
Lectures: Lubomír Říha

Hands-on: Jakub Homola, Milan Jaroš, Radim Vavřík, Filip
Vaverka and Joao Barbosa

IT4Innovations, VSB-TU Ostrava

GPU Programming with
CUDA

CUDA Memories

CUDA Memories
Hardware View

224

GPU

CPU

CPU

memory

(DRAM)

SM (Streaming Multiproc.)

Core

Registers

Shared memory/

L1 cache

Core

Registers

SM (Streaming Multiproc.)

Core

Registers

Shared memory/

L1 cache

Core

Registers

Cache (L2)

PCI-e

Global Memory (DRAM)

CPU

with

caches

On-chip memories

Off-chip memory

CUDA Memories
Hardware View

Memory hierarchy in Ampere generation (GA100)
• Registers

• 256 kB per SM

• Storage local to each threads

• Shared memory and L1 cache (192KB total)

• configurable up to 164KB for SM;
• remainder for L1 Cache

• low latency: ~22 cycles (SM), 34 cycles (L1d)

• high bandwidth: ~18 TB/s

• Read-only cache

• Up to 128 kB per SM

• L2 - 40 MB

• latency: ~ 200 or 350 cycles

• BW: ~ 7000 GB/s

• Global memory – 40 or 80 GB HBM2

• BW ~ 1500 GB/s

• High latency (400-800 cycles)

225

SM (Streaming Multiprocesor)

Shared

memory

Registers

Cache (L2)

Global Memory

L1

 cache

Read

only

SM

…

Regs.

Peter Van Sandt, Citadel, Zhe Jia, Citadel: Dissecting the Ampere GPU Architecture through Microbenchmarking
https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s33322/

https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s33322/

CUDA Memories
Caches

Why do GPU have caches?

In general, not for cache blocking

• 100s ~ 1000s of threads running per SM

• tens of thousands of threads sharing the L2 cache

• L1, L2 are small per thread.

• Example: at 2048 threads/SM, with 80 SMs:

• 64 bytes L1 per thread,

• 38 Bytes L2 per thread.

Shared Memory is usually better option to cache data explicitly:

• user managed -> no evictions out of user control.

Caches on GPUs are useful for:

• “Smoothing” irregular, unaligned access patterns

• Caching common data accessed by many threads

• Faster register spills, local memory

• Fast atomics

• Codes that don’t use shared memory (naïve code, OpenACC, …)

226

SM (Streaming Multiprocesor)

Shared

memory

Registers

Cache (L2)

Global Memory

L1

 cache

Read

only

SM

…

Regs.

Source: NVIDIA https://on-demand.gputechconf.com/gtc/2018/presentation/s81006-volta-architecture-and-performance-optimization.pdf
Microbenchmarks: https://github.com/passlab/CUDAMicroBench , DOI Bookmark: 10.1109/IPDPSW52791.2021.00068

https://on-demand.gputechconf.com/gtc/2018/presentation/s81006-volta-architecture-and-performance-optimization.pdf
https://github.com/passlab/CUDAMicroBench
https://doi.ieeecomputersociety.org/10.1109/IPDPSW52791.2021.00068

CUDA Memories
Constant memory

227

Constant memory

• Read-only variables or arrays of global scope

• Qualified with __constant__ keyword

• Capacity 64 KiB

• Cached in 8 KiB constant (read-only) cache

• Very fast if all threads within a warp read the same address
• If the address is cached, throughput of constant cache

• If not cached, throughput of device memory

• If different threads read different addresses, the accesses are
serialized

• Example use: stencil coefficients

SM (Streaming Multiprocesor)

Shared

memory

Registers

Cache (L2)

Global Memory

L1

 cache

Read

only

SM

…

Regs.

CUDA Memories
Programmer View

• __device__ is optional when
used with __shared__, or
__constant__

• Automatic variables reside in a
register

• Except per-thread arrays
that reside in global
memory

228

(Device) Grid

Host

Host

memory

Block (0,0,0)

Thread 0,0,0

Registers

Shared memory/

L1 cache

Thread 0,0,1

Registers

Block (0,0,1)

Thread 0,0,0

Registers

Shared memory/

L1 cache

Thread 0,0,1

Registers

Cache (L2)

Constant Memory

CPU

with

cache

Global Memory

Variable declaration Memory Scope Lifetime

int LocalVar; register thread thread

__device__ __shared__ int SharedVar; shared block block

__device__ int GlobalVar; global grid application

__device__ __constant__ int ConstantVar; constant grid application

CUDA Memories
Hardware View

229Source: NVIDIA https://on-demand.gputechconf.com/gtc/2018/presentation/s81006-volta-architecture-and-performance-optimization.pdf

https://on-demand.gputechconf.com/gtc/2018/presentation/s81006-volta-architecture-and-performance-optimization.pdf

Global Memory

CUDA Memories
Global Memory Efficient Access

Memory Coalescing

• memory coalescing is important for effectively utilizing memory bandwidth in CUDA

• its origin in the DRAM burst

• for good performance, CUDA memory access must be coalesced

DRAM Burst – A System View

• Each address space is partitioned into burst sections

• Whenever a location is accessed, all other locations in the same section are also delivered to the GPU (or CPU)

• Basic example:

• a 16-byte address space, 4-byte burst sections

• In practice, we have at least 4GB address space, burst section sizes of 128-bytes or more

210 3 54 6 7 98 10 11 1312 14 15

Burst section Burst section Burst section Burst section

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

https://www.nvidia.com/en-us/training/teaching-kits/

CUDA Memories
Global Memory Efficient Access

Memory Coalescing

• when all threads of a warp execute a load instruction, if
all accessed locations fall into the same burst section,
only one DRAM request will be made and the access is
fully coalesced.

How to judge if an access is coalesced?

• Accesses in a warp are to consecutive locations if the
index in an array access is in the form of:

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

T0 T1 T2 T3

Coalesced Loads
T0 T1 T2 T3

Coalesced Loads

210 3 54 6 7 98 10 11 1312 14 15

Burst section Burst section Burst section Burst section

T0 T1 T2 T3

Un-coalesced Loads
T0 T1 T2 T3

Un-coalesced Loads

210 3 54 6 7 98 10 11 1312 14 15

Burst section Burst section Burst section Burst section

Un-coalesced Accesses

• When the accessed locations spread across burst
section boundaries:

• multiple DRAM requests are made

• Some of the bytes accessed and transferred are
not used by the threads

A[(expression with terms independent of threadIdx.x) + threadIdx.x];

https://www.nvidia.com/en-us/training/teaching-kits/

CUDA Memories
Global Memory Efficient Access

Memory access granularity

• 32 Bytes – 1 sector

• for Maxwell and Pascal

• Volta architecture

• 64 Bytes

• 2 sectors is default – second sector is
prefetched

• Ampere architecture

• granularity can be set to

• 32, 64 and 128 Bytes

Cache line size

• 128 Bytes – made of 4 sectors

Cache management granularity

• 1 cache line

Courtesy © 2012, NVIDIA

+96 +128+32 +64+0

Sector 0 Sector 3Sector 2Sector 1

128-Byte alignment

128 Byte cache line

Cache lines and Sectors

• Moving data between L1, L2 and DRAM

cudaDeviceSetLimit(cudaLimitMaxL2FetchGranularity, 32)

https://developer.download.nvidia.com/video/gputechconf/gtc/2020/presentations/s21819-optimizing-applications-for-nvidia-ampere-gpu-architecture.pdf

https://developer.download.nvidia.com/video/gputechconf/gtc/2020/presentations/s21819-optimizing-applications-for-nvidia-ampere-gpu-architecture.pdf

CUDA Memories
Global Memory Efficient Access

Scenario 1:

• Warp requests 32 aligned,
consecutive 4-byte words

Addresses fall within 4 sectors

• Warp needs 128 bytes

• 128 bytes move across the bus

• Bus utilization: 100%

...
addresses from a warp

96 192128 160 224 28825632 64 352320 384 448416
Memory addresses

0

sector

Courtesy © 2012, NVIDIA

Scenario 2:

• Warp requests 32 aligned,
permuted 4-byte words

Addresses fall within 4 sectors

• Warp needs 128 bytes

• 128 bytes move across the bus

• Bus utilization: 100%

addresses from a warp

96 192128 160 224 28825632 64 352320 384 448416
Memory addresses

0

sector

...

CUDA Memories
Global Memory Efficient Access

Scenario 3:

• All threads in a warp request the
same 4-byte word

Addresses fall within 1 sector

• Warp needs 4 bytes

• 32 bytes move across the bus

• Bus utilization: 12.5%

addresses from a warp

96 192128 160 224 28825632 64 352320 384 448416
Memory addresses

0

sector

Courtesy © 2012, NVIDIA

Scenario 4:

• Warp requests 32 scattered 4-byte
words

Addresses fall within N sectors

• Warp needs 128 bytes

• N*32 bytes move across the bus

• Bus utilization: 128 / (N*32)

addresses from a warp

...

