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Bibliometrics

Web Of Science

• H-index: 15.
• Publications: 39 (WOS). 2 patents (CZ, EU). 3 chapters in monographs.
• Number of citations: ∼1,275 (WOS).

3 / 121



4/135

Acknowledgments & funding
09-2024 IT4Innovation

2024 Ministry of Education Youth & Sports -
CZ-MSMT-OPJAK ”Sendiso” for developing sensors for
biology using laser technologies (”Sensors and Detectors for
the Future Information Society”).

2017-12/2023 European Regional Development Fund and the state
budget of the Czech Republic (project BIATRI:
CZ.02.1.01/0.0/0.0/15_003/0000445, project HiLASE
CoE: No. CZ.02.1.010.00.015_0060000674).

2019-2024 EU-H2020-MSCA-RISE European Union’s Horizon 2020
research and innovation programme under the Marie
Skłodowska-Curie grant agreement No 823897. Project
”ATLANTIC” (2019-2024).

2019-2024 IT4Innovations National Supercomputing Center –
e-INFRA CZ (ID:90140) projects. National Grid
Infrastructure MetaCentrum (CESNET LM2015042).

<thibault.derrien@vsb.cz>

<derrien@fzu.cz>
4 / 121

<thibault.derrien@vsb.cz>
<derrien@fzu.cz>


5/135

2019-2024: ATLANTIC network

https://www.QuantumLap.eu/?s=ATLANTIC
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2019-2024: Marie Curie RISE network

”ATLANTIC”: Advanced theoretical network for modeling light matter interaction

List of theoretical descriptions for laser-matter interaction that are available within the consortium of
ATLANTIC project

https://www.QuantumLap.eu/?s=ATLANTIC
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Validity ranges of formalisms?

Adapted from proposal H2020-MSCA-RISE-2018 ”ATLANTIC”
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Portfolio of Domains and Methods
Classical methods ∼ 28+ publications

Quantum methods ∼ 6+ publications
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2021-2024: Group ”Ultrafast Photonics” @ HiLASE Centre
Mission ”The [...] group uses condensed matter, quantum formalisms and high-performance

computing to invent applications based on phenomena that are induced by ultrashort laser
pulses in solids and nanomaterials.”

http://www.QuantumLaP.eu/

2 members

PhD std. Krystof HLINOMAZ
• classical thin film thermodynamics,
• classical Lagrangian hydro-dynamics.

PhD std. Kristyna GAZDOVA
• Trainee in quantum simulations (DFT,

Floquet, quantum chem.)

Visiting students (Marie Curie)
PhD std. Andres BERTONI (MSCA-RISE
”ATLANTIC” 4 months, Argentina).
• Transient optical response of solids,

quantum DFTB

PhD std. Micaela SOSA (MSCA-RISE
”ATLANTIC 2 months, Argentina).
• Transient optical response of biosystems
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2024: Group @ IT4I: ”Quantum Dynamics of Systems”

Laboratory of Quantum Computing (Head:
prof. M. Lampart)

Group name: ”Quantum Dynamics of

Systems”

People
• PhD appl. Michal Belina: quantum

chemistry, ab-initio molecular dynamics,
quantum computing.

• MSc. Silvie Illésová: ab-initio molecular
dynamics, quantum computing.

Scope
• Ab-initio dynamics
• Qubit design
• Quantum implementation

PhD appl. Michal
Belina

BSc. Silvie Illésová
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Outline
1 Context

Applications of ultrafast laser-induced phenomena in solids
Optical absorption driven by electrons dynamics in solids

Frozen band structure
Dynamical band structures: laser dressing was included in Keldysh (1965)

2 TDDFT: multi-band description using high-power computations
Modeling the laser excitation of electrons in Si (real-space, real-time TDDFT)
Scanning multiple parameters: database preparation
Results

3 How reliable are TDDFT predictions in the ultrafast regime? Benchmark vs high harmonic
generation (HHG) experiments

4 Predictions of TDDFT at high intensity (laser processing)
TDDFT predictions for laser processing: anisotropy in energy absorption & damage threshold

5 Reversible and ultrafast band structure engineering
Simplified model: Floquet + DFT
Preparation of dipolar matrix elements (DFT)
Si [227], LDA: EΓ

g = 2.56 eV. Dressing along K −Γ−X
Si [227], LDA: EΓ

g = 2.56 eV. ”3D” dressed band structure
Discussion

6 Overview: predictive modeling tools for high fields photonics are here and they work
7 IT4I/LQC: milestones towards designing a light-controlled multiqubit in solids?
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Surface functionalization with intense lasers:
the role of polarization

Functionalization of surfaces via laser nanostructuring (source: ”QuantumLaP” MSCA project)

(a) Dusser et al, Opt. Express 18, 3 (2010)
(b) Jia et al, Phys. Rev. B 72, 12 (2005)
(c) A. Ranella et al., Acta Biomat. 6, 2711 (2005)
(d) A.Y. Vorobyev, Ch. Guo, Laser Photon. Rev. 7, 385 (2013)
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Laser-induced periodic
functionalization of graphene

Drogowska-Horna, K. A.; Mirza, I.; [...] Kovaricek P.; [...]; Derrien, T. J.-Y.; [...] Bulgakova, N. M.
& Kalbac, M. Nano Research (Springer) 13, 2332 (2020)
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Femtosecond laser modification of bulk crystals:
saturation of absorbed energy

Chanal, Grojo et al., Nature
Communications 8, 773 (2017). λ = 1300

nm, τ = 60 fs

Grojo, D.; Utéza, O. et al., Physical Review
B 88, 195135 (2013)

Intensity regime: 1012−14 W/cm². Origin of absorption limit?

Macroscopic: defocusing (+ Kerr effect)
Microscopic: increase of the band gap upon excitation? Pauli blocking (saturation of conduction states)?
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Physical scales in light-matter interaction

UV - Wavelengths λ - mid-IR

1 fs ≤ Pulse durations τ ≤ 20 ps

Laser intensity scale

perturbative regime material’s modification regime strong field

< 10
11 W/cm² 10

11−10
13 W/cm² 10

14+ W/cm²
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Springer book ”The pursuit of extreme scales”

Derrien, T. J.-Y.; Levy, Y. & Bulgakova, N. M.
Chap. 1/33. Insights into laser-matter interaction from inside: wealth
of processes, multiplicity of mechanisms and possible roadmaps for
energy localization.
Ultrafast Laser Nanostructuring - The Pursuit of Extreme Scales (Vol.
I-III), Eds: R. Stoian, J. Bonse.
Springer, 2023.

Vol 1 Fundamentals processes
Vol 2 Concepts of extreme nanostructuring
Vol 3 Applications
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Band structure of e- in Si without light

To study a material, one usually considers its e- band structure being fixed (Heisenberg frame).

