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What is a GPU?

Why should I use it?



| GPU = Graphics Processing Unit

| Not much common with graphics in today’s HPC
| No display output

| => Accelerators, GPGPU (General Purpose computing on GPU)

What is a GPU?



| Generalizing/unifying specialized hardware

How GPGPUs came to be



| TOP500, GREEN500 lists (June 2024)
| Ranking supercomputers

| FLOP/s performance, FLOP/s/W energy efficiency

| 38 % of the TOP500 supercomputers contain GPUs
| 66 out of top 100, 9 out of top 10 in TOP500

| 78 out of top 100, 10 out of top 10 in GREEN500

| GPUs are the way to go for massive performance 
and energy efficiency

| All vendors are represented
| NVIDIA

| AMD

| Intel

GPUs in today’s supercomputers



CPU vs GPU

Device name
Performance
[TFLOP/s]

Memory bandwidth
[GB/s]

TDP
[W]

Energy efficiency
[GFLOP/s/W]

GPU NVIDIA H100 66.9 3350 700 96

GPU AMD MI250X 95.7 3200 500 191

GPU Intel Data Center GPU Max 52.0 3280 600 87
CPU NVIDIA Grace CPU 3.5 500 250 14

CPU AMD EPYC 9654 3.7 460 360 10
CPU Intel Xeon Max 9480 DDR5 3.4 300 350 10

CPU Intel Xeon Max 9480 HBM 3.4 1640 350 10
CPU Fujitsu A64FX 3.4 1024 180 19

Data might be slightly inaccurate, but the main point stands



So, I hope you are convinced.

DALL·E 3 via copilot: man with an excited face expression looking though a supercomputer cabinet containing nvidia gpus



| Of course, there’s a catch

| GPU is not a do-it-all device

| Located separately from the CPU, as a co-processor

| GPUs are focused on throughput and FLOP/s performance
| Calculating many things at once, but slowly

| Not all algorithms are suitable for GPUs
| High parallelism is required

| GPUs are inferior in:
| Latency-sensitive operations

| Highly branching code

| Random memory access

| Specialized hardware for specific types of problems

The problem with GPUs



Architecture of GPUs

and GPU nodes



Karolina GPU node architecture
CPU 0

AMD EPYC 7763
64 cores

512 GiB DDR4

CPU 1
AMD EPYC 7763

64 cores
512 GiB DDR4

GPU 0
A100

40 GiB
HBM2

NVLink 3.0
300+300 GB/s

NVSwitch network

Infinity fabric

PCIe switch PCIe switch PCIe switch PCIe switch

GPU 2
A100

40 GiB
HBM2

GPU 1
A100

40 GiB
HBM2

GPU 3
A100

40 GiB
HBM2

GPU 4
A100

40 GiB
HBM2

GPU 6
A100

40 GiB
HBM2

GPU 5
A100

40 GiB
HBM2

GPU 7
A100

40 GiB
HBM2

NIC
IB 200 Gb/s

NIC
IB 200 Gb/s

NIC
IB 200 Gb/s

NIC
IB 200 Gb/s PCIe 4.0 x16

32 GB/s



Karolina GPU node (8x NVIDIA A100)



Frontier node (4x AMD MI250X)



Aurora node (6x Intel Data Center GPU Max)



NVIDIA A100 SXM4 module



NVIDIA A100 SXM4 module

GPU die with the computing units
(Streaming Multiprocessors)HBM2 memory



| Nvidia GA100 full GPU architecture

| 128 streaming multiprocessors (SM)
| Each SM has 32 FP64 units, 64 FP32 units, …

NVIDIA A100 die



CPU vs GPU

GPUs

| tailored for compute-intensive, 
highly data parallel computation 

| many parallel execution units 

| have significantly faster and 
more advanced memory 
interfaces

| more transistors is devoted to 
data processing 

| less transistors for data caching 
and flow control

CPUs
• Powerful ALU
• Large caches
• Branch prediction

GPUs
• Small caches
• Simple control
• Many energy efficient ALUs
• Require massive number of 

threads



How do I use GPUs?