96 192128 160 224 28825632 64 352320 384 448416
Memory addresses

0

sector

...

https://on-demand.gputechconf.com/gtc/2018/presentation/s81006-volta-architecture-and-performance-optimization.pdf

https://on-demand.gputechconf.com/gtc/2018/presentation/s81006-volta-architecture-and-performance-optimization.pdf

CUDA Memories
Global Memory Efficient Access

Scenario 5:

• Warp requests 32 unaligned,
consecutive 4-byte words

Addresses fall within 5 sectors

• Warp needs 128 bytes

• 160 bytes move across the bus

• Bus utilization: 80%

...
addresses from a warp

96 192128 160 224 28825632 64 352320 384 448416
Memory addresses

0

sector

Courtesy © 2012, NVIDIA

Scenario 6:

• 2 Warps request 32 unaligned,

 consecutive 4-byte words

Addresses fall within 9 sectors

• 2 Warps need 256 bytes

• 288 or 320 bytes move across the
bus (depends on presence of data
in cache)

• Bus utilization: 88% or 80%

addresses from a warp 1

96 192128 160 224 28825632 64 352320 384 448416
Memory addresses

0

sector

...
addresses from a warp 2

...

CUDA Memories
Global Memory Access for Matrix Multiplication

2D C Array in Linear Memory Space

241

M0,2

M1,1

M0,1M0,0

M1,0

M0,3

M1,2 M1,3

M0,2M0,1M0,0 M0,3 M1,1M1,0 M1,2 M1,3 M2,1M2,0 M2,2 M2,3

M2,1M2,0 M2,2 M2,3

M3,1M3,0 M3,2 M3,3

M3,1M3,0 M3,2 M3,3

M

linearized order in increasing address

A B

WIDTH

Thread 1
Thread 2

A[Row*n+i] B[i*k+Col]

H
E

IG
H

T

i is the loop counter in the inner product loop of the kernel code

Col = blockIdx.x*blockDim.x + threadIdx.x

Two Access Patterns of Basic Matrix Multiplication

A is m × n,

B is n × k

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

T1 T2

https://www.nvidia.com/en-us/training/teaching-kits/

CUDA Memories
Global Memory Access for Matrix Multiplication

2D C Array in Linear Memory Space

242

M0,2

M1,1

M0,1M0,0

M1,0

M0,3

M1,2 M1,3

M0,2M0,1M0,0 M0,3 M1,1M1,0 M1,2 M1,3 M2,1M2,0 M2,2 M2,3

M2,1M2,0 M2,2 M2,3

M3,1M3,0 M3,2 M3,3

M3,1M3,0 M3,2 M3,3

M

linearized order in increasing address

A B

WIDTH

Thread 1
Thread 2

A[Row*n+i] B[i*k+Col]

H
E

IG
H

T

i is the loop counter in the inner product loop of the kernel code

B[i*k+Col] and Col = blockIdx.x*blockDim.x + threadIdx.x

Two Access Patterns of Basic Matrix Multiplication

N

T0 T1 T2 T3

Load iteration 0
T0 T1 T2 T3

Load iteration 1

Access

direction in

kernel code

B0,2

B1,1

B0,1B0,0

B1,0

B0,3

B1,2 B1,3

B2,1B2,0 B2,2 B2,3

B3,1B3,0 B3,2 B3,3

B0,2B0,1B0,0 B0,3 B1,1B1,0 B1,2 B1,3 B2,1B2,0 B2,2 B2,3 B3,1B3,0 B3,2 B3,3

Matrix B accesses are coalesced

A is m × n,

B is n × k

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

T1 T2

https://www.nvidia.com/en-us/training/teaching-kits/

CUDA Memories
Global Memory Access for Matrix Multiplication

2D C Array in Linear Memory Space

243

M0,2

M1,1

M0,1M0,0

M1,0

M0,3

M1,2 M1,3

M0,2M0,1M0,0 M0,3 M1,1M1,0 M1,2 M1,3 M2,1M2,0 M2,2 M2,3

M2,1M2,0 M2,2 M2,3

M3,1M3,0 M3,2 M3,3

M3,1M3,0 M3,2 M3,3

M

linearized order in increasing address

A B

WIDTH

Thread 1
Thread 2

A[Row*n+i] B[i*k+Col]

H
E

IG
H

T

i is the loop counter in the inner product loop of the kernel code

B[i*k+Col] and Col = blockIdx.x*blockDim.x + threadIdx.x

A[Row*n+i] and Row = blockIdx.y*blockDim.y + threadIdx.y

Two Access Patterns of Basic Matrix Multiplication

N

T0 T1 T2 T3

Load iteration 0
T0 T1 T2 T3

Load iteration 1

Access

direction in

kernel code

B0,2

B1,1

B0,1B0,0

B1,0

B0,3

B1,2 B1,3

B2,1B2,0 B2,2 B2,3

B3,1B3,0 B3,2 B3,3

B0,2B0,1B0,0 B0,3 B1,1B1,0 B1,2 B1,3 B2,1B2,0 B2,2 B2,3 B3,1B3,0 B3,2 B3,3

T0 T1 T2 T3Load iteration 0

T0 T1 T2 T3Load iteration 1

Access

direction in

kernel code

A0,2

A1,1

A0,1A0,0

A1,0

A0,3

A1,2 A1,3

A2,1A2,0 A2,2 A2,3

A3,1A3,0 A3,2 A3,3

A0,2A0,1A0,0 A0,3 A1,1A1,0 A1,2 A1,3 A2,1A2,0 A2,2 A2,3 A3,1A3,0 A3,2 A3,3

Matrix B accesses are coalesced Matrix A Accesses are Not Coalesced

A is m × n,

B is n × k

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

T1 T2

https://www.nvidia.com/en-us/training/teaching-kits/

Hands-on
Matrix Sum

Shared Memory

CUDA Memories
Shared Memory in CUDA

Special type of memory whose contents are explicitly
defined and used only in the kernel source code

• one independent chunk in each SM

• accessed at much higher speed (in both latency
and throughput) than global memory

• scope of access and sharing – all threads in a
block

• lifetime – thread block, contents will disappear after
the corresponding block (all threads) finishes and
terminates execution

• accessed by memory load/store instructions

• a form of scratchpad memory in computer architecture

246

(Device) Grid

Block (0,0,0)

Thread 0,0,0

Registers

Shared memory/

L1 cache

Thread 0,0,1

Registers

Block (0,0,1)

Thread 0,0,0

Registers

Shared memory/

L1 cache

Thread 0,0,1

Registers

Cache (L2)

https://towardsdatascience.com/how-the-hell-are-gpus-so-fast-a-e770d74a0bf

Global Memory

CUDA Memories
Shared Memory in CUDA

247

(Device) Grid

Block (0,0,0)

Thread 0,0,0

Registers

Shared memory/

L1 cache

Thread 0,0,1

Registers

Block (0,0,1)

Thread 0,0,0

Registers

Shared memory/

L1 cache

Thread 0,0,1

Registers

Cache (L2)

https://towardsdatascience.com/how-the-hell-are-gpus-so-fast-a-e770d74a0bf

Global Memory

void CUDA_Kernel_static_reserve(unsigned char

* in, unsigned char * out, int w, int h)

{

 __shared__ float ds_1D[SIZE];

 __shared__ float ds_2D[SIZE_X][SIZE_Y];

 …
}

void CUDA_Kernel_dynamic_reserve(unsigned char

* in, unsigned char * out, int w, int h)

{

 extern __shared__ float ds_1D[];
 …
}

Static declaration:

CUDA_Kernel_dynamic_reserve <<<1, n, SIZE*sizeof(float), stream>>>(d_in, d_out, …);

Dynamic declaration:

<-- empty brackets and use of the extern specifier

CUDA Memories
Shared Memory in CUDA

248

(Device) Grid

Block (0,0,1)

Thread 0,0,0

Registers

Shared memory/

L1 cache

Thread 0,0,1

Registers

Cache (L2)

https://towardsdatascience.com/how-the-hell-are-gpus-so-fast-a-e770d74a0bf

Global Memory

void CUDA_Kernel_dynamic_reserve(...)

{

 extern __shared__ int s[];

 int *integerData = s; // nI ints

 float *floatData = (float*)&integerData[nI]; // nF floats

 char *charData = (char*)&floatData[nF]; // nC chars

}

Dynamic declaration: multiple dynamically sized arrays in a single kernel
• you must declare a single extern unsized array as before, and

• use pointers to divide it into multiple arrays:

CUDA_Kernel_dynamic_reserve <<<gridSize, blockSize,

nI*sizeof(int)+nF*sizeof(float)+nC*sizeof(char), stream>>>(...);

In the kernel launch, specify the total shared memory needed, as in the following.

