if required by the queue): -A OPEN-0-0
 - (Bash) script that will be executed (for batch mode)
- You can have multiple jobs in the queue at once (both waiting and executing)
- Be careful with walltime to avoid wasting project resources!

SUBMITTING A JOB USING SLURM

- 1. Prepare a bash script that will run your computation
- 2. Submit a job using the <u>salloc</u> command and note the <u>Job ID</u> that it outputs


```
[user@login4.karolina ~]$ salloc -p qcpu_exp -A DD-23-116 -t 1:00:00 -N 1
salloc: Granted job allocation 1143891
```

3. Use <u>squeue</u> to query queue status to see the expected start time and computation status

[<u>user@login4.karolina</u> ~]\$ squeu	ie -u \$US	ER			
JOBID PARTITION	NAME	USER	ST	TIME	NODES NODELIST(REASON)
1143891 qcpu_exp i	nteract	user	R	0:10	1 cn139

- Use the job ID to identify individual jobs
- You can also put the submission options directly into the script

EXAMPLE SLURM SCRIPT

#!/usr/bin/bash
#SBATCH --job-name MyJobName
#SBATCH --account PROJECT-ID
#SBATCH --partition qcpu
#SBATCH --nodes 4
#SBATCH --ntasks-per-node 128
#SBATCH --time 12:00:00

ml purge
ml OpenMPI/4.1.4-GCC-11.3.0

srun hostname | sort | uniq -c

(i) You can find a similar example and advanced information <u>here</u>

JOB EXECUTION

- Once the job gets to the front of the queue
 - 1. Slurm will allocate the specified number of nodes
 - 2. The specified script will be executed
 - On the first allocated node
 - In submit directory
 - 3. Once your script finishes, the job will also end
 - 4. stdout and stderr of your script will be written to a file on the shared filesystem
 - slurm-\$JOB_ID.out
 - They will be stored in the directory where you submit the job
 - You can override name with -o and -e
- Useful environment variables available during a job
 - SLURM_SUBMIT_DIR directory from where you submitted the job
 - SLURM_JOB_NODELIST list of compute nodes
 - SLURM_JOB_ID job ID of the current job

MONITORING JOB STATUS

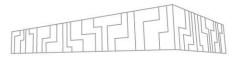
- Once your job starts running, you can observe its status in several ways
- \$ squeue --me
 - Displays status of my queues, elapsed time, allocated computing nodes
 - You can connect to the individual computing nodes via SSH to inspect them

Submitted	batch job	olina 01_he 0 1143932 0lina 01 he			slurm			
[<u> </u>	PARTITION	NAME	USER	ST	TIME	NODES	NODELIST(REASON)
	1143920	qcpu exp	zphpc01	mec059		0:03		cn553
	1143922	·· - ·	zphpc01	mec059		0:04		(NonZeroExitCode)
		qcpu exp		mec059		0:04		cn147
[mec059@ld		olina 01 he		cn147				
_		olina 01_he						

- When something goes wrong you can delete jobs (both running and enqueued)
 - \$ scancel <job-id>

MORE SLURM INFORMATION

- Jobs are prioritized based on several properties
 - Selected queue
 - Amount of recent computation in a project
 - Hint: if you want to get ahead in the queue, specify a small(er) walltime
- Slurm has a lot of configuration and options
 - Job arrays
 - Many jobs with the same script, but different inputs
 - Advanced node configuration/placement
 - Enable/disable Turbo boost, kernel modules, ...
 - Select nodes by CPU type, network switch, network topology location
 - You can find more <u>here</u>


ASKING FOR HELP

If you have trouble with

- Connecting to login nodes
- Building code or dependencies
- Submitting a jobs

Then

- 1. Consult the <u>documentation</u>
- 2. If that does not help, create a <u>ticket</u>

VSB TECHNICAL | IT4INNOVATIONS |||| UNIVERSITY | NATIONAL SUPERCOMPUTING OF OSTRAVA | CENTER

IT4Innovations National Supercomputing Center VSB – Technical University of Ostrava Studentská 6231/1B 708 00 Ostrava-Poruba, Czech Republic www.it4i.cz

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