Exp. Th. (LDA) Th. (TB09) Transition Temperature

3.4 eV 2.56 eV 3.04 eV Γ→ Γ 0 K

1.16 eV 0.51 eV 0.98 eV Γ→X 0 K

Note: 2.56 eV←→ 484 nm.

Direct or indirect transition?

• Multi-photon absorption is usually direct.

laser 
photon

multi-photon absorption

laser 
photon

VB

CB 
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Approximation: fixed electronic bands str. (⃗E is ↕)
• UV light: 1-photon absorption.
• I = 10

9 W/cm2, τ = 110 fs, h̄ω = 3.4 eV= Egap.

Sangalli et al, Europhysics Letters 110, 47004 (2015)
This representation keeps
band structure fixed
(”Heisenberg frame”).
(a) Non-trivial interband
transitions.
(b) Intraband transitions: excited
electrons transfers between bands.
(c) Relaxation to lower energy
levels.
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Prediction of melting threshold in Si

Drogowska-Horna, K. A.; Mirza, I.; Rodriguez, A.;
Kovaříček, P.; Sládek, J.; Derrien, T. J.-Y.; Gedvilas, M.;
Raćiukaitis, G.; Frank, O.; Bulgakova, N. M. & Kalbác, M.;
Nano Research, 13, 2332-2339 (2020).

τ = 300 fs, λ = 1030 nm

Sládek, J.; Levy, Y.; Derrien, T. J.-Y.; Bryknar, Z. &
Bulgakova, N. M., Applied Surface Science, 605, 154664
(2022)

τ = 250 fs, λ = 1030 nm
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τlaser > τe-ph:
two-temperature modeling. Pump-probe reflectivity

Derrien, T. J.-Y. & Bulgakova, N. M. Proc. SPIE 10228
(2017)

−: our theory. □: experimental from Shank, C. et al.„ Phys.

Rev. Lett., 50, 454 (1983).
D: partial melting starts, filled-D: total melting is achieved

(at least one cell). τ = 90 fs, λP = 620 nm, λp = 1 µm.

Advantages of TTM

• Pump-probe reflectivity as function of time and energy.
• Spatial-dependence & energy transport.
• Importance of 3-body phenomena (screening of e-ph

coupling, Auger recombination, ...).

Limits of two-temperature model for band-gap materials

• Free param. (σ1, σ2, ν , m∗, ...) → fitting procedure→
”predictions”

• Excessive material dependency. Dependent on crystal
orientation.

• Limited to τ > τe−ph , τ > τe−e

Predicting→ no parameter fitting→ 1st principles

Necessity to get rid of free-parameters 23 / 121
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2011: (τ < τeph) reversible metallization of dielectrics (⃗E is ↕)

2011 Durach, M.; Rusina, A.; Kling, M. F. & Stockman, M.
I. Predicted Ultrafast Dynamic Metallization of
Dielectric Nanofilms by Strong Single-Cycle Optical
Fields, Phys. Rev. Lett. 107, 086602 (2011)

Phys. Rev. Lett. 107, 086602 (2011)

2012 Schiffrin, A. [...]; Stockman, M. I. & Krausz, F. et al.,
Optical-field-induced current in dielectrics, Nature
493, 70 (2012)
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Laser-assisted PHz diode: Zenner tunneling (⃗E is ↕)
2016 Kwon, O.; [...] Kim, B.-K.; Kim, J.-J.; Stockman, M. I. & Kim, D.

Semimetallization of dielectrics in strong optical fields, Scientific Reports, 6, 21272
(2016)

Qp/[Coulomb]: transfered charges per pulse.
δ / [V/m]: laser field strengh

”Universal” ultrafast phenomenon? Yes & No.

Field-assisted metallization demonstrated for SiO2, Al2O3, and BaF2.
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”Ultrafast” idea: act before phonons kick in

Role of phonons

• τ,t < γ
−1
e-ph: assuming an ”optical” regime;

• τ,t > γ
−1
e-ph: assuming a thermodynamical ”collisional” regime: ν = f (Te ,Tlattice).

Si: Schultze, M. & al. Science 346,
1348-1352 (2014)

Material e-ph coupling time Ref.

Si ≳240 fs (exp.) Sjodin et al. PRL (1998)

Si ∼64 fs (exp.) Schultze et al. Science (2014)

Au 770 fs - 20 ps (th.) Lin et al. PRB (2008)

Mo 70 fs - 1.4 ps (th). Lin et al. PRB (2008)

Electron-phonon coupling times in various
crystals.

0 10000 20000 30000 40000 50000
Te (K)

10−1

100

101

τ e
p
h
(p
s)

Au

Mo

Fe BCC

Fe FCC

Reconstructed from Lin, Z.; Zhigilei, L. V. &
Celli, V. Physical Review B 77, 075133 (2008)

Approximation for our ”semi-quantum” works

We consider pulses τ ≪ γ
−1
e-ph, and disregard effect of lattice→ direct transitions at Γ.
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Laser effect on optical band gap?

Gulley, J. R., Opt. Eng. 51, 121805-1 (2012)

Band gap dynamics in Keldysh (1965) vs reality (E⃗↕)?
• In MPI regime, effective band gap ↑ with laser field [Gulley, J. R. Opt.

Eng. 51, 121805-1 (2012)].

E eff
g (F ) ≃

γ≫1
Eg +

e2F2

4meω2
(Kane).

• Tunneling rather ↓ effective band gap energy E eff
g with intensity.

• Is number of photons required for e- transition ↑ or ↓ with laser intensity?

Laser dressing: optical Stark effect (E⃗ is ⟲)

Sie, E. [...] Gedik, N. et al., Valley-selective optical Stark
effect in monolayer WS2, Nature Materials, 14, 290-294
(2014)
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Dressing is included in Keldysh model (⃗E ↕)

Popular aspects

Adiabadicity parameter: γ=̂
ttunneling
Tlaser

.
γ ≪ 1: ”tunneling dominates”,
γ ≫ 1: ”multiphotonic transitions dominate.”

Hamiltonian expressed in the length gauge and
dipolar approximation [Keldysh, L. Behavior of
non-metallic crystals in strong electric fields, Sov. Phys.
JETP 6, 763 (1958)]:

Keldysh, L. Sov. Phys. JETP 47, 1307-1314 (1964).
1. Ionization probability obtained from Fermi golden
rule, using Houston wave functions.

2. Dressing of 2 electronic levels by the photon field.

A simplified dressing is included in Keldysh theories

2-bands description of dressing of electronic levels.
In MPI regime, effective band gap increases with field strength. In tunneling, it should ”decrease.”
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Band gap dynamics in the laser field Egap[ε (k+A)] ?

Gruzdev, V. Photoionization rate in wide band-gap
crystals. Physical Review B, 75, 205106 (2007).

−: cosine dispersion, · · · : Kane dispersion
(NaCl)

Approached band structure of NaCl (225) crystal
(topological materials.org)

Limits of the 2-band approximation

• Conditions for band gap opening with field?
• Is dispersion law sufficient to estimate a dynamical band gap variation?
• What happens if we account for more bands?