CUDA Memories
Shared Memory in CUDA

Performance benefits compared to DRAM:

• 20-40x lower latency

• ~15x higher bandwidth

• accessed at 4-byte granularity

• Global Memory granularity is 32 Bytes

Ampere generation shared memory + L1 cache

• GA102 – 128 KB (used by A40 for CG/single precision)

• Configurable up to 100 KB

• GA100 – 192 KB (used by A100 for HPC)

• Configurable up to 164 KB

Organization

• organized in 32 banks, each 4 Bytes wide

• bandwidth: 4 Bytes per bank per clock per SM

• 128 Bytes per clk per SM

• successive 4-byte words go to successive banks

249

(Device) Grid

Block (0,0,0)

Thread 0,0,0

Registers

Shared memory/

L1 cache

Thread 0,0,1

Registers

Block (0,0,1)

Thread 0,0,0

Registers

Shared memory/

L1 cache

Thread 0,0,1

Registers

Cache (L2)

https://towardsdatascience.com/how-the-hell-are-gpus-so-fast-a-e770d74a0bf

Global Memory

Bank index computation examples:

• (4B word index) % 32

• ((1B word index) / 4) % 32

• 8B word spans two successive banks

Hands-on
Matrix transpose

• tasks/matrix_transpose

• Data preparation and timing is already implemented

• Implement and launch 3 kernels
• Naïve transposition

• Transposition with shared memory

• Transposition with shared memory, where you avoid the bank conflicts

• Compare the timings

263

Hands-on: matrix transpose

Coffee break

Memory and Data
Locality:

Tiling Technique

Motivation
Matrix Multiplication – Memory access problem

267Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

2D C Array in Linear Memory Space

M0,2

M1,1

M0,1M0,0

M1,0

M0,3

M1,2 M1,3

M0,2M0,1M0,0 M0,3 M1,1M1,0 M1,2 M1,3 M2,1M2,0 M2,2 M2,3

M2,1M2,0 M2,2 M2,3

M3,1M3,0 M3,2 M3,3

M3,1M3,0 M3,2 M3,3

M

linearized order in increasing address

A B

WIDTH

Thread 1
Thread 2

A[Row*n+i] B[i*k+Col]

H
E

IG
H

T

i is the loop counter in the inner product loop of the kernel code

B[i*k+Col] and Col = blockIdx.x*blockDim.x + threadIdx.x

A[Row*n+i] and Row = blockIdx.y*blockDim.y + threadIdx.y

Two Access Patterns of Basic Matrix Multiplication

N

T0 T1 T2 T3

Load iteration 0
T0 T1 T2 T3

Load iteration 1

Access

direction in

kernel code

B0,2

B1,1

B0,1B0,0

B1,0

B0,3

B1,2 B1,3

B2,1B2,0 B2,2 B2,3

B3,1B3,0 B3,2 B3,3

B0,2B0,1B0,0 B0,3 B1,1B1,0 B1,2 B1,3 B2,1B2,0 B2,2 B2,3 B3,1B3,0 B3,2 B3,3

T0 T1 T2 T3Load iteration 0

T0 T1 T2 T3Load iteration 1

Access

direction in

kernel code

A0,2

A1,1

A0,1A0,0

A1,0

A0,3

A1,2 A1,3

A2,1A2,0 A2,2 A2,3

A3,1A3,0 A3,2 A3,3

A0,2A0,1A0,0 A0,3 A1,1A1,0 A1,2 A1,3 A2,1A2,0 A2,2 A2,3 A3,1A3,0 A3,2 A3,3

Matrix B accesses are coalesced Matrix A Accesses are Not Coalesced

A is m × n,

B is n × k
T1 T2

https://www.nvidia.com/en-us/training/teaching-kits/

CUDA Memories
Tiling Technique

268Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

Thread 0 Thread 1

24 reads from Global Memory

Global Memory

https://www.nvidia.com/en-us/training/teaching-kits/

CUDA Memories
Tiling Technique

269Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

Thread 0 Thread 1

4 reads from Global Memory

8 reads from Shared Memory

Global Memory

Shared Memory

https://www.nvidia.com/en-us/training/teaching-kits/

CUDA Memories
Tiling Technique

270Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

Thread 0 Thread 1

+4 reads from Global Memory (8 total)

+8 reads from Shared Memory (16 total)

Global Memory

Shared Memory

https://www.nvidia.com/en-us/training/teaching-kits/

CUDA Memories
Tiling Technique

271Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

Thread 0 Thread 1

Global Memory

Shared Memory

+4 reads from Global Memory (12 total)

+8 reads from Shared Memory (24 total)

Compare to: 24 reads from Global

Memory without shared memory.

https://www.nvidia.com/en-us/training/teaching-kits/

CUDA Memories
Tiling Technique

273Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

Thread 0 Thread 1

Global Memory

Shared Memory

Tiling needs synchronization

…

Thread 0

Thread 1

Thread 2

Thread 3

Thread 4

…

Thread N-3

Thread N-2

Thread N-1

Time

Sync

Sync. to make sure that

all needed data are

correctly copied to

Shared Memory before

threads start working on
the data

https://www.nvidia.com/en-us/training/teaching-kits/

CUDA Memories
Tiling Technique

274Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

Thread 0

Work on

data

Thread 1

Work on

data

Global Memory

Shared Memory

Tiling needs synchronization Tiling Techniques step by step

• Identify a tile of global memory contents that are
accessed by multiple threads

• Load the tile from global memory into on-chip
memory

• Use barrier synchronization to make sure that all
threads are ready to start the phase

• Have the multiple threads to access their data from
the on-chip memory

• Use barrier synchronization to make sure that all
threads have completed the current phase

• Move on to the next tile

Sync

Sync

Sync. to make sure that

all threads have finished

their work in the current

phase on the current data
in the shared memory.

https://www.nvidia.com/en-us/training/teaching-kits/

CUDA Memories
Tiling Technique

275Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

Thread 0

Work on

data

Thread 1

Work on

data

Global Memory

Shared Memory

Tiling needs synchronization Barrier Synchronization

• CUDA call to synchronize all threads in a block

__syncthreads()

• all threads in the same block must reach the
__syncthreads() before any of the them can
move on

• best used to coordinate the phased execution of a
tiled algorithms

• to ensure that all elements of a tile are loaded
at the beginning of a phase

• to ensure that all elements of a tile are
consumed at the end of a phase

Sync

Sync

https://www.nvidia.com/en-us/training/teaching-kits/

Parallel Computation
Patterns:
Stencil

Parallel Computation Patterns
Stencil

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

Convolution

• basic example for stencil computation pattern

• an array operation where each output data

element is a weighted sum of a collection of

neighboring input elements

• the weights used in the weighted sum calculation

are defined by an input mask array, commonly

referred to as the convolution kernel

• we will refer to these mask arrays as

convolution masks to avoid confusion.

• the value pattern of the mask array elements

defines the type of filtering done

• Image Blur example is a special case where all

mask elements are of the same value and hard

coded into the source code.

1 2 3 4 5 6 7N

3 4 5 4 3M

3 8 15 16 15Tmp

57P

* * * * *

= = = = =

1 1 1 1 1∑

P[2] = N[0]*M[0] + N[1]*M[1] + N[2]*M[2] + N[3]*M[3] + N[4]*M[4]

N[0] N[1] N[2] N[3] N[4] N[5] N[6]

P[0] P[1] P[2] P[3] P[4] P[5] P[6]

M[0] M[1] M[2] M[3] M[4]

https://www.nvidia.com/en-us/training/teaching-kits/

Parallel Computation Patterns
Stencil

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

Convolution

• basic example for stencil computation pattern

• an array operation where each output data

element is a weighted sum of a collection of

neighboring input elements

• the weights used in the weighted sum calculation

are defined by an input mask array, commonly

referred to as the convolution kernel

• we will refer to these mask arrays as

convolution masks to avoid confusion.

• the value pattern of the mask array elements

defines the type of filtering done

• Image Blur example is a special case where all

mask elements are of the same value and hard

coded into the source code.

1 2 3 4 5 6 7N

3 4 5 4 3M

6 12 20 20 18Tmp

57 76P

* * * * *

= = = = =

1 1 1 1 1∑

N[0] N[1] N[2] N[3] N[4] N[5] N[6]

P[0] P[1] P[2] P[3] P[4] P[5] P[6]

M[0] M[1] M[2] M[3] M[4]

P[3] = N[1]*M[0] + N[2]*M[1] + N[3]*M[2] + N[4]*M[3] + N[5]*M[4]

https://www.nvidia.com/en-us/training/teaching-kits/

Parallel Computation Patterns
Stencil

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

Convolution

• basic example for stencil computation pattern

• an array operation where each output data

element is a weighted sum of a collection of

neighboring input elements

• the weights used in the weighted sum calculation

are defined by an input mask array, commonly

referred to as the convolution kernel

• we will refer to these mask arrays as

convolution masks to avoid confusion.

• the value pattern of the mask array elements

defines the type of filtering done

• Image Blur example is a special case where all

mask elements are of the same value and hard

coded into the source code.

1 2 3 4 5 6 7N

3 4 5 4 3M

9 16 25 24 21Tmp

57 76 98P

* * * * *

= = = = =

1 1 1 1 1∑

N[0] N[1] N[2] N[3] N[4] N[5] N[6]

P[0] P[1] P[2] P[3] P[4] P[5] P[6]

M[0] M[1] M[2] M[3] M[4]

P[4] = N[2]*M[0] + N[3]*M[1] + N[4]*M[2] + N[5]*M[3] + N[6]*M[4]

https://www.nvidia.com/en-us/training/teaching-kits/

Parallel Computation Patterns
Stencil

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

1 2 3 4 5 6 7N

3 4 5 4 3M

12 20 30 28 0Tmp

57 76 98 90P

* * * * *

= = = = =

1 1 1 1 1∑

P[5] = N[3]*M[0] + N[4]*M[1] + N[5]*M[2] + N[6]*M[3] + 0*M[4]

N[0] N[1] N[2] N[3] N[4] N[5] N[6]

P[0] P[1] P[2] P[3] P[4] P[5] P[6]

M[0] M[1] M[2] M[3] M[4]

0

Boundary condition

• calculation of output elements near the boundaries

(beginning and end) of the array need to deal with

“ghost” elements

• different policies (0, replicates of boundary

values, etc.)

https://www.nvidia.com/en-us/training/teaching-kits/

Parallel Computation Patterns
Stencil

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

Boundary condition

• calculation of output elements near the boundaries

(beginning and end) of the array need to deal with

“ghost” elements

• different policies (0, replicates of boundary

values, etc.)