| Applications
| Use applications that can use the GPU

| Libraries, packages
| Use libraries/packages which use the GPU internally

| Compiler directives
| Annotate your current code to make it run on GPU

| Programming languages
| Write GPU kernels manually

How do I use GPUs?



| Just enable GPU support in the app/program you are using

| E.g., VASP, GROMACS, OpenFOAM, …

| Some apps use the GPU by default

| Some apps might need the correct config
| ./app --use-gpu

| Some apps might need recompilation
| cmake -DAPP_ENABLE_GPU=true

| Some apps don’t support GPUs at all
| Try searching for an alternative

| Consult the application documentation

| If no such application exists => need to write your own

GPU-enabled applications



| If you write your own app/script, use libraries/packages that use the GPU internally

| PyTorch

| TensorFlow

| PETSc

| Trilinos

| TNL

| cuBLAS, rocBLAS, oneapi::mkl::blas, …

| *sparse, *fft, …

| Again, consult the documentation

Libraries, packages



| Start with your C/C++/Fortran CPU code

| Annotate it to offload certain parts to the GPU

| Generic, no GPU or accelerator type assumed

| Examples
| OpenACC

| OpenMP offloading

Compiler directives

void saxpy(float a, float * x, float * y, int sz) {
#pragma omp target teams distribute parallel for map(to:x[0:sz]) map(tofrom:y[0:sz])
for (int i = 0; i < sz; i++) {
y[i] = a * x[i] + y[i];

}
}



| Language (extensions) for writing GPU kernels
| Special code that runs on the GPU

| CUDA
| Programming model for NVIDIA GPUs

| The state of the art

| HIP
| Mainly for AMD, but also for NVIDIA GPUs

| Created by AMD to mimic CUDA, to ease the transition to AMD GPUs

| SYCL
| Mainly for Intel GPUs, but developed as a generic programming model for all GPUs

| Modern C++17, only headers and libraries, no language extensions

| OpenCL
| Older, for all GPUs

Programming languages



Introduction to CUDA



| Previously Compute Unified Device Architecture, now only CUDA

| Programming model for NVIDIA GPUs

| C/C++/Fortran language extension
| We will work with C++

| CUDA toolkit
| NVCC compiler

| Drivers, runtime libraries

| High performance libraries – cuBLAS, cuSPARSE, cuFFT, CUB, …

| Profiler, debugger

| …

CUDA overview



| CPU and GPU have separate memories

| Memory needs to be manually allocated on the GPU

| Data needs to be copied between CPU and GPU

| Host = CPU

| Device = GPU

| Kernel = function running on the device

The elephant in the room - memory

Host

Device

Host memory

Device memory



Structure of a basic CUDA program

Device memory allocation

Copy host to device

Copy device to host

Device memory free

Kernel launch on device

Host thread

data

Host

Device

Host memory

Device memory



Structure of a basic CUDA program

Device memory allocation

Copy host to device

Copy device to host

Device memory free

Kernel launch on device

Host thread

data

Host

Device

Host memory

Device memory



Structure of a basic CUDA program

Device memory allocation

Copy host to device

Copy device to host

Device memory free

Kernel launch on device

Host thread

data

Host

Device

Host memory

Device memory

data



Structure of a basic CUDA program

Device memory allocation

Copy host to device

Copy device to host

Device memory free

Kernel launch on device

Host thread

data

Host

Device

Host memory

Device memory

DATA



Structure of a basic CUDA program

Device memory allocation

Copy host to device

Copy device to host

Device memory free

Kernel launch on device

Host thread

DATA

Host

Device

Host memory

Device memory

DATA



Structure of a basic CUDA program

Device memory allocation

Copy host to device

Copy device to host

Device memory free

Kernel launch on device

Host thread

DATA

Host

Device

Host memory

Device memory



Structure of a basic CUDA program

Device memory allocation

Copy host to device

Copy device to host

Device memory free

Kernel launch on device

Host thread

cudaMalloc()

cudaMemcpy()

my_kernel<<< … >>>()

cudaMemcpy()

cudaFree()



| Multi-GPU system

| Which GPU is being used?