29 / 121
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Reversible metallization
of dielectrics

2011 Durach, M.; Rusina, A.; Kling,
M. F. & Stockman, M. I.
Predicted Ultrafast Dynamic
Metallization of Dielectric
Nanofilms by Strong
Single-Cycle Optical Fields,
Phys. Rev. Lett. 107, 086602
(2011)

Phys. Rev. Lett. 107, 086602 (2011)

2012 Schiffrin, A. [...]; Stockman, M.
I. & Krausz, F. et al.,
Optical-field-induced current in
dielectrics, Nature 493, 70 (2012)
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Transient states in Bi2Se3 (⩽77 K, E⃗ : ↕ vs ⟲)
2016 Mahmood, F.; Chan, C.-K.; Alpichshev,

Z.; Gardner, D.; Lee, Y.; Lee, P. A. &
Gedik, N. Nature Physics, 12, 306-310
(2016)

Linear polarization (E⃗ ↕): replication of band structure

• Transient Wannier-Stark ladder observed in solids (i.e., dressed
picture is meaningful).

• Accessible via TD-ARPES & AR-pump-probe.
• Band gap closes during the pulse.

2013 Wang, Y. H.; Steinberg, H.;
Jarillo-Herrero, P. & Gedik, N. Science
342, 453-457 (2013)

Circular polarization (E⃗ ⟲): potential opening of gap

Only in two-dimensional & topological materials.
31 / 121
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Band structure at 0K
Waroquiers, D.; Lherbier, A.; Miglio, A.; Stankovski, M.; Poncé, S.; Oliveira, M. J. T.;
Giantomassi, M.; Rignanese, G.-M. & Gonze, X. Physical Review B, 87, 075121 (2013)

DFT band gaps @ 0K (dir. and indir.)

DFT+LDA: 2.56 eV and 0.51 eV.
DFT+TB09: 3.04 eV and 0.98 eV.

GW band gaps @ 0K (dir. and indir.)

GW+LDA: 3.25 eV and 1.21 eV.
GW+TB09: 3.44 eV and 1.38 eV.
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Band structure TB09 (T=0 K)
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Direct band gap energy: 3.06 eV. Indirect band gap enregy: 1.04 eV.
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TDDFT simulations
TDDFT: ”time-dependent density functional theory”
Kohn-Sham equation in a solid using the method of ab-initio norm-conserving pseudo-potentials





−

i h̄

2me

∇r

︸ ︷︷ ︸
kinetic energy

+
|e|
c
A(t)




2

+ v̂ion (r)︸ ︷︷ ︸
atoms

+ v̂H [n (r, t)]︸ ︷︷ ︸
e- density-functional

(r)+ (1)

+ v̂xc [n (r, t)]︸ ︷︷ ︸
e- density-functional

(r)


×ψn,k (r, t) = i h̄

∂

∂ t
ψn,k (r, t)

with vector potential (dipolar approximation)

A(t) =−c
∫ t

−∞

E
(
t ′
)

︸ ︷︷ ︸
laser light

dt ′, (2)

expresssed in atomic units (Hartree).
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Some of ”Top500” computers used in our works

”Salomon” and ”Barbora”, IT4I, Ostrava, Czech
Republic

”Karolina”, IT4I, Ostrava, Czech
Republic
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Experience with Top500 supercomputers

Top500.org: world-chart of the most efficient computers in the world.

Era Machine Institute Top500 Country System

2021+ Karolina CPU IT4I 149 Czech Republic Linux
2016-2019 Draco Max Planck 160 Germany Linux

2016 EOS Max Planck 264 Germany Linux
2015-2020 Salomon IT4I 40 Czech Republic Linux
2019-2020 Prometheus Cyfronet 49 Poland Linux

2010 Jade Cines.fr 18 France Linux
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Ex: charge density fluctuations

Derrien, T. J.-Y.; Tancogne-Dejean, N.; Zhukov, V.; Appel, H.; Rubio, A. & Bulgakova, N. M.
Unpublished material.
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Si slab: real-space visualization of electron oscillation
Video: click on the screen.
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Si bulk: real-space visualization of electron oscillation
Video: click on the screen.
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Ex: nexc (t), J (t), energy ξ
e
− (t)

Left: E = 1 V/nm. Right: E = 5 V/nm.
Derrien, T. J.-Y.; Tancogne-Dejean, N.; Zhukov, V.; Appel, H.; Rubio, A. & Bulgakova, N. M.

42 / 121



Outline
1 Context

Applications of ultrafast laser-induced phenomena in solids
Optical absorption driven by electrons dynamics in solids

Frozen band structure
Dynamical band structures: laser dressing was included in Keldysh (1965)

2 TDDFT: multi-band description using high-power computations
Modeling the laser excitation of electrons in Si (real-space, real-time TDDFT)
Scanning multiple parameters: database preparation
Results

3 How reliable are TDDFT predictions in the ultrafast regime? Benchmark vs high harmonic
generation (HHG) experiments

4 Predictions of TDDFT at high intensity (laser processing)
TDDFT predictions for laser processing: anisotropy in energy absorption & damage threshold

5 Reversible and ultrafast band structure engineering
Simplified model: Floquet + DFT
Preparation of dipolar matrix elements (DFT)
Si [227], LDA: EΓ

g = 2.56 eV. Dressing along K −Γ−X
Si [227], LDA: EΓ

g = 2.56 eV. ”3D” dressed band structure
Discussion

6 Overview: predictive modeling tools for high fields photonics are here and they work

7 IT4I/LQC: milestones towards designing a light-controlled multiqubit in solids?
43/135



44/135

In-house library: ”octopus-slabs”

Product: In-house library
”octopus-slabs”.
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Code development
Since2016 Multi-year investment @ 1 FTE.
2016-2023 Hosted by BitBucket.org (academic license 0C)
Since2023 Hosted by GitHub.com (PRIVATE REPO).

https://github.com/tjyderrien/octopus-slabs/

Merging into MPSD Hamburg PostOpus in discussion.
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Absorbed energy: TDDFT vs Drude model
Derrien, T. J.-Y.; Tancogne-Dejean, N.; Zhukov, V.; Appel, H.; Rubio, A. & Bulgakova, N. M.

Phys. Rev. B, 104 L241201 (2021)

Observation

• Prediction of the absorbed electron energy from TDDFT.
Multiphotonic peaks are clearly visible.
• 1 Drude model applied to all wavelengths and intensities using 1

collision frequency ν−1 = 6 fs (indep. from field or
wavelength).

Questions

• How accurate are TDDFT results vs experiments? In which
regime?
• Could damage threshold of e.g. Si (τ < τeph) be studied by

combining Keldysh & Drude models inside a thermal model?
• Applications of the transient band gap dynamics?