1 2 3 4 5 6 7N

3 4 5 4 3M

15 24 35 0 0Tmp

57 76 98 90 74P

* * * * *

= = = = =

1 1 1 1 1∑

P[3] = N[4]*M[0] + N[5]*M[1] + N[6]*M[2] + 0*M[3] + 0*M[4]

N[0] N[1] N[2] N[3] N[4] N[5] N[6]

P[0] P[1] P[2] P[3] P[4] P[5] P[6]

M[0] M[1] M[2] M[3] M[4]

0 0

https://www.nvidia.com/en-us/training/teaching-kits/

Parallel Computation Patterns
Basic Stencil kernel

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

__global__ void convolution_1D_basic_kernel(
 float *N, float *M, float *P,
 int Mask_Width, int Width)
{
 int i = blockIdx.x * blockDim.x + threadIdx.x;

 float Pvalue = 0;
 int N_start_point = i – (Mask_Width/2);

 for (int j = 0; j < Mask_Width; j++) {
 if (N_start_point + j >= 0 && N_start_point + j < Width)
 {
 Pvalue += N[N_start_point + j] * M[j];
 }
 }

 P[i] = Pvalue;
}

https://www.nvidia.com/en-us/training/teaching-kits/

321

Parallel Computation Patterns
Stencil

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9

4 5 6 7 8 5 6

5 6 7 8 5 6 7

6 7 8 9 0 1 2

7 8 9 0 1 2 3

1

2

3

2

1

2

3

4

3

2

3

4

5

4

3

2

3

4

3

2

1

2

3

2

1

1

4

9

8

5

4

9

16

15

12

9

16

25

25

21

8

15

24

21

16

5

12

21

16

5

1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 6 7 8 9

4 5 6 7 8 5 6

5 6 7 8 5 6 7

6 7 8 9 0 1 2

7 8 9 0 1 2 3

N M Ptmp

∑* =

2D Convolution

https://www.nvidia.com/en-us/training/teaching-kits/

321

Parallel Computation Patterns
Stencil

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9

4 5 6 7 8 5 6

5 6 7 8 5 6 7

6 7 8 9 0 1 2

7 8 9 0 1 2 3

1

2

3

2

1

2

3

4

3

2

3

4

5

4

3

2

3

4

3

2

1

2

3

2

1

0

0

0

0

0

0

3

8

9

8

0

8

15

16

15

0

9

16

15

12

0

8

15

12

7

1 2 3 4 5 6 7

2 4 5 6 7 8

3 4 6 7 8 9

4 5 6 7 8 5 6

5 6 7 8 5 6 7

6 7 8 9 0 1 2

7 8 9 0 1 2 3

N M

P

tmp

∑ 176

0 0 0 0

0

0

0

0

0

* =

Ghost cells (apron cells, halo cells)

2D Convolution – boundaries with ghost cells

https://www.nvidia.com/en-us/training/teaching-kits/

Parallel Computation Patterns
Stencil

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

__global__
void convolution_2D_basic_kernel(unsigned char * in, unsigned char * mask, unsigned char * out, int maskWidth, int w, int h) {
 int Col = blockIdx.x * blockDim.x + threadIdx.x;
 int Row = blockIdx.y * blockDim.y + threadIdx.y;

 if (Col < w && Row < h) {
 int pixVal = 0;

 N_start_col = Col – (maskwidth/2);
 N_start_row = Row – (maskwidth/2);

 // Get the of the surrounding box
 for(int j = 0; j < maskWidth; ++j) {
 for(int k = 0; k < maskWidth; ++k) {

 int curRow = N_start_row + j;
 int curCol = N_start_col + k;
 // Verify we have a valid image pixel
 if(curRow > -1 && curRow < h && curCol > -1 && curCol < w) {
 pixVal += in[curRow * w + curCol] * mask[j*maskWidth+k];
 }
 }
 }

 // Write our new pixel value out
 out[Row * w + Col] = (unsigned char)(pixVal);
 }
}

1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9

4 5 6 7 8 5 6

5 6 7 8 5 6 7

6 7 8 9 0 1 2

7 8 9 0 1 2 3

1

2

3

2

1

2

3

4

3

2

3

4

5

4

3

2

3

4

3

2

1

2

3

2

1

N M

*

Col

Row

https://www.nvidia.com/en-us/training/teaching-kits/

Parallel Computation Patterns
Stencil

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

__global__
void convolution_2D_basic_kernel(unsigned char * in, unsigned char * mask, unsigned char * out, int maskWidth, int w, int h) {
 int Col = blockIdx.x * blockDim.x + threadIdx.x;
 int Row = blockIdx.y * blockDim.y + threadIdx.y;

 if (Col < w && Row < h) {
 int pixVal = 0;

 N_start_col = Col – (maskwidth/2);
 N_start_row = Row – (maskwidth/2);

 // Get the of the surrounding box
 for(int j = 0; j < maskWidth; ++j) {
 for(int k = 0; k < maskWidth; ++k) {

 int curRow = N_start_row + j;
 int curCol = N_start_col + k;
 // Verify we have a valid image pixel
 if(curRow > -1 && curRow < h && curCol > -1 && curCol < w) {
 pixVal += in[curRow * w + curCol] * mask[j*maskWidth+k];
 }
 }
 }

 // Write our new pixel value out
 out[Row * w + Col] = (unsigned char)(pixVal);
 }
}

1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9

4 5 6 7 8 5 6

5 6 7 8 5 6 7

6 7 8 9 0 1 2

7 8 9 0 1 2 3

1

2

3

2

1

2

3

4

3

2

3

4

5

4

3

2

3

4

3

2

1

2

3

2

1

N M

*

N_start_row

N_start_col

https://www.nvidia.com/en-us/training/teaching-kits/

Parallel Computation Patterns
Stencil

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

__global__
void convolution_2D_basic_kernel(unsigned char * in, unsigned char * mask, unsigned char * out, int maskWidth, int w, int h) {
 int Col = blockIdx.x * blockDim.x + threadIdx.x;
 int Row = blockIdx.y * blockDim.y + threadIdx.y;

 if (Col < w && Row < h) {
 int pixVal = 0;

 N_start_col = Col – (maskwidth/2);
 N_start_row = Row – (maskwidth/2);

 // Get the of the surrounding box
 for(int j = 0; j < maskWidth; ++j) {
 for(int k = 0; k < maskWidth; ++k) {

 int curRow = N_start_row + j;
 int curCol = N_start_col + k;
 // Verify we have a valid image pixel
 if(curRow > -1 && curRow < h && curCol > -1 && curCol < w) {
 pixVal += in[curRow * w + curCol] * mask[j*maskWidth+k];
 }
 }
 }

 // Write our new pixel value out
 out[Row * w + Col] = (unsigned char)(pixVal);
 }
}

1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9

4 5 6 7 8 5 6

5 6 7 8 5 6 7

6 7 8 9 0 1 2

7 8 9 0 1 2 3

1

2

3

2

1

2

3

4

3

2

3

4

5

4

3

2

3

4

3

2

1

2

3

2

1

N M

*

N_start_col + maskWidth

N_start_row
+

maskWidth

N_start_row

N_start_col

https://www.nvidia.com/en-us/training/teaching-kits/

Parallel Computation Patterns
Stencil

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

1

2

3

2

1

2

3

4

3

2

3

4

5

4

3

2

3

4

3

2

1

2

3

2

1

MaskUsing constant memory and caching for Mask
• mask is used by all threads but not modified in the convolution kernel

• all threads in a warp access the same locations at each point in time

• CUDA devices provide constant memory whose contents are aggressively cached

• cached values are broadcast to all threads in a warp

• effectively magnifies memory bandwidth without consuming shared memory

• use of const __restrict__ qualifiers for the mask parameter informs the

compiler that it is eligible for constant caching, for example:

__global__ void convolution_2D_kernel(

 float *P,

 float *N,

 int height, int width,

 const float __restrict__ *M)

{ ... }

More info: https://developer.nvidia.com/blog/cuda-pro-tip-optimize-pointer-aliasing/

3 4 5 4 3

Mask

https://www.nvidia.com/en-us/training/teaching-kits/
https://developer.nvidia.com/blog/cuda-pro-tip-optimize-pointer-aliasing/

Parallel Computation Patterns
Stencil

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

Tiling Opportunity Convolution

• calculation of adjacent output elements involve shared

input elements

• e.g., N[2] is used in calculation of P[0], P[1], P[2], P[3]

and P[4] assuming a 1D convolution Mask_Width of

width 5

• we can load all the input elements required by all threads

in a block into the shared memory to reduce global

memory accesses

1 2 3 4 5 6 7

N[0] N[1] N[2] N[3] N[4] N[5] N[6]

P[0]

1 2 3 4 5 6 7 P[1]

1 2 3 4 5 6 7 P[2]

1 2 3 4 5 6 7 P[3]

1 2 3 4 5 6 7 P[4]

1 2 3 4 5 6 7 P[5]

1 2 3 4 5 6 7 P[6]

https://www.nvidia.com/en-us/training/teaching-kits/

Parallel Computation Patterns
Stencil

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21N

P 1 2 3 4 5 6 7 72 81 90 99 108 117 126 135 16 17 18 19 20 21

1 2 3 2 1

M Mask_Width / 2 (integer arithmetics)

1 2 3 2 1 …

Input tile size = T + Mask_Width -1

Output tile size = T

0

0

Assume that we want to have each block to calculate T output elements
• T + Mask_Width -1 input elements are needed to calculate T output elements

• T + Mask_Width -1 is usually not a multiple of T, except for small T values

• T is usually significantly larger than Mask_Width

Tile considerations

https://www.nvidia.com/en-us/training/teaching-kits/

Parallel Computation Patterns
Stencil

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

P 72 81 90 99 108 117 126 135

Tile 1

• each thread block calculates one output tile

• each output tile width is T

• T is 8 in this example

Tile 0 Tile N

Output tile size = T

Output tile definition

Tile 3

…

https://www.nvidia.com/en-us/training/teaching-kits/

1 2 3 2 1

Mask_Width / 2 (integer arithmetics)

1 2 3 2 1 …

Parallel Computation Patterns
Stencil

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20N

P 1 2 3 4 5 6 7 72 81 90 99 108 117 126 135 16 17 18 19 20

M

Input tile size = T + Mask_Width -1

Output tile size - T

0

0

7 8 9 10 11 12 13 14 15 16 17 18Tile in a shared memory: Ns

• each input tile has all values needed to calculate the corresponding output tile.