| Some default one.

| It is possible to set which GPU we want to work with
| cudaSetDevice()

| CUDA_VISIBLE_DEVICES environment variable

| Multi-GPU programming
| Iterate over all GPUs in a loop, submit work to all of them

| Or OpenMP thread per GPU, MPI rank per GPU, …

Quick sidenote



| Allocates/deallocates memory in the memory space of the GPU device

| cudaError_t cudaMalloc(void ** ptr, size_t num_bytes);

| cudaError_t cudaFree(void * ptr);

cudaMalloc, cudaFree

...
int count = 2024;
double * d_array;
cudaMalloc(&d_array, count * sizeof(double));
...
cudaFree(d_array);
...

data

Host

Device

Host memory

Device memory



| Copy data between host and device
| Or host-host, or device-device

| cudaError_t cudaMemcpy(void * dst, const void * src,
size_t num_bytes, cudaMemcpyKind kind);

| kind ∈ {cudaMemcpyHostToDevice,
cudaMemcpyDeviceToHost,
cudaMemcpyDefault, …}

cudaMemcpy

...
int count = 2024;
double * h_array;
double * d_array;
...
cudaMemcpy(d_array, h_array, count * sizeof(double), cudaMemcpyHostToDevice);
...
cudaMemcpy(h_array, d_array, count * sizeof(double), cudaMemcpyDeviceToHost);
...

data

Host

Device

Host memory

Device memory

data



| Special function that runs on the device

| Hierarchy of blocks and threads

| Each thread executes the kernel exactly once

| Threads are grouped into threadblocks (blocks)

| Each block and thread receives a unique set of IDs
| Built-in variables available in the kernel

| blockIdx.x – index of block in the grid

| threadIdx.x – index if thread within the block

| blockDim.x – dimension (size) of block, number of threads in block

| gridDim.x – number of blocks in the grid

| Similar to OpenMP, but CUDA has two layers of parallelism

Kernel

__global__ void my_kernel()
{

...
}

Q: Why .x ?
A: This is 1-dimensional kernel. 2D and 3D 
kernels also exist, where .y and .z are also used



| Function in global scope returning void

| Annotated with __global__ keyword
| Two underscores on each side

| Launched using <<< >>> syntax
| Submitting the GPU kernel from CPU code

| Number of blocks in grid and threads per block needs to be provided
| threads_per_block is usually set arbitrarily (e.g., 256, max 1024)

| blocks_in_grid is calculated to fit the data (max 2^31)

| my_kernel<<< blocks_in_grid, threads_per_block >>>(params…)

| Kernel is launched asynchronously
| Submitted to the GPU for later execution

| Need to make sure the kernel (and all operations on the device) finished
| cudaDeviceSynchronize()

| cudaMemcpy() has implicit synchronization inside

Kernel

__global__ void my_kernel()
{

...
}

my_kernel<<< 2, 4 >>>();



| say_hello kernel

| Launched with 2 blocks, each block has 4 threads

Kernel

__global__ void say_hello()
{

printf(“Hello from thread %d/%d, block %d/%d\n“,
threadIdx.x, blockDim.x,
blockIdx.x, gridDim.x);

}

say_hello<<< 2, 4 >>>();
cudaDeviceSynchronize();

Host

Device

Host memory

Device memory

Hello from thread 0/4, block 1/2
Hello from thread 1/4, block 1/2
Hello from thread 2/4, block 1/2
Hello from thread 3/4, block 1/2
Hello from thread 0/4, block 0/2
Hello from thread 1/4, block 0/2
Hello from thread 2/4, block 0/2
Hello from thread 3/4, block 0/2