1
1Product: prediction of excitation rates and absorbed energy for laser processing labs/companies... 47 / 121
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Excitation: TDDFT vs Keldysh model for Si (⃗E is ↕)
Derrien, T. J.-Y.; Tancogne-Dejean, N.; Zhukov, V.; Appel, H.; Rubio, A. & Bulgakova, N. M.
Phys. Rev. B, 104 L241201 (2021)

Keldysh model (1964): limited qualitative agreement w/ TDDFT

• Keldysh excitation rate wPI: qualitative agreement for Si. Agreement as function of
wavelength was impressive (Si: Γ→ Γ, valid for τ < 30 fs).

• Band-gap decreases with intensity: light-induced tunneling. 5 ph.→ 4→ 3→ 2→ 1→ 0.

48 / 121



49/135

Example of TDDFT-generated excitation rates
Derrien, T. J.-Y.; Tancogne-Dejean, N.; Zhukov, V.; Appel, H.; Rubio, A. & Bulgakova, N. M.

Phys. Rev. B, 104 L241201 (2021)

Method Wavelength τp Band gap Intensity range (W/cm2) Eff. transition probability Ref.

Theory (TD-LDA) 3200 nm 30 fs 2.56 eV (d) (2.1−9.9)×1010 σ5

(
m7W−4

)
= 4.84×10−56 This work

(1.0−2.6)×1011 σ4

(
m5W−3

)
= 3.05×10−41 This work

(2.6−5.3)×1011 σ3

(
m3W−2

)
= 5.25×10−26 This work

(0.53−3.4)×1012 σ2

(
mW−1

)
= 2.00×10−10 This work

(0.34−1.0)×1013 σ1

(
m−1

)
= 2.93×106 This work

Exp. 200 fs σ3

(
m3W−2

)
= 0.5×10−26 Pearl et al. (2008)

More is available for direct transitions

• See Suppl. Inf. of the paper. [Derrien et al., PRB 104 L241201 (2021)].
• TDDFT database at QuantumLaP.eu
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Ultrafast band-gap closure in semi-conductors

T. J.-Y. Derrien, N. Tancogne-Dejean, [...] and
N. M. Bulgakova, Phys. Rev. B. 104 L241201

(2021)

Effect of the laser excitation (⃗E ↕) on the band

structure?

Upon fs irradiation, ”trivial” band-gap materials
become metallic above a threshold intensity.

Joint work with Kristyna Gazdova & Andrés I. Bertoni

λ = 1030 nm, E ≤ 0.05 V/nm (~3×10
10 W/cm2).
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Ultrafast band-gap closure in semi-conductors

T. J.-Y. Derrien, N. Tancogne-Dejean, [...] and
N. M. Bulgakova, Phys. Rev. B. 104 L241201

(2021)

Effect of the laser excitation (⃗E ↕) on the band

structure?

Upon fs irradiation, ”trivial” band-gap materials
become metallic above a threshold intensity.

Joint work with Kristyna Gazdova & Andrés I. Bertoni

λ = 1030 nm, E ≤ 0.05 V/nm (~3×10
10 W/cm2).
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More: database of excitation rates, absorbed energy, ...
For Si, +3,000 TDDFT simulations with relevant laser pulses have been prepared
[~M-core-hours per year]
• Several materials (Si, SiO2, Mo, Au, ...)
• Several pulse shapes, pulse mixtures, ...
• Several observables (absorbed energy, currents, harmonic spectra, ...).
• All the work has been systematized into PYTHON & BASH routines for collaboration purposes.

High Power Computation Projects
• IT4Innovations National Supercomputing Center - eINFRA (ID:90140), sub-proj. MORILLE, FLAMENCO,

FILIPINAS.
• PRACE aisbl (projects BOLERO, FRECUENCIA).

Backup National Grid Infrastructure MetaCentrum eINFRA (ID:90140).
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”Ultrafast” regime: disregarding phonons.

Role of phonons

• τ,t < γ
−1
e-ph: assuming an ”optical” regime;

• τ,t > γ
−1
e-ph: assuming a thermodynamical ”collisional” regime: ν = f (Te ,Tlattice).

Si: Schultze, M. & al. Science 346,
1348-1352 (2014)

Material e-ph coupling time Ref.

Si ≳240 fs (exp.) Sjodin et al. PRL (1998)

Si ∼64 fs (exp.) Schultze et al. Science (2014)

Au 770 fs - 20 ps (th.) Lin et al. PRB (2008)

Mo 70 fs - 1.4 ps (th). Lin et al. PRB (2008)

Electron-phonon coupling times in various
crystals.

0 10000 20000 30000 40000 50000
Te (K)

10−1

100

101

τ e
p
h
(p
s)

Au

Mo

Fe BCC

Fe FCC

Reconstructed from Lin, Z.; Zhigilei, L. V. &
Celli, V. Physical Review B 77, 075133 (2008)

Choice for this work

We consider pulses τ ≪ γ
−1
e-ph, and disregard effect of lattice→ direct transitions at Γ.
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HHG experiments in reflection @ Charles Uni., Prague

• Group of assoc. prof. Martin Kozak.
• τ = 15 fs or 25 fs at FWHM.
• Wavelength λ ∼ 2000 nm.
• Electric field: E = 3 V/nm out of

sample.
• Probing harmonics generated in

reflection configuration.

Suthar, P.; Trojánek, F.; Malý, P.; Derrien, T.
J.-Y. & Kozák, M., Comm. Phys. 5, 288

(2022).

”Ultrashort” pulses

Experimental

Quantity Notation Value Unit

Pulse duration τ 25 fs
Wavelength λ 2000 nm

Band gap energy EΓ
g 3.4 eV

Optical cycles nOC 3.747 cycles

Table: 25 fs FWHM pulses
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Experiment: HHG(φ ,n)
Dr. Martin Kozak group (Charles University). Experimental measurement of harmonic spectrum
emitted by Si as function of sample orientation.
• n: harmonic order.
• φ : orientation angle in plane ([100] , [110]).

Suthar, P.; Trojánek, F.; Malý, P.; Derrien, T. J.-Y. & Kozák, M., Comm. Phys. 5, 288 (2022).

56 / 121



57/135

Observables

Excited electron density (Otobe et al., 2008)

nexc(t) =
1

V


Ntot−

occ.

∑
n,n′,k

∣∣∣∣∣∣∣

∫
d3

r ψ
†
n′,k(r, t)︸ ︷︷ ︸

time-evolved

ψ
GS
n,k(r)︸ ︷︷ ︸

ground state

∣∣∣∣∣∣∣

2
 . (3)

Total current (Stefanucci & Leeuwen, 2013)

J(t) ∝
(
∇ψ

†)
ψ−ψ

† (∇ψ)

Harmonic spectrum (Larmor formula) (Floss et al., 2018; Tancogne-Dejean et al., 2017)

HHG(ω) = ω
2 |F [J(t)] (ω)|2 .
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State of art in Germany

Simulation of high-harmonic generation has been historically difficult.