Input Tile in Shared Memory

https://www.nvidia.com/en-us/training/teaching-kits/

Parallel Computation Patterns
Stencil

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

Design 1: The size of each thread block matches

the size of an output tile
• All threads participate in calculating output elements

• blockDim.x would be 8 in our example

• Some threads need to load more than one input

element into the shared memory

Design 2: The size of each thread block matches the

size of an input tile
• Some threads will not participate in calculating output elements

• blockDim.x would be 12 in our example

• Each thread loads one input element into the shared memory

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20N

P 1 2 3 4 5 6 7 72 81 90 99 108 117 126 135 16 17 18 19 20

Input tile size = T + Mask_Width -1

Output tile size - T

0

0

7 8 9 10 11 12 13 14 15 16 17 18Tile in a shared memory: Ns

• each input tile has all values needed to calculate the corresponding output tile.

https://www.nvidia.com/en-us/training/teaching-kits/

Parallel Computation Patterns
Stencil

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

Design 1: The size of each thread block matches

the size of an output tile
• All threads participate in calculating output elements

• blockDim.x would be 8 in our example

• Some threads need to load more than one input

element into the shared memory

Design 2: The size of each thread block matches the

size of an input tile
• Some threads will not participate in calculating output elements

• blockDim.x would be 12 in our example

• Each thread loads one input element into the shared memory

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20N

P 1 2 3 4 5 6 7 72 81 90 99 108 117 126 135 16 17 18 19 20

Input tile size = T + Mask_Width -1

Output tile size - T

0

0

7 8 9 10 11 12 13 14 15 16 17 18Tile in a shared memory: Ns

• each input tile has all values needed to calculate the corresponding output tile.

https://www.nvidia.com/en-us/training/teaching-kits/

Parallel Computation Patterns
Stencil

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20N

P 1 2 3 4 5 6 7 72 81 90 99 108 117 126 135 16 17 18 19 20

Output tile size - T = O_TILE_WIDTH

0

0

For each thread:

• index_i = index_o – n

• where:

• n is Mask_Width/2

• n is 2 in this example

Thread to Input and Output Data Mapping

Thread 0 reads this Thread 0 writes this

1 2 3 2 1

n = Mask_Width / 2

https://www.nvidia.com/en-us/training/teaching-kits/

Parallel Computation Patterns
Stencil

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20N 0

Thread to Input and Output Data Mapping

7 8 9 10 11 12 13 14 15 16 17 18Shared memory: Ns

P 1 2 3 4 5 6 7 72 81 90 99 108 117 126 135 16 17 18 19 200

t0

t0index_o(t0)

index_i(t0)

1 2 3 2 1

n = Mask_Width / 2

index_o = blockIdx.x * O_TILE_WIDTH + threadIdx.x;
index_i = index_o - Mask_Width/2;

https://www.nvidia.com/en-us/training/teaching-kits/

Parallel Computation Patterns
Stencil

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20N 0

• all threads participate in

loading input tiles

Thread to Input and Output Data Mapping

if((index_i >= 0) && (index_i < Width)) {
 Ns[threadIdx.x] = N[index_i];
}
else{
 Ns[threadIdx.x] = 0.0f;
}
__syncthreads()

7 8 9 10 11 12 13 14 15 16 17 18Shared memory: Ns

t0index_i(t0)

https://www.nvidia.com/en-us/training/teaching-kits/

Parallel Computation Patterns
Stencil

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20N 0

• some threads do not

participate in calculating

output

Thread to Input and Output Data Mapping

float output = 0.0f;
/2;

if (threadIdx.x < O_TILE_WIDTH){
 output = 0.0f;
 for(j = 0; j < Mask_Width; j++) {

 output += M[j] * Ns[j+threadIdx.x];
 }
 P[index_o] = output;
}

7 8 9 10 11 12 13 14 15 16 17 18Shared memory: Ns

P 1 2 3 4 5 6 7 72 81 90 99 108 117 126 135 16 17 18 19 200

t0

t0index_o(t0)

index_i(t0)

https://www.nvidia.com/en-us/training/teaching-kits/

Parallel Computation Patterns
Stencil

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

Setting Block Size

...
index_o = blockIdx.x * O_TILE_WIDTH +
 threadIdx.x;
index_i = index_o – n - Mask_Width/2;

if((index_i >= 0) && (index_i < Width)) {
 Ns[threadIdx.x] = N[index_i];
}
else{
 Ns[threadIdx.x] = 0.0f;
}
__syncthreads()
if (threadIdx.x < O_TILE_WIDTH){
 float output = 0.0f;
 for(j = 0; j < Mask_Width; j++) {
 output += M[j] * Ns[j+threadIdx.x];
 }
 P[index_o] = output;
} ...

#define O_TILE_WIDTH 1020
#define BLOCK_WIDTH (O_TILE_WIDTH +
 (Mask_Width-1))

dim3 dimBlock(BLOCK_WIDTH,1, 1);

dim3 dimGrid((Width-1)/O_TILE_WIDTH+1, 1, 1)

Kernel code (partial)

https://www.nvidia.com/en-us/training/teaching-kits/

Parallel Computation Patterns
Stencil

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

The Efficiency of Tiling
• Significant reduction of Global Memory bandwidth

1D Convolution
• The reduction ratio – how many times tiling

reduces accesses to Global Memory

• MASK_WIDTH *

(O_TILE_WIDTH)/(O_TILE_WIDTH+MASK_WIDTH-1)

O_TILE_WIDTH 16 32 64 128 256

MASK_WIDTH= 5 4.0 4.4 4.7 4.9 4.9

MASK_WIDTH = 9 6.0 7.2 8.0 8.5 8.7

2D Convolution
• The reduction ratio is:

• O_TILE_WIDTH2 * MASK_WIDTH2 /

(O_TILE_WIDTH+MASK_WIDTH-1)2

O_TILE_WIDTH 8 16 32 64

MASK_WIDTH = 5 11.1 16 19.7 22.1

MASK_WIDTH = 9 20.3 36 51.8 64

Tile size has significant effect on of the memory bandwidth reduction ratio.

This often argues for larger shared memory size.

https://www.nvidia.com/en-us/training/teaching-kits/

Hands-On:
1D Convolution

Hands-On
1D Convolution

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

• tasks/convolution_1d

• Finish the TODO tasks
• Finish the naïve 1D convolution kernel
• Finish the 1D convolution kernel that uses shared

memory and tiling

• Compare the execution times
• Why do you think the difference is so small?

• Recommend ssize_t type for indexing

Expected output:

Naive implementation

 Everything seems OK

 Kernel time: 87.584770 ms

Shared memory implementation

 Everything seems OK

 Kernel time: 84.019203 ms

1 2 3 4 5 6 7N

3 4 5 4 3M

6 12 20 20 18Tmp

57 76P

* * * * *

= = = = =

1 1 1 1 1∑

N[0] N[1] N[2] N[3] N[4] N[5] N[6]

P[0] P[1] P[2] P[3] P[4] P[5] P[6]

M[0] M[1] M[2] M[3] M[4]

https://www.nvidia.com/en-us/training/teaching-kits/

Parallel Computation
Patterns:

Reduction

Parallel Computation Patterns
Reduction

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

Parallel Reduction
• a commonly used strategy for processing large input data sets

• there is no required order of processing elements in a data set (associative and commutative)

Approach:
• partition the data set into smaller chunks

• have each thread to process a chunk

• use a reduction tree to summarize the results from each chunk into the final answer

• we will focus on the reduction tree step now

Reduction also enables other techniques
• reduction is also needed to clean up after some commonly used parallelizing transformations

• Example: privatization

• multiple threads write into an output location

• replicate the output location so that each thread has a private output location (privatization)

• use a reduction tree to combine the values of private locations into the original output location

https://www.nvidia.com/en-us/training/teaching-kits/

Parallel Computation Patterns
Reduction

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

Parallel Reduction
• summarize a set of input values into one value using a

“reduction operation”

• Max, Min, Sum, Product, …

• can be used with a user defined reduction operation function

if the operation:

• is associative and commutative

• has a well-defined identity value (e.g., 0 for sum)

An Efficient Sequential Reduction O(N)

• initialize the result as an identity value for the reduction

operation

• Smallest possible value for max reduction

• Largest possible value for min reduction

• 0 for sum reduction

• 1 for product reduction

• iterate through the input and perform the reduction operation

between the result value and the current input value

• N-1 reduction operations performed for N input values

• each input value is only visited once – an O(N) algorithm

3 1 7 0 4 1 6 3

3 7 4 6

7 6

7

max max max max

max max

max

A parallel reduction tree algorithm performs N-1

operations in log(N) steps

https://www.nvidia.com/en-us/training/teaching-kits/

Parallel Computation Patterns
Reduction

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

Parallel Sum Reduction on GPU

Parallel implementation

• each thread adds two values in each step,

• recursively halve # of threads,

• takes log(n) steps for n elements,

• requires n/2 threads

Assume an in-place reduction using shared memory

• the original vector is in device global memory

• the shared memory is used to hold a partial sum vector

• initially, the partial sum vector is simply the original

vector

• each step brings the partial sum vector closer to the sum

• the final sum will be in element 0 of the partial sum

vector

• reduces global memory traffic due to reading and writing

partial sum values

• thread block size limits n to be less than or equal to

2,048

3 1 7 0 4 1 6 3

4 7 5 9

11 14

25

sum sum sum sum

sum sum

sum

Data

Thread 0 Thread 1 Thread 2 Thread 3

Step 1

Step 2

Step 3

https://www.nvidia.com/en-us/training/teaching-kits/

__shared__ float partialSum[2*BLOCK_SIZE];

unsigned int t = threadIdx.x;
unsigned int start = 2 * blockIdx.x * blockDim.x;

partialSum[t] = input[start + t];
partialSum[blockDim+t] = input[start +
 blockDim.x + t];

// The reduction step
for (unsigned int stride = 1;
 stride <= blockDim.x;
 stride *= 2)
{
 __syncthreads();
 if (t % stride == 0)
 partialSum[2*t]+= partialSum[2*t+stride];
}

Parallel Computation Patterns
Reduction

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

A Simple Thread Block Design
• each thread block takes 2*BlockDim.x input elements

• each thread loads 2 elements into shared memory

__syncthreads() is needed to ensure that all elements of each
step of partial sums have been generated before the next step

3 1 7 0 4 1 6 3

4 7 5 9

11 14

25

sum sum sum sum

sum sum

sum

Data

Thread 0 Thread 1 Thread 2 Thread 3

Step 1

Step 2

Step 3

https://www.nvidia.com/en-us/training/teaching-kits/

Parallel Computation Patterns
Reduction

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

Global Picture

• at the end of the kernel, Thread 0 in each block

writes the sum of the thread block in partialSum[0]

into a vector indexed by the blockIdx.x

• there can be a large number of such sums if the

original vector is very large

• the host code may iterate and launch another kernel

• if there are only a small number of sums, the host

can simply transfer the data back and add them

together

• alternatively, Thread 0 of each block could use

atomic operations to accumulate into a global sum

variable.

3 1 7 0 4 1 6 3

4 7 5 9

11 14

25

sum sum sum sum

sum sum

sum

Data

Thread 0 Thread 1 Thread 2 Thread 3

Step 1

Step 2

Step 3

https://www.nvidia.com/en-us/training/teaching-kits/

Parallel Computation Patterns
Reduction

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

Naive Thread to Data Mapping
• each thread is responsible for an even-index location of the

partial sum vector (location of responsibility)

• after each step, half of the threads are no longer needed

• one of the inputs is always from the location of responsibility

• in each step, one of the inputs comes from an increasing

distance away

Control Divergence of Naïve Kernel
• in each iteration, two control flow paths will be sequentially

traversed for each warp

• threads that perform addition and threads that do not

• threads that do not perform addition still consume execution

resources

• half or fewer of threads will be executing after the first step

• all odd-index threads are disabled after first step

• after the 5th step, entire warps in each block will fail the if

test, poor resource utilization but no divergence

• this can go on for a while, up to 6 more steps (stride = 32,

64, 128, 256, 512, 1024), where each active warp only has

one productive thread until all warps in a block retire

3 1 7 0 4 1 6 3

4 7 5 9

11 14

25

sum sum sum sum

sum sum

sum

Data

Thread 0 Thread 1 Thread 2 Thread 3

Step 1

Step 2

Step 3

https://www.nvidia.com/en-us/training/teaching-kits/

Parallel Computation Patterns
Reduction

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

Better Thread to Data Mapping
• in some algorithms, one can shift the index usage to

improve the divergence behavior

• Commutative and associative operators

• always compact the partial sums into the front

locations in the partialSum[] array

• keep the active threads consecutive

3 1 7 0 4 1 6 3

7 2 13 3

20 5

25

sum sum sum sum

sum sum

sum

Data

Thread
0

Thread
1

Thread
2

Thread
3

Step 1

Step 2

Step 3

for (unsigned int stride = blockDim.x;
 stride > 0;
 stride /= 2)
{
 __syncthreads();
 if (t < stride)
 partialSum[t] += partialSum[t+stride];
 }

https://www.nvidia.com/en-us/training/teaching-kits/

Parallel Computation Patterns
Reduction

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

3 1 7 0 4 1 6 3

7 2 13 3

20 5

25

sum sum sum sum

sum sum

sum

Data

Thread
0

Thread
1

Thread
2

Thread
3

Step 1

Step 2

Step 3

A Quick Analysis for a 1024 thread block

• no divergence in the first 5 steps

• 1024, 512, 256, 128, 64, 32 consecutive threads

are active in each step

• All threads in each warp either all active or all

inactive

• the final 5 steps will still have divergence

for (unsigned int stride = blockDim.x;
 stride > 0;
 stride /= 2)
{
 __syncthreads();
 if (t < stride)
 partialSum[t] += partialSum[t+stride];
 }

https://www.nvidia.com/en-us/training/teaching-kits/

Hands-On
Reduction

Hands-On
Reduction

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

• tasks/reduction

• Complete the TODO1, the rest is a bonus task for you now
• Write the implementation of the reduction sum kernel

• Inside a block, use the described parallel reduction
• Add the block result to the total result using atomicAdd

• atomicAdd(destination_pointer, value)

• Launch the kernel in main()
• Compile with additional flag -arch=native (or -arch=sm_80 for A100)

Expected output:

Shared memory sum reduction

 Correct result is 10432810085616533504.0

 Computed result is 10432810086381977600.0

 Relative error is 7.337e-11

 The results are close enough

 Kernel time: 36.642815 ms

https://www.nvidia.com/en-us/training/teaching-kits/

Parallel Computation Patterns:
Histogram (Atomic Operations)

Parallel Computation Patterns
Histogram

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

Histogram

• A method for extracting notable features and patterns from

large data sets

• Basic histograms - for each element in the data set, use the

value to identify a “bin counter” to increment

A Text Histogram Example

• define the bins as four-letter sections of the alphabet: a-d, e-

h, i-l, n-p, …

• for each character in an input string, increment the

appropriate bin counter.

• in the phrase “Programming Massively Parallel Processors”

the output histogram is shown below:

https://www.nvidia.com/en-us/training/teaching-kits/

Parallel Computation Patterns
Histogram

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

A simple parallel histogram algorithm
• partition the input into sections

• have each thread to take a section of the input

• each thread iterates through its section.

• for each letter, increment the appropriate bin counter

Input Partitioning Affects Memory Access Efficiency
Sectioned partitioning

• results in poor memory access efficiency

• adjacent threads do not access adjacent memory locations

• accesses are not coalesced

• DRAM bandwidth is poorly utilized

Interleaved partitioning
• all threads process a contiguous section of elements

• they all move to the next section and repeat

• the memory accesses are coalesced

1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Thread id

https://www.nvidia.com/en-us/training/teaching-kits/

Parallel Computation Patterns
Histogram

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

Interleaved partitioning of input

Iteration 2Iteration 1

https://www.nvidia.com/en-us/training/teaching-kits/

Parallel Computation Patterns
Histogram

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

Interleaved partitioning of input
• for every input element thread increments selected bin

• bin incrementation results in

• Read-modify-write operation

• can result in Data Race

Data Race in Parallel Thread Execution

thread1: thread2: Old  Mem[x]

New  Old + 1

Mem[x]  New

Old  Mem[x]

New  Old + 1

Mem[x]  New

• Old and New are per-thread register variables.

Question 1: If Mem[x] was initially 0, what would the value of Mem[x] be after threads 1 and 2 have completed?

Question 2: What does each thread get in their Old variable?

