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CUDA Memories
Hardware View

Memory hierarchy in Ampere generation (GA100)
• Registers

• 256 kB per SM 

• Storage local to each threads

• Shared memory and L1 cache (192KB total)

• configurable up to 164KB for SM;
• remainder for L1 Cache

• low latency: ~22 cycles (SM), 34 cycles (L1d)

• high bandwidth: ~18 TB/s

• Read-only cache

• Up to 128 kB per SM

• L2 - 40 MB

• latency: ~ 200 or 350 cycles  

• BW: ~ 7000 GB/s

• Global memory – 40 or 80 GB HBM2

• BW ~ 1500 GB/s

• High latency (400-800 cycles)
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Peter Van Sandt, Citadel, Zhe Jia, Citadel: Dissecting the Ampere GPU Architecture through Microbenchmarking
https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s33322/ 

https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s33322/


CUDA Memories
Caches

Why do GPU have caches?

In general, not for cache blocking 

• 100s ~ 1000s of threads running per SM

• tens of thousands of threads sharing the L2 cache

• L1, L2 are small per thread. 

• Example: at 2048 threads/SM, with 80 SMs: 

• 64 bytes L1 per thread, 

• 38 Bytes L2 per thread.

Shared Memory is usually better option to cache data explicitly: 

• user managed -> no evictions out of user control.

Caches on GPUs are useful for: 

• “Smoothing” irregular, unaligned access patterns

• Caching common data accessed by many threads

• Faster register spills, local memory

• Fast atomics

• Codes that don’t use shared memory (naïve code, OpenACC, …)
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Source: NVIDIA https://on-demand.gputechconf.com/gtc/2018/presentation/s81006-volta-architecture-and-performance-optimization.pdf
Microbenchmarks: https://github.com/passlab/CUDAMicroBench , DOI Bookmark: 10.1109/IPDPSW52791.2021.00068 

https://on-demand.gputechconf.com/gtc/2018/presentation/s81006-volta-architecture-and-performance-optimization.pdf
https://github.com/passlab/CUDAMicroBench
https://doi.ieeecomputersociety.org/10.1109/IPDPSW52791.2021.00068
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Constant memory

• Read-only variables or arrays of global scope

• Qualified with __constant__ keyword

• Capacity 64 KiB

• Cached in 8 KiB constant (read-only) cache

• Very fast if all threads within a warp read the same address
• If the address is cached, throughput of constant cache

• If not cached, throughput of device memory

• If different threads read different addresses, the accesses are 
serialized

• Example use: stencil coefficients
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CUDA Memories
Programmer View

• __device__ is optional when 
used with __shared__, or 
__constant__

• Automatic variables reside in a 
register

• Except per-thread arrays 
that reside in global 
memory
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Variable declaration Memory Scope Lifetime

int LocalVar; register thread thread

__device__ __shared__   int SharedVar; shared block block

__device__              int GlobalVar; global grid application

__device__ __constant__ int ConstantVar; constant grid application
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CUDA Memories
Global Memory Efficient Access

Memory Coalescing

• memory coalescing is important for effectively utilizing memory bandwidth in CUDA

• its origin in the DRAM burst

• for good performance, CUDA memory access must be coalesced

DRAM Burst – A System View

• Each address space is partitioned into burst sections 

• Whenever a location is accessed, all other locations in the same section are also delivered to the GPU (or CPU)

• Basic example:

• a 16-byte address space, 4-byte burst sections

• In practice, we have at least 4GB address space, burst section sizes of 128-bytes or more

210 3 54 6 7 98 10 11 1312 14 15

Burst section Burst section Burst section Burst section 

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

https://www.nvidia.com/en-us/training/teaching-kits/
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Global Memory Efficient Access

Memory Coalescing

• when all threads of a warp execute a load instruction, if 
all accessed locations fall into the same burst section, 
only one DRAM request will be made and the access is 
fully coalesced.

How to judge if an access is coalesced?