Max Planck Institute: Klemke et al. Nat. Comm. 10, 1319 (2019): τ = 50 fs, λ = 2080 nm, sin2, TB09.
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CZ: HHG experiment vs TDDFT

Czech Republic: Suthar, P.; Trojánek, F.; Malý, P.; Derrien, T. J.-Y. & Kozák, M., Comm. Phys. 5, 288 (2022). [(a,c): exp.,
(b,d): TDDFT. (a,b): λ = 2000 nm, (c,d): λ = 800 nm].

Ultrafast photonic applications can rely on predictions provided by TDDFT

• High quality predictions: model matches with experiments.
• Can be applied to other materials. Can be improved by introducing real shape of pulse.
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Effect of temperature on HHG spectra, ab-initio
Japan: Freeman, D.; Kheifets, A.; Yamada, S.; Yamada, A. & Yabana, K. High-order harmonic generation in
semiconductors driven at near- and mid-infrared wavelengths, Phys. Rev. B, 106, 075202 (2022)

Effect of lattice temperature? Not much in Si

• J (t): temperature→ a source for damping the oscillations of electrons.
• Harmonic spectrum is sensitive to ultracold environments (space!)
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Introducing losses?
In pure TDDFT, J(t) is eternally oscillating (no damping). To avoid inducing a non-physical
discontinuity at the end of simulation, damping is applied to currents.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
1e−13

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00 No damping
sin2
sin4
sin6

−1 0 1 2 3 4

10−11

10−8

10−5

10−2

101

104 No damping
sin2
sin4
sin6

Method for damping the tail of the current J (t)

Jdamped (t) = J(t)×η (t)

where

η (t) = 1−H
(
t− tfinal + tdamping

)
+

+sin2
[

π

2
× t− tfinal

tdamping

]

×H
(
t− tfinal + tdamping

)

× [1−H (t− tfinal)]

and H (t) is the Heaviside function.

In all the following slides

This damping is applied to all J (t), and impacts
HHG(ω) distribution.
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Effect of ”decoherence time”

HHG(φ = 0◦,45◦) - TB09 - τ = 25 fs - sin4
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Importance of decoherence & damping

Temporal dynamics is crucial: collisions and decoherence induce discrepency of TDDFT vs TD-experiments.
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Latest benchmark: HHG ω +3ω vs TDDFT
Gindl, A.; Suthar, P.; Trojánek, F.; Malý, P.; Derrien, T. J.-Y. & Kozák, M.
Attosecond control of solid-state high harmonic generation using ω-3ω fields, arXiv:2310.07254
τ = 30 fs, λ1 = 2000 nm, λ2 = 666 nm. E ∼ 1.5 V/nm (I ∼ 0.3×10

12 W/cm2 or 8 mJ/cm2).

Effect of CEP on harmonic emission (filtered HHG yield)

Our TDDFT predictions reveal the extreme sensitivity of HHG to CEP

Choice of carrier-envelope phase (CEP) has large influence on attosecond electron excitation dynamics in
solids.
→ Coherent control of electron dynamics possible in the bi-color mixing regime.
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Exp. HHG ω +3ω vs TDDFT predictions
Gindl, A.; Suthar, P.; Trojánek, F.; Malý, P.; Derrien, T. J.-Y. & Kozák, M.
Attosecond control of solid-state high harmonic generation using ω-3ω fields, arXiv:2310.07254
τ = 30 fs, λ1 = 2000 nm, λ2 = 666 nm. E ∼ 1.5 V/nm (I ∼ 0.3×10

12 W/cm2 or 8 mJ/cm2).

HHG experiments← |→: TDDFT simulations

Our TDDFT predictions vs attosecond HHG experiment

Phase-dependent agreement for multiple harmonic orders in the tunneling regime
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HHG ω +3ω vs TDDFT: high prediction capabilities
Gindl, A.; Suthar, P.; Trojánek, F.; Malý, P.; Derrien, T. J.-Y. & Kozák, M.
Attosecond control of solid-state high harmonic generation using ω-3ω fields, arXiv:2310.07254
τ = 30 fs, λ1 = 2000 nm, λ2 = 666 nm. E ∼ 1.5 V/nm (I ∼ 0.3×10

12 W/cm2 or 8 mJ/cm2).

−: exp. · · · : TDDFT

Our TDDFT predictions vs attosecond HHG experiment

Phase-dependent and time-dependent agreement for multiple
harmonic orders in the tunneling regime: adequate to predict
attosecond dynamics in solids.

Resonant control on temporal emission
dynamics of HHG

−: experiment | · · · : TDDFT
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HHG ω +3ω vs TDDFT: discussion
Gindl, A.; Suthar, P.; Trojánek, F.; Malý, P.; Derrien, T. J.-Y. & Kozák, M.
Attosecond control of solid-state high harmonic generation using ω-3ω fields, arXiv:2310.07254
τ = 30 fs, λ1 = 2000 nm, λ2 = 666 nm. E ∼ 1.5 V/nm (I ∼ 0.3×10

12 W/cm2 or 8 mJ/cm2).

Tamaya, T. & Kato, T. Phys. Rev. B,
100, 081203(R) (2019)

Discussion

Electron dynamics induced by bi-color mixing may be linked to the dynamical band structure (sub-bands &
Rabi frequency variation with field & wavelength).
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2023: TDDFT prediction of a ”new” control parameter:
effect of Si [001] orientation

1 V/nm
(0.12 TW/cm²)

6 V/nm
(4 TW/cm²)

←: nexc (φ) excited e- density,→: ξabs (φ) absorbed energy (eV)
E = 1.6 V/nm ∼ 25 mJ/cm²
E = 6 V/nm ∼ 350 mJ/cm².

Orientation-dep. energy absorption pattern is also ... intensity-dependent

Low intensity: TDDFT predicts a 20% contrast in absorption pattern followinng the Si crystal symmetry.
High intensity: TDDFT predicts a 2% contrast (symmetry weakening / transition to plasma).
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2023: Experimental protocol

J. Sladek, Y. Levy (HiLASE Centre)
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2023: Orientation-dep. amorphization threshold
Juraj Sladek & Yoann Levy (HiLASE Centre).
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Condensed matter effect at various τ

Orientation-dependent damage threshold appears clearly, for 37 fs, 250 fs and 2 ps pulse duration.
[For <111>, see Florian et al., Materials 14, 1651 (2021)].
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Confirmed by Inst. de Optica (Madrid) & BAM Berlin

• Invited stay 15 days by Assoc. Prof. Mario
Garcia-Lechuga (CSIC/iLINK project).

• Experimental confirmation of
orientation-dependent damage threshold,
pump-probe, ...

Press release (CSIC)
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Discussion: Burnstein-Moss effect
Upon doping (resp. exciting electrons) a sample, band gap can shift (increase) due to saturation of
band edge levels.

Feneberg, M. et al. Band gap renormalization and
Burstein-Moss effect in silicon- and germanium-doped
wurtzite GaN up to 10

20 cm−3, Phys. Rev. B, 90,
075203 (2014)

Burnstein-Moss effect?