Unfortunately, the answers may vary according to the relative execution timing between the two threads, which is referred to as a

data race.

https://www.nvidia.com/en-us/training/teaching-kits/

Parallel Computation Patterns
Histogram

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

Data race examples

Time Thread 1 Thread 2

1 (0) Old  Mem[x]

2 (1) New  Old + 1

3 (1) Mem[x]  New

4 (1) Old  Mem[x]

5 (2) New  Old + 1

6 (2) Mem[x]  New

Timing Scenario #1

• Thread 1 Old = 0

• Thread 2 Old = 1

• Mem[x] = 2 after the

sequence

Time Thread 1 Thread 2

1 (0) Old  Mem[x]

2 (1) New  Old + 1

3 (1) Mem[x]  New

4 (1) Old  Mem[x]

5 (2) New  Old + 1

6 (2) Mem[x]  New

Timing Scenario #2

• Thread 1 Old = 1

• Thread 2 Old = 0

• Mem[x] = 2 after the

sequence

https://www.nvidia.com/en-us/training/teaching-kits/

Parallel Computation Patterns
Histogram

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

Data race examples

Timing Scenario #3

• Thread 1 Old = 0

• Thread 2 Old = 0

• Mem[x] = 1 after the

sequence

Timing Scenario #4

• Thread 1 Old = 0

• Thread 2 Old = 0

• Mem[x] = 1 after the

sequence

Time Thread 1 Thread 2

1 (0) Old  Mem[x]

2 (1) New  Old + 1

3 (0) Old  Mem[x]

4 (1) Mem[x]  New

5 (1) New  Old + 1

6 (1) Mem[x]  New

Time Thread 1 Thread 2

1 (0) Old  Mem[x]

2 (1) New  Old + 1

3 (0) Old  Mem[x]

4 (1) Mem[x]  New

5 (1) New  Old + 1

6 (1) Mem[x]  New

https://www.nvidia.com/en-us/training/teaching-kits/

Parallel Computation Patterns
Histogram

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

Atomic Operations Ensure Good Outcomes

Timing Scenario #3

• Thread 1 Old = 0

• Thread 2 Old = 0

• Mem[x] = 1 after the

sequence

Timing Scenario #4

• Thread 1 Old = 0

• Thread 2 Old = 0

• Mem[x] = 1 after the

sequence

Time Thread 1 Thread 2

1 (0) Old  Mem[x]

2 (1) New  Old + 1

3 (0) Old  Mem[x]

4 (1) Mem[x]  New

5 (1) New  Old + 1

6 (1) Mem[x]  New

Time Thread 1 Thread 2

1 (0) Old  Mem[x]

2 (1) New  Old + 1

3 (0) Old  Mem[x]

4 (1) Mem[x]  New

5 (1) New  Old + 1

6 (1) Mem[x]  New

thread1:

thread2: Old  Mem[x]
New  Old + 1
Mem[x]  New

Old  Mem[x]
New  Old + 1
Mem[x]  New

thread1:

thread2: Old  Mem[x]
New  Old + 1
Mem[x]  New

Old  Mem[x]
New  Old + 1
Mem[x]  New

Or

https://www.nvidia.com/en-us/training/teaching-kits/

Parallel Computation Patterns
Histogram

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

Atomic Operations

thread1:

thread2: Old  Mem[x]
New  Old + 1
Mem[x]  New

Old  Mem[x]
New  Old + 1
Mem[x]  New

thread1:

thread2: Old  Mem[x]
New  Old + 1
Mem[x]  New

Old  Mem[x]
New  Old + 1
Mem[x]  New

Or

Key Concepts of Atomic Operations

• a read-modify-write operation performed by a single hardware instruction

on a memory location address

• read the old value, calculate a new value, and write the new value to

the location

• the hardware ensures that no other threads can perform another read-

modify-write operation on the same location until the current atomic

operation is complete

• any other threads that attempt to perform an atomic operation on the

same location will typically be held in a queue

• all threads perform their atomic operations serially on the same

location

https://www.nvidia.com/en-us/training/teaching-kits/

Parallel Computation Patterns
Histogram

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

Atomic Operations

thread1:

thread2: Old  Mem[x]
New  Old + 1
Mem[x]  New

Old  Mem[x]
New  Old + 1
Mem[x]  New

thread1:

thread2: Old  Mem[x]
New  Old + 1
Mem[x]  New

Old  Mem[x]
New  Old + 1
Mem[x]  New

Or

Atomic Arithmetic Operations in CUDA
• performed by calling functions that are translated into single instructions

(a.k.a. intrinsic functions or intrinsics)

• Atomic add, sub, inc, dec, min, max, exch (exchange), CAS (compare

and swap)

• Read CUDA C programming Guide for details

Example: Atomic Add

 int atomicAdd(int* address, int val);

• reads the 32-bit word old from the location pointed to by address in global or

shared memory, computes (old + val), and stores the result back to memory

at the same address.

• these three operations are performed in one atomic transaction. The

function returns old.

More Atomic Adds in CUDA
• unsigned 32-bit integer atomic add - unsigned int atomicAdd
• unsigned 64-bit integer atomic add, single-precision floating-point atomic

add, double-precision floating-point atomic add, 16-bit floating-point atomic

add, …

https://www.nvidia.com/en-us/training/teaching-kits/

Parallel Computation Patterns
Histogram

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

A Basic Text Histogram Kernel
• The kernel receives a pointer to the input buffer of byte

values

• Each thread process the input in a strided pattern

__global__ void histo_kernel(
 unsigned char *buffer,
 long size,
 unsigned int *histo)
{
 int i = threadIdx.x + blockIdx.x * blockDim.x;

 // stride is total number of threads
 int stride = blockDim.x * gridDim.x;

 // All threads handle blockDim.x * gridDim.x
 // consecutive elements
 while (i < size) {
 int alphabet_position = buffer[i] – “a”;
 if (alphabet_position >= 0 && alpha_position < 26)
 {
 atomicAdd(&(histo[alphabet_position/4]), 1);
 }
 i += stride;
 }
}

https://www.nvidia.com/en-us/training/teaching-kits/

Parallel Computation Patterns
Histogram

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

A Basic Text Histogram Kernel

__global__ void histo_kernel(
 unsigned char *buffer,
 long size,
 unsigned int *histo)
{
 int i = threadIdx.x + blockIdx.x * blockDim.x;

 // stride is total number of threads
 int stride = blockDim.x * gridDim.x;

 // All threads handle blockDim.x * gridDim.x
 // consecutive elements
 while (i < size) {
 int alphabet_position = buffer[i] – “a”;
 if (alphabet_position >= 0 && alpha_position < 26)
 {
 atomicAdd(&(histo[alphabet_position/4]), 1);
 }
 i += stride;
 }
}

Final

Copy

*histo

…Block 0 Block 1 Block N

Atomic Updates

Heavy contention and serialization

https://www.nvidia.com/en-us/training/teaching-kits/

Parallel Computation Patterns
Histogram

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

Privatization
• Privatization is a technique for reducing

latency, increasing throughput, and

reducing serialization

Final

Copy

*histo

…Block 0 Block 1 Block N

Atomic Updates

Copy 0 Copy 1

Final

Copy

Copy N…

Block 0 Block 1 Block N

Much less contention and serialization

Heavy contention and serialization

Much less contention
and serialization

https://www.nvidia.com/en-us/training/teaching-kits/

Much less contention
and serialization

Parallel Computation Patterns
Histogram

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

Privatization
• privatization is a technique for reducing latency, increasing

throughput, and reducing serialization

Cost and Benefit of Privatization
Cost

• overhead for creating and initializing private copies

• overhead for accumulating the contents of private copies into the

final copy

Benefit

• much less contention and serialization in accessing both the

private copies and the final copy

• the overall performance can often be improved more than 10x

Shared Memory Atomics for Histogram
• each subset of threads are in the same block

• much higher throughput than DRAM (100x) or L2 (10x) atomics

• less contention – only threads in the same block can access a

shared memory variable

• this is a very important use case for shared memory!

Copy 0 Copy 1

Final

Copy

Copy N…

Block 0 Block 1 Block N

Much less contention and serialization

https://www.nvidia.com/en-us/training/teaching-kits/

Parallel Computation Patterns
Histogram

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

Privatized Histogram kernel __global__ void histo_kernel(unsigned char *buffer,
 long size, unsigned int *histo)
{
 __shared__ unsigned int histo_private[7];

 if (threadIdx.x < 7) histo_private[threadidx.x] = 0;

 __syncthreads();

 int i = threadIdx.x + blockIdx.x * blockDim.x;
 // stride is total number of threads
 int stride = blockDim.x * gridDim.x;
 while (i < size) {
 int alphabet_position = buffer[i] – “a”;
 if (alphabet_position >= 0 && alpha_position < 26) {
 atomicAdd(&(private_histo[alphabet_position/4]), 1); }
 i += stride;
 }

 // wait for all other threads in the block to finish
 __syncthreads();

 if (threadIdx.x < 7) {
 atomicAdd(&(histo[threadIdx.x]), private_histo[threadIdx.x]);
 }
}

Create private copies of the

histo[] array for each thread block

Initialize the bin counters in the

private copies of histo[]

Build Private Histogram

Build Final Histogram

https://www.nvidia.com/en-us/training/teaching-kits/

Hands On:
Histogram

Hands-On
Histogram

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

• tasks/histogram

• Finish the TODO1 and TODO2 tasks
• Naïve implementation – atomicAdd directly to result in global memory
• Privatization – atomicAdd to shared memory, then atomicAdd the results to global memory
• TODO3 is a bonus for you

• Again, only the kernel and its launch is up to you
• Array init and error check already implemented

Expected output:

Histogram naive

 Everything seems OK

 Kernel time: 453.779449 ms

Histogram using shared memory

 Everything seems OK

 Kernel time: 24.850431 ms

https://www.nvidia.com/en-us/training/teaching-kits/

Other notable GPU
programming models

HIP

• Created by AMD to mimic CUDA
• To ease users’ transition from NVIDIA to AMD GPUs

• Works on both AMD and NVIDIA GPUs
• cuda* functions and types replaced by hip*
• hip* libraries (BLAS etc.)