Note:
std::cout does not work inside kernel



| CUDA C/C++ code belongs in *.cu files

| CUDA is not standard C/C++, need special compiler

| Compiler for CUDA applications – nvcc
| nvcc source.cu -o program

| Run just like a normal program
| ./hello

| CMake includes CUDA as a language
| As a package it is also available

Compilation



Hands-on on Karolina



Access Karolina GPU nodes
| 8 GPUs and 128 CPU cores per node, 72 nodes

| Possible to allocate only 1 GPU and 16 cores = 1/8 of the node

| salloc -A DD-23-116 -p qgpu --gpus 1 --nodes 1 --time 2:00:00
| Request 1 GPU on 1 node for 2 hours

| salloc -A DD-23-116 -p qgpu
| Default: 1 GPU, 1 node, 24h time limit

| salloc -A DD-23-116 -p qgpu --gpus 4 --time 2:00:00
| Request 4 GPUs for 2 hours. You might get the GPUs scattered across 1-4 nodes

| salloc -A DD-23-116 -p qgpu --gpus 4 --nodes 1 --time 2:00:00
| Request 4 GPUs on 1 node for 2 hours

| salloc -A DD-23-116 -p qgpu --gpus 16 --nodes 2 --time 2:00:00
| Request 16 GPUs on 2 nodes for 2 hours. You will get 2 full nodes.

| No way to enforce to get 4 “neighboring” GPUs on the node

| qgpu_exp – higher priority, but max 8 GPUs for 1 hour

| salloc -> sbatch … ./job.sh to submit batch jobs

-A, --account
-p, --partition
-N, --nodes
-t, --time
-G, --gpus

https://docs.it4i.cz/general/karolina-slurm/#using-gpu-queues



| Connect to Karolina (ssh, VS Code, …)

| We have a reservation prepared
| salloc --account=DD-23-116 --reservation=dd-23-116_2024-06-05T09:00:00_2024-06-05T12:30:00_5_qgpu --gpus 1

| Load the CUDA module

| module load CUDA

Access Karolina GPU node



| Write a Hello world program similar to the one already shown, compile and run it

| Start with hello_world.task.cu

| Additionally, compute and print in each thread:
| Global index of the thread in the whole grid

| Total number of threads

Hands on – Hello world

Hello from thread 0/4, block 1/2, my global index is 4/8
Hello from thread 1/4, block 1/2, my global index is 5/8
Hello from thread 2/4, block 1/2, my global index is 6/8
Hello from thread 3/4, block 1/2, my global index is 7/8
Hello from thread 0/4, block 0/2, my global index is 0/8
Hello from thread 1/4, block 0/2, my global index is 1/8
Hello from thread 2/4, block 0/2, my global index is 2/8
Hello from thread 3/4, block 0/2, my global index is 3/8

blockIdx.x

global index

threadIdx.x

0 0 0 0 1 1 1 1

0 1 2 3 0 1 2 3

0 1 2 3 4 5 6 7



| Scale a vector (array) of floats on the GPU using CUDA
| X := scalar*X

| The array starts and ends on host

| Perform the scaling on device

| Aside from running the kernel, we need to copy the data

Vector scale example



| Write a CUDA program that adds two vectors into a third vector
| C = A + B

| Start from the vector_add.task.cu file

| Complete the TODOs

| Feel free to get inspiration from the Vector scale

Hands on – Vector add



Other notable GPU 
programming models



| Created by AMD to mimic CUDA
| To ease users’ transition from NVIDIA to AMD GPUs

| Works on both AMD and NVIDIA GPUs

| cuda* functions and types replaced by hip*

| hip* libraries (BLAS etc.)
| Wrappers around cuda* or roc* functions

| Hipify – convert CUDA source code to HIP code

| ROCm software ecosystem/platform

| roc* libraries (blas, sparse, fft, …)

| Frontier (#1) and LUMI (#5) use AMD GPUs

HIP



HIP

source.cu
__global__ void vector_scale(float * x, float alpha, int count)
{

int idx = blockIdx.x * blockDim.x + threadIdx.x;
if(idx < count) x[idx] = alpha * x[idx];

}

int main()
{

int count = 20 * 256;

float * h_data = new float[count];
for(int i = 0; i < count; i++) h_data[i] = i;

float * d_data;
cudaMalloc(&d_data, count * sizeof(float));

cudaMemcpy(d_data, h_data, count * sizeof(float), cudaMemcpyHostToDevice);
vector_scale<<< 20, 256 >>>(d_data, 10, count);
cudaMemcpy(h_data, d_data, count * sizeof(float), cudaMemcpyDeviceToHost);

cudaFree(d_data);
delete[] h_data;
return 0;