Saturation phenomena should also depend on crystal orientation and laser polarization.
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Discussion: Symmetry of Si bands meff(φ) in [001]

Valence bands ε (k)
correspond. to plane [001]

(”HOMO”)

Valence bands ε (k)
correspond. to plane [001]

(”HOMO”)

Conduction bands ε (k)
correspond. to plane [001]

(”LUMO”)
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Simulation of electron dressing in solids

2016 De Giovannini, U.; Hübener, H. & Rubio, A. Monitoring Electron-Photon Dressing in WSe2,
Nano Letters, 16, 7993-7998 (2016)

−: Floquet-Stark ”dressed electron” energy
levels.

•: TDDFT-simulated angle-resolved
photo-emission spectrum (ARPES)

Two-band Floquet (toy-)model as
function of the laser field.
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Theory for AC fields: ”Floquet” H
• Higuchi, T.; Stockman, M. I. & Hommelhoff, P. Phys. Rev. Lett. 113, 213901 (2014)• De Giovannini, U.; Hübener, H. & Rubio, A. Nano Letters, 16, 7993-7998 (2016)• Temporal integration of operators on 1 optical cycle: H (t) = H (t+2π/ω).

H
m,n
Floquet (ω)≡

∫
dt e−i(m−n)h̄ωtH (t)±δm,nnh̄ω

ω : laser photon energy (at. units),
n-photons transitions (number of "replicates"),

m: number of electronic bands,

H (t) =HGS + A⃗(t) · ¯̄p︸ ︷︷ ︸
Hint

A : vector potential amplitude (at. units)
¯̄p : momentum operator

H (t) =

[
−Eg/2 0

0 Eg/2

]

︸ ︷︷ ︸
ground state band structure at k = (0,0,0)

+Acos(ωt)︸ ︷︷ ︸
laser field

×
[

0 M

M̄ 0

]

︸ ︷︷ ︸
dipolar coupling matrix at k = (0,0,0)

, (4)

M: dipolar transition matrix elements (at. units).
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Example: n = 1 photon, m = 2 bands.
Coupling of dressed energy levels with purely electronic levels

Heff2 bands =




−Eg
2
−ω −ω . AM

2
. .

−Ω Eg
2
−ω

AM̄
2

. . .

. AM
2

−Eg
2

. . AM
2

AM̄
2

. .
Eg
2

AM̄
2

.

. . . AM
2

−Eg
2
+ω Ω

. . AM̄
2

. Ω
Eg
2

+ω




. (5)

Eigen energy values (diagonalization):

E eff =





± 1

2

√
2A2MM̄+E2

g 2 lev.

± 1

2

(
±
√
M̄2A4M2+16A2MM̄ω2+64ω4+16ω2E2

g + 4 lev.

+A2MM̄+8ω2+E2
g

)
(6)

Conclusion for two-band models
In a two-band system, transient band-gap increases with field amplitude A (seems consistent with Keldysh ”∆̃”, ”Ueff”)

E eff
gap (A) =

√
2A2MM̄+E2

g ∝ A. (7)
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m = 2 bands, n = 1 photon.

Eg (Γ) = 2.56 eV (LDA band gap of Si).
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λ = 800 nm

Observation for 2 bands

Shifting originates from the AC Stark effect. Opening of the band gap is observed.
Low intensity also evidences some ”detuning”.
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m = 4 bands, n = 1 photon.

• In Si, 2 bands are degenerated 2 times at Γ-point. We use: H (A= 0) = 1

2
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Observation for 4 bands

Splitting of degenerated bands is observed. Crossing points are observed at points where band gap closes. This is
laser-induced tunneling/metallization.
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Application to Si: transient metallization at Γ
Effect of the laser excitation (⃗E ↕) on the band structure?

T. J.-Y. Derrien, N. Tancogne-Dejean, [...] and
N. M. Bulgakova, Phys. Rev. B. 104 L241201

(2021)

• Predictions for realistic materials is
possible at low cost (10 min).

• Which materials undergo
metallization / phase transition upon
irradiation?

/!\ Thermal effects are absent in the
presented descriptions.
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Dipolar matrices
Subset of dipolar matrix for polarization in (Ox) direction.

Si [227], LDA (Γ: 2.56 eV)
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0 5 10 15 20 25

0

5

10

15

20

25
−8

−6

−4

−2

0

2

SiO2, k = 8
3,

18 atoms, 30 electronic levels.

Density Functional Theory (DFT) - 3D

These results were computed for the 3D band structure.
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Validation of dipolar matrix elements

Lic. Andrés. I. Bertoni, Universidad de Cuyo (Mendoza, Argentina)

|di ,j |x ,y ,z(k) for Si (k = 243, δx = 0.18,
LDA).

Γ X U |K Γ L W X

0

20000

40000

60000

80000
∣∣∣∣
~~dx

∣∣∣∣
∣∣∣∣
~~dy

∣∣∣∣
∣∣∣∣
~~dz

∣∣∣∣

Linear response (AC conductivity) using
Kubo-Greenwood (no Drude) as function of orientation.

Built from ⃗⃗
dx ,y ,z for Si.
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Transient band structure: Si [227], E//(ΓX ), K −Γ−X

Orientation of
high-symmetry points

in real-space
E = 0.001 V/nm, λ = 1030 nm, n = 1
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Transient band structure: Si [227], E//(ΓX ), K −Γ−X

Orientation of
high-symmetry points

in real-space
E = 0.01 V/nm, λ = 1030 nm, n = 1
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Transient band structure: Si [227], E//(ΓX ), K −Γ−X

Orientation of
high-symmetry points

in real-space
E = 0.05 V/nm, λ = 1030 nm, n = 1
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Transient band structure: Si [227], E//(ΓX ), K −Γ−X

Orientation of
high-symmetry points

in real-space
E = 0.1 V/nm, λ = 1030 nm, n = 1
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Transient band structure: Si [227], E//(ΓX ), K −Γ−X

Orientation of
high-symmetry points

in real-space
E = 0.2 V/nm, λ = 1030 nm, n = 1
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Transient band structure: Si [227], E//(ΓX ), K −Γ−X

Orientation of
high-symmetry points

in real-space
E = 0.3 V/nm, λ = 1030 nm, n = 1
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Transient band structure: Si [227], E//(ΓX ), K −Γ−X

Orientation of
high-symmetry points

in real-space
E = 0.4 V/nm, λ = 1030 nm, n = 1
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Transient band structure: Si [227], E//(ΓX ), K −Γ−X

Orientation of
high-symmetry points

in real-space
E = 0.5 V/nm, λ = 1030 nm, n = 1
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Transient band structure: Si [227], E//(ΓX )

Orientation of
high-symmetry points

in real-space
E = 0.001 V/nm, λ = 1030 nm, n = 1
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Transient band structure: Si [227], E//(ΓX )