• Wrappers around cuda* or roc* functions

• Hipify – convert CUDA source code to HIP code

• ROCm software ecosystem/platform
• roc* libraries (blas, sparse, fft, …)

• Frontier (#1) and LUMI (#5) use AMD GPUs

HIP

source.cu

__global__ void vector_scale(float * x, float alpha, int count)
{
 int idx = blockIdx.x * blockDim.x + threadIdx.x;
 if(idx < count) x[idx] = alpha * x[idx];
}

int main()
{
 int count = 20 * 256;

 float * h_data = new float[count];
 for(int i = 0; i < count; i++) h_data[i] = i;

 float * d_data;
 cudaMalloc(&d_data, count * sizeof(float));

 cudaMemcpy(d_data, h_data, count * sizeof(float), cudaMemcpyHostToDevice);
 vector_scale<<< 20, 256 >>>(d_data, 10, count);
 cudaMemcpy(h_data, d_data, count * sizeof(float), cudaMemcpyDeviceToHost);

 cudaFree(d_data);
 delete[] h_data;
 return 0;
}

source.hip.cpp
#include <hip/hip_runtime.h>

__global__ void vector_scale(float * x, float alpha, int count)
{
 int idx = blockIdx.x * blockDim.x + threadIdx.x;
 if(idx < count) x[idx] = alpha * x[idx];
}

int main()
{
 int count = 20 * 256;

 float * h_data = new float[count];
 for(int i = 0; i < count; i++) h_data[i] = i;

 float * d_data;
 hipMalloc(&d_data, count * sizeof(float));

 hipMemcpy(d_data, h_data, count * sizeof(float), hipMemcpyHostToDevice);
 vector_scale<<< 20, 256 >>>(d_data, 10, count);
 hipMemcpy(h_data, d_data, count * sizeof(float), hipMemcpyDeviceToHost);

 hipFree(d_data);
 delete[] h_data;
 return 0;
}

$ nvcc source.cu –o program_cuda.x $ hipcc source.hip.cpp –o program_hip.x

SYCL

• Open standard, modern C++17 interface
• A way to do parallel programming not only for GPUs

• CPUs, FPGAs

• Primary way to utilize Intel GPUs
• Aurora supercomputer (#2)

• Source code portability. Not necessarily performance
portability.

• Implementations for all of Intel, AMD and NVIDIA GPUs
exist
• DPC++ (Intel), AdaptiveCPP

• oneAPI – SYCL interface for high performance libraries (BLAS,

SPARSE, FFT, …)
• Also a standard
• Has implementations for all of Intel, AMD and NVIDIA GPUs

• Intel’s oneAPI, Codeplay

Hands-on
Matrix sum

413https://on-demand.gputechconf.com/gtc/2018/presentation/s81006-volta-architecture-and-performance-optimization.pdf

Hands-on
Matrix sum

. . .

. . .
• tasks/matrix_sum

• Sum of values in a matrix
• Horizontally
• Vertically

• Complete the TODO tasks
• Implement the two kernels
• 1D kernels iterating over the rows/columns

• Think about the memory access pattern
• Do not think about each thread individually, think about the

threadblock (or rather warp) as a whole

sum_vertical

sum_horizontal

Expected output:

Horizontal sum seems OK

Vertical sum seems OK

Matrix init: 25.087 ms

Matrix sum horizontal: 61.935 ms

Matrix sum vertical: 30.567 ms

Using coalesced memory accesses was 2.03 times faster

	CUDA Memories
	Slide 221: GPU Programming with CUDA
	Slide 222: CUDA Memories
	Slide 224: CUDA Memories Hardware View
	Slide 225: CUDA Memories Hardware View
	Slide 226: CUDA Memories Caches
	Slide 227: CUDA Memories Constant memory
	Slide 228: CUDA Memories Programmer View
	Slide 229: CUDA Memories Hardware View

	Global Memory
	Slide 231: Global Memory
	Slide 235: CUDA Memories Global Memory Efficient Access
	Slide 236: CUDA Memories Global Memory Efficient Access
	Slide 237: CUDA Memories Global Memory Efficient Access
	Slide 238: CUDA Memories Global Memory Efficient Access
	Slide 239: CUDA Memories Global Memory Efficient Access
	Slide 240: CUDA Memories Global Memory Efficient Access
	Slide 241: CUDA Memories Global Memory Access for Matrix Multiplication
	Slide 242: CUDA Memories Global Memory Access for Matrix Multiplication
	Slide 243: CUDA Memories Global Memory Access for Matrix Multiplication
	Slide 244: Hands-on Matrix Sum

	Shared Memory
	Slide 245: Shared Memory
	Slide 246: CUDA Memories Shared Memory in CUDA
	Slide 247: CUDA Memories Shared Memory in CUDA
	Slide 248: CUDA Memories Shared Memory in CUDA
	Slide 249: CUDA Memories Shared Memory in CUDA

	Hands-on Bank conficts
	Slide 262: Hands-on Matrix transpose
	Slide 263: Hands-on: matrix transpose

	Memory and Data Locality: Tiling Technique
	Slide 265: Coffee break
	Slide 266: Memory and Data Locality: Tiling Technique
	Slide 267: Motivation Matrix Multiplication – Memory access problem
	Slide 268: CUDA Memories Tiling Technique
	Slide 269: CUDA Memories Tiling Technique
	Slide 270: CUDA Memories Tiling Technique
	Slide 271: CUDA Memories Tiling Technique
	Slide 273: CUDA Memories Tiling Technique
	Slide 274: CUDA Memories Tiling Technique
	Slide 275: CUDA Memories Tiling Technique

	Parallel Computation Patterns: Stencil
	Slide 276: Parallel Computation Patterns: Stencil
	Slide 277: Parallel Computation Patterns Stencil
	Slide 278: Parallel Computation Patterns Stencil
	Slide 279: Parallel Computation Patterns Stencil
	Slide 280: Parallel Computation Patterns Stencil
	Slide 281: Parallel Computation Patterns Stencil
	Slide 282: Parallel Computation Patterns Basic Stencil kernel
	Slide 283: Parallel Computation Patterns Stencil
	Slide 284: Parallel Computation Patterns Stencil
	Slide 285: Parallel Computation Patterns Stencil
	Slide 286: Parallel Computation Patterns Stencil
	Slide 287: Parallel Computation Patterns Stencil
	Slide 288: Parallel Computation Patterns Stencil
	Slide 289: Parallel Computation Patterns Stencil
	Slide 290: Parallel Computation Patterns Stencil
	Slide 291: Parallel Computation Patterns Stencil
	Slide 292: Parallel Computation Patterns Stencil
	Slide 293: Parallel Computation Patterns Stencil
	Slide 294: Parallel Computation Patterns Stencil
	Slide 295: Parallel Computation Patterns Stencil
	Slide 296: Parallel Computation Patterns Stencil
	Slide 297: Parallel Computation Patterns Stencil
	Slide 298: Parallel Computation Patterns Stencil
	Slide 299: Parallel Computation Patterns Stencil
	Slide 300: Parallel Computation Patterns Stencil

	Hands-on: 1D Convolution
	Slide 301: Hands-On: 1D Convolution
	Slide 302: Hands-On 1D Convolution

	Parallel Computation Patterns: Reduction
	Slide 304: Parallel Computation Patterns: Reduction
	Slide 305: Parallel Computation Patterns Reduction
	Slide 306: Parallel Computation Patterns Reduction
	Slide 307: Parallel Computation Patterns Reduction
	Slide 308: Parallel Computation Patterns Reduction
	Slide 309: Parallel Computation Patterns Reduction
	Slide 310: Parallel Computation Patterns Reduction
	Slide 311: Parallel Computation Patterns Reduction
	Slide 312: Parallel Computation Patterns Reduction

	Hands On: Reduction
	Slide 313: Hands-On Reduction
	Slide 314: Hands-On Reduction

	Parallel Computation Patterns: Histogram (Atomic Operations and Privatization)
	Slide 315: Parallel Computation Patterns: Histogram (Atomic Operations)
	Slide 316: Parallel Computation Patterns Histogram
	Slide 317: Parallel Computation Patterns Histogram
	Slide 318: Parallel Computation Patterns Histogram
	Slide 319: Parallel Computation Patterns Histogram
	Slide 320: Parallel Computation Patterns Histogram
	Slide 321: Parallel Computation Patterns Histogram
	Slide 322: Parallel Computation Patterns Histogram
	Slide 323: Parallel Computation Patterns Histogram
	Slide 324: Parallel Computation Patterns Histogram
	Slide 325: Parallel Computation Patterns Histogram
	Slide 326: Parallel Computation Patterns Histogram
	Slide 327: Parallel Computation Patterns Histogram
	Slide 328: Parallel Computation Patterns Histogram
	Slide 329: Parallel Computation Patterns Histogram

	Hands On: Histogram
	Slide 331: Hands On: Histogram
	Slide 332: Hands-On Histogram

	Closing Remarks
	Slide 405: Other notable GPU programming models
	Slide 406: HIP
	Slide 407: HIP
	Slide 408: SYCL
	Slide 409

	Hands On - Matrix Sum
	Slide 412: Hands-on Matrix sum
	Slide 413: Hands-on Matrix sum