}

source.hip.cpp
#include <hip/hip_runtime.h>

__global__ void vector_scale(float * x, float alpha, int count)
{

int idx = blockIdx.x * blockDim.x + threadIdx.x;
if(idx < count) x[idx] = alpha * x[idx];

}

int main()
{

int count = 20 * 256;

float * h_data = new float[count];
for(int i = 0; i < count; i++) h_data[i] = i;

float * d_data;    
hipMalloc(&d_data, count * sizeof(float));

hipMemcpy(d_data, h_data, count * sizeof(float), hipMemcpyHostToDevice);
vector_scale<<< 20, 256 >>>(d_data, 10, count);
hipMemcpy(h_data, d_data, count * sizeof(float), hipMemcpyDeviceToHost);

hipFree(d_data);
delete[] h_data;
return 0;

}

$ nvcc source.cu –o program_cuda.x $ hipcc source.hip.cpp –o program_hip.x



| Open standard, modern C++17 interface

| A way to do parallel programming not only for GPUs
| CPUs, FPGAs

| Primary way to utilize Intel GPUs
| Aurora supercomputer (#2)

| Source code portability. Not necessarily performance portability.

| Implementations for all of Intel, AMD and NVIDIA GPUs exist
| DPC++ (Intel), AdaptiveCPP

| oneAPI – SYCL interface for high performance libraries (BLAS, SPARSE, FFT, …)

| Also a standard

| Has implementations for all of Intel, AMD and NVIDIA GPUs
| Intel’s oneAPI, Codeplay

SYCL



sycl::queue q(sycl::gpu_selector_v, {sycl::property::queue::in_order()});

float * d_vector = sycl::malloc_device<float>(count, q);

q.copy<float>(h_vector, d_vector, count);

q.parallel_for(

sycl::nd_range<1>(sycl::range<1>(count), sycl::range<1>(256)),

[d_vector,scalar](sycl::nd_item<1> item){

d_vector[item.get_global_id()] *= scalar;

}

);

q.copy<float>(d_vector, h_vector, count);

q.wait();

sycl::free(d_vector, q);

SYCL



Other useful info



| Each block is executed on a single Streaming Multiprocessor (SM)
| Independently of other blocks

| Multiple blocks can be on a single SM if resources allow

| Threads in a block are executed in a SIMD fashion – SIMT
| Single Instruction Multiple Threads

| Threads are grouped into warps (32 threads)

| Warp is a unit of scheduling in the SM
| All warps of the block are running on a single SM

| If some warp cannot continue, other warp is scheduled
| Fast context switching

| Some warps are computing, while other wait for data
| Latency hiding

| If only some threads in warp branch => control divergence
| Both paths are taken, threads are masked out

CUDA kernel execution



| Copy between nodes directly GPU to GPU

| No need to route through CPU memory

| Just use pointers to GPU memory in MPI functions

| Make sure the MPI you use is correctly compiled
| Use e.g. the OpenMPI/4.1.6-NVHPC-24.1-CUDA-12.4.0 module

GPU-aware MPI
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Infinity fabric

PCIe switch PCIe switch PCIe switch PCIe switch
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| More CUDA exercises
| https://code.it4i.cz/training/cuda_examples

| CUDA programming guide
| https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

| CUDA toolkit documentation
| https://docs.nvidia.com/cuda/

| HIP
| https://github.com/ROCm/HIP

| SYCL
| https://www.khronos.org/api/index_2017/sycl

| IT4I documentation
| https://docs.it4i.cz

More information, resources

https://code.it4i.cz/training/cuda_examples
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/
https://github.com/ROCm/HIP
https://www.khronos.org/api/index_2017/sycl
https://docs.it4i.cz/


Jakub Homola
jakub.homola@vsb.cz

IT4Innovations National Supercomputing Center
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Studentská 6231/1B
708 00 Ostrava-Poruba, Czech Republic
www.it4i.cz

http://www.it4i.cz/
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