Orientation of
high-symmetry points

in real-space
E = 0.01 V/nm, λ = 1030 nm, n = 1
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Transient band structure: Si [227], E//(ΓX )

Orientation of
high-symmetry points

in real-space
E = 0.05 V/nm, λ = 1030 nm, n = 1
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Transient band structure: Si [227], E//(ΓX )

Orientation of
high-symmetry points

in real-space
E = 0.1 V/nm, λ = 1030 nm, n = 1

99 / 121



100/135

Transient band structure: Si [227], E//(ΓX )

Orientation of
high-symmetry points

in real-space
E = 0.2 V/nm, λ = 1030 nm, n = 1
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Transient band structure: Si [227], E//(ΓX )

Orientation of
high-symmetry points

in real-space
E = 0.3 V/nm, λ = 1030 nm, n = 1
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Transient band structure: Si [227], E//(ΓX )

Orientation of
high-symmetry points

in real-space
E = 0.4 V/nm, λ = 1030 nm, n = 1
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Transient band structure: Si [227], E//(ΓX )

Orientation of
high-symmetry points

in real-space
E = 0.5 V/nm, λ = 1030 nm, n = 1
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Interpretation

Excitation direction Response No response

(ΓX )

(ΓX ) (XU)

(KΓ)

(ΓL)

(WX )

(LW )

Interpretation

• Intraband absorption modifies band gap, and modifies interband absorption.
• Strong anisotropy emerges from the laser irradiation: constrained electron trajectories.
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Discussion

Artefact? No!

Analytical models did exhibit a similar response in simplified cases.

Faisal, F. H. M. & Kamiński, J. Z. Physical Review A 56, 748-762 (1997)
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Predicting materials reaction to ultrafast light
from quantum to large scales

Multiband quantum
description of e- in

matter
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K −Γ−X

Benchmark of
simplified theories

Derrien et al., Phys. Rev.
B. 104 L241201 (2021)

Transient band-gap
dynamics

Derrien et al., Phys. Rev.
B. 104 L241201 (2021)

Benchmarking TDDFT
vs reality (HHG)

Suthar, P. et al. Comm.
Phys. 5, 288 (2022)

Gindl, A. et al.
arXiv:2310.07254

(2024)

Predictions of new
control parameters

1 V/nm
(0.12 TW/cm²)

Quantum effects at
large scales
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Validity ranges of formalisms

Adadpted from proposal H2020-MSCA-RISE-2018 ”ATLANTIC”
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Milestones & outlooks

Considered done
• Early instants (~ 50 fs) of light-matter interaction with topologically trivial materials (Si,

SiO2, SiC, CaF2, ...) are now well described up to intensities enabling materials
modification (strong field regime), still disregarding some induced defects: annealing,
reduction of oxidation, etc...

• Prediction capabilities of available models at the ultrafast scales (faster-than-phonon
response) have reached excellent maturity: demonstrated with HHG spectroscopy vs TDDFT.

The future: optimal control at ultrafast timescales
• Ultrafast pulses in perturbative regime should enable to use reversible population of

exciton-polariton states (with fs/ps lifetimes), along with avoiding damage.
• Occupations of electronic states in matter can be populated at will (bicolor mixing).
• Design crystals and to consider controlling their reaction upon few-cycle light.
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Relaxation dynamics: probing (in)direct transition
using HHG(ω ,t) spectroscopy

Suthar, P.; Trojánek, F.; Malý, P.; Derrien, T. J.-Y. & Kozák, M. Momentum-dependent intraband
high harmonic generation in a photodoped indirect semiconductor, Comm. Phys., 7, 104 (2024)

Need for relaxation dynamics

Finite temperature DFT + TDDFT possible.
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What should be a good qubit?
Nielsen & Chuang 2010, p. 278, Quantum Computation & Quantum Information (Cambridge U.
Press)

√
Finite number of states (digital
quantum computer): light intensity
actually acts as a selector for the
number of states.

√
How to probe the states? Harmonic
spectroscopy appears extremely
precise, still state-destructive.

√
Timescales of the interaction?
• τQ : time of decoherence
• τop : time for population of

states
• fs laser + Si = FAST! but not a

great coherence time.

−→Multi-material study @ poster ”Quantum
Dynamics of Systems” @ IT4I Users Meeting,
November.

Lifetimes of qubits (s)

Exciton-polaritons in Si as multiqubits? Not great, but fast!

τQ ∼ τe-ph ≥ 5×10
−14s | τop ∼ 5×10

−17 s | nop ∼ 10
3.
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Superconducting transmon & geometry

Willsch et al. Nat.
Phys. 20, 815 (2024)

Liu and Black, Phys. Rev. A 110, 012427
(2024)

Piazza et al., Nature
Communications 6, 6407

(2015)
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Next steps: classical multi-material approach
July 2016 Patent in CZ.

Aug.2017 Publication in Scientific Reports (Nat. Publ. Group).
Nov. 2017 Press articles: Technical Weekly, Ceska Televize (CTV 24), Novinky.cz.

Jan2018 Patent in EU No. WO2018010707.

Gnilitskyi, I.; Derrien, T. J.-Y., Levy, Y., Bulgakova N. M. et al. Sci. Rep. 7, 8485 (2017).

What was key?

A multi-material approach enabled by databasing of optical properties, and of plasmon polaritons properties.
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Polaritons in thin films

Derrien, T. J.-Y.; Koter, R.; Krüger, J.;
Höhm, S.; Rosenfeld, A. & Bonse, J.; J.

Appl. Phys., 116, 074902 (2014)

Derrien, T. J.-Y.; Koter, R.; Krüger, J.;
Höhm, S.; Rosenfeld, A. & Bonse, J.; J.

Appl. Phys., 116, 074902 (2014)
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Strong coupling polaritonics

A. Dostovalov, T. J.-Y. Derrien, S. Lisunov, [...] and N. M. Bulgakova, Appl. Surf. Sci. 491, 650 (2019).

Latini, S.; Ronca, E.; de Giovannini, U.; Hübener, H. & Rubio, A., Nano Letters 19, 3473 (2019).
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Multiple polaritons
in thin cavities

A. Dostovalov, T. J.-Y. Derrien, S. Lisunov, [...] and N. M. Bulgakova, Appl. Surf. Sci. 491, 650 (2019).

High-spatial frequency LIPSS explained by SPP, oxidation and porosity.

Multiple polaritonic modes are found in metal and in oxides.
LSFL-|| are well explained by Plasmon Polariton in metallic regime.
Oxidation seems to play a major role in the formation of HSFL-⊥, Λ≪ λ structures.
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IQM (Finland) won the tender!
Press release September 26th, 2024
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Collaborations & publications

thibault.derrien@vsb.cz | derrien@fzu.cz | Twitter/X @tjyderrien

Current financial support
• FZU Institute of Physics, Prof. N. M. Bulgakova. Sendiso

project.
• IT4Innovation, V. Vondrak, B. Jansik, M. Lampart.

Experimentalists
• assoc. prof. Martin Kozák, Charles University (Prague, Czech

Republic).
• Dr. Yoann Levy & Dr. Juraj Sladek, HiLASE Centre (Prague,

Czech Republic).
• Dr. Jörn Bonse, BAM (Berlin, Germany).

Theoretical support
• HiLASE Centre: PhD std. Kristyna Gazdova
• UNCuyo, Mendoza, Argentina : Lic. Andrés I. Bertoni, Prof.

Cristián Sanchez.
• MPSD Hamburg: Dr. Nicolas Tancogne-Dejean, Dr. Franco

Bonafé

Selected (quantum) publications of this presentation

TDDFTSi Derrien, T. J.-Y.; Tancogne-Dejean, N.; Zhukov,
V.; Appel, H.; Rubio, A. & Bulgakova, N. M.
Phys. Rev. B 104, L241201 (2021).

MoredetailsonTDDFT Derrien, T. J.-Y.; Levy, Y. & Bulgakova, N.
M. Chap. 1 in Ultrafast Laser Nanostructuring -
The Pursuit of Extreme Scales (Eds. R. Stoian, J.
Bonse), Springer, 2023.

HHG Suthar, P.; Trojánek, F.; Malý, P.; Derrien, T.

J.-Y. & Kozák, M., Comm. Phys. 5, 288 (2022).
Gindl, A.; Suthar, P.; Trojánek, F.; Malý, P.;
Derrien, T. J.-Y. & Kozák, M., arxiv:2310.07254.

Orientation Sládek, J.; Levy, Y.; Bonse, J.; Bulgakova, N. M.
& Derrien, T. J.-Y. Polarization-dependent
damage threshold of Si [100] upon femtosecond
and picosecond laser irradiation. In finalization.
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Outline

8 Re-using TDDFT datasets: introduce the TDDFT excitation rates into large scale description
(rate equations)

9 Supplementary slides
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Excitation of electrons: band gap reduction & data continuity

Derrien, T. J.-Y.; Tancogne-Dejean, N.;
Zhukov, V.; Appel, H.; Rubio, A. & Bulgakova,

N. M. Phys. Rev. B, 104 L241201 (2021)

Key point

In atomic physics, n increases with intensity.
In solid state physics, n decreases.

A data approach to electron excitation

• Multiphotonic rates are not directly usable: number of
photons n changes with intensity (ultrafast metallization)

σnI
n→ σn(I )I

n(I ).

• Keldysh model is not directly usable: it has
discontinuities due to interruption of transition between 2
levels (”Wannier-Stark localization”).
• Data from TDDFT are contiguous, due to multiband

description: only 1 transition can be disabled at once
(theorem of ”Le Bourget”).

Let’s try!

Reduction of the band-gap during pulse→ effect at large
spatial scale (µm)?
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1st attempt: sources terms for rate equations (RE)
• Density of conduction bands electrons

∂nexc

∂ t
+∇ ·J= Ge-h +RAR (8)

Ge-h =

{
wTDDFT

PI

[
f

(
Re

√
εeq (ω)

)
× I (t)× [1−R (t)]

]
+

+ δII (nexc)︸ ︷︷ ︸
negligible if τ ≪ τeph

×nexc (t)

}
×n

†
0
−nexc (t)

n
†
0

(9)

where f (x) = x×θ (x) and θ (x) is Heaviside function.
• Beer-Lambert law

dI

dz
=−


h̄ω×nTDDFT

ph (I )× wTDDFT
PI [I ]︸ ︷︷ ︸

MPI+tunnel+fcr. abs.


 , (10)
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Method for interfacing

Difficulties
• Discontinuity of the Keldysh model at

Wannier-Stark localizations
• Number of photons for multiphoton absorption:

depends on intensity!

n = n (I )

• TDDFT provides predictions for high
intensity pulse: how to describe intensities
from 0 to our calculations?

Methods
• Extend the TDDFT data down to 0 V/m by

using piece-wise interpolation.
• Directly use the resulting parametrization

inside the RE model, and address various
wavelengths.
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Large-scale effects of dressing (λ =800 nm, τ =30 fs)
Spatio-temporal evolution of number of photons necessary for a direct transition in Si.

Introducing the laser dressing into large-scale description

Laser modifies the gap of interaction during the pulse.

0.1 µm thin Si sample - 0.18 J/cm² 5 µm thick Si sample - 0.5 J/cm²

Band structure engineering using light

Large-scale consequence of laser dressing: a position-dependent band structure⇒ ultrafast currents generated in the band
gap material→ electron acceleration.
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Miniaturisation of accelerators using dielectrics gratings
and fs lasers

Peralta, E. A.; Byer, R. L. et al, Demonstration of electron acceleration in a laser-driven dielectric
microstructure, Nature 503, 91 (2013)
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Research frameworks

(Schleder et al., 2019)
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Quantum approaches in the production cycle

Schleder, Gabriel "From DFT to machine learning: recent approaches to materials science”,
Journal of Physics: Materials 2, 032001 (2019).
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Pulse shape optimization + photonic design

Ma, Boltasseva et al (Ma et al., 2021)
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Special session @ LPM 2023, Japan
Special session ”Machine learning and Simulation for Laser Processing”

Laser Precision Microfabrication 2023

132 / 121

http://www.jlps.gr.jp/lpm/lpm2023/sessions/


132/135

Database of excitation rates, absorbed energy, ...
For Si, ~3,000 TDDFT simulations with relevant laser pulses have been prepared [~2.7
M-core-hours per year]
• Several materials (Si, Mo, Au, ...)
• Several pulse shapes, pulse mixtures, ...
• Several observables (absorbed energy, currents, harmonic spectra, ...).
• All the work has been systematized into PYTHON & BASH routines for collaboration purposes.

High Power Computation Projects
• IT4Innovations National Supercomputing Center - eINFRA (ID:90140), sub-proj. MORILLE, FLAMENCO,

FILIPINAS.
• PRACE aisbl (projects BOLERO, FRECUENCIA).

Backup National Grid Infrastructure MetaCentrum eINFRA (ID:90140).
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ML with quantum approaches

Open questions
• What could be done beyond interpolation /

extrapolation of existing results?
• Can it help to reduce k-grid space? mesh

space? decrease cost of calculations?
• How many TDDFT simulations are

necessary to train the algorithm? millions?
thousands?

Attempts using SKLEARN for now: extrapolation
of nexc from ∼18 input parameters.

Talent competition high-school student (CZ)

Topic: Supervised machine-learning on existing
TDDFT datasets for accelerating laser
processing.

Preliminary results

A satisfactory training requires ~100+ TDDFT data points in a given set of parameters.
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8 Re-using TDDFT datasets: introduce the TDDFT excitation rates into large scale description
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Contributions of higher orders

n = 1,2,3, ... replicates. E = 0.2 V/nm, λ = 1030 nm.

n = 1 n = 2 n = 3
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