• Accesses in a warp are to consecutive locations if the 
index in an array access is in the form of:

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

T0 T1 T2 T3

Coalesced Loads
T0 T1 T2 T3

Coalesced Loads

210 3 54 6 7 98 10 11 1312 14 15

Burst section Burst section Burst section Burst section 

T0 T1 T2 T3

Un-coalesced Loads
T0 T1 T2 T3

Un-coalesced Loads

210 3 54 6 7 98 10 11 1312 14 15

Burst section Burst section Burst section Burst section 

Un-coalesced Accesses

• When the accessed locations spread across burst 
section boundaries:

• multiple DRAM requests are made

• Some of the bytes accessed and transferred are 
not used by the threads

A[(expression with terms independent of threadIdx.x) + threadIdx.x];

https://www.nvidia.com/en-us/training/teaching-kits/
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Global Memory Efficient Access

Memory access granularity

• 32 Bytes – 1 sector 

• for Maxwell and Pascal

• Volta architecture 

• 64 Bytes

• 2 sectors is default – second sector is 
prefetched 

• Ampere architecture

• granularity can be set to 

• 32, 64 and 128 Bytes 

Cache line size

• 128 Bytes – made of 4 sectors 

Cache management granularity

• 1 cache line

Courtesy © 2012, NVIDIA

+96 +128+32 +64+0

Sector 0 Sector 3Sector 2Sector 1

128-Byte alignment

128 Byte cache line

Cache lines and Sectors

• Moving data between L1, L2 and DRAM

cudaDeviceSetLimit(cudaLimitMaxL2FetchGranularity, 32)

https://developer.download.nvidia.com/video/gputechconf/gtc/2020/presentations/s21819-optimizing-applications-for-nvidia-ampere-gpu-architecture.pdf 

https://developer.download.nvidia.com/video/gputechconf/gtc/2020/presentations/s21819-optimizing-applications-for-nvidia-ampere-gpu-architecture.pdf
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Global Memory Efficient Access

Scenario 1:

• Warp requests 32 aligned, 
consecutive 4-byte words

Addresses fall within 4 sectors

• Warp needs 128 bytes

• 128 bytes move across the bus

• Bus utilization: 100%

...
addresses from a warp

96 192128 160 224 28825632 64 352320 384 448416
Memory addresses

0

sector

Courtesy © 2012, NVIDIA

Scenario 2:

• Warp requests 32 aligned, 
permuted 4-byte words

Addresses fall within 4 sectors

• Warp needs 128 bytes

• 128 bytes move across the bus

• Bus utilization: 100%

addresses from a warp

96 192128 160 224 28825632 64 352320 384 448416
Memory addresses

0

sector

...



CUDA Memories
Global Memory Efficient Access

Scenario 3:

• All threads in a warp request the 
same 4-byte word

Addresses fall within 1 sector

• Warp needs 4 bytes

• 32 bytes move across the bus

• Bus utilization: 12.5%

addresses from a warp

96 192128 160 224 28825632 64 352320 384 448416
Memory addresses

0

sector

Courtesy © 2012, NVIDIA

Scenario 4:

• Warp requests 32 scattered 4-byte 
words

Addresses fall within N sectors

• Warp needs 128 bytes

• N*32 bytes move across the bus

• Bus utilization: 128 / (N*32)

addresses from a warp

...

96 192128 160 224 28825632 64 352320 384 448416
Memory addresses

0

sector

...

https://on-demand.gputechconf.com/gtc/2018/presentation/s81006-volta-architecture-and-performance-optimization.pdf 

https://on-demand.gputechconf.com/gtc/2018/presentation/s81006-volta-architecture-and-performance-optimization.pdf
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Global Memory Efficient Access

Scenario 5:

• Warp requests 32 unaligned, 
consecutive 4-byte words

Addresses fall within 5 sectors

• Warp needs 128 bytes

• 160 bytes move across the bus

• Bus utilization: 80%

...
addresses from a warp

96 192128 160 224 28825632 64 352320 384 448416
Memory addresses

0

sector

Courtesy © 2012, NVIDIA

Scenario 6:

• 2 Warps request 32 unaligned,

  consecutive 4-byte words

Addresses fall within 9 sectors

• 2 Warps need 256 bytes

• 288 or 320 bytes move across the 
bus (depends on presence of data 
in cache)

• Bus utilization: 88% or 80%

addresses from a warp 1

96 192128 160 224 28825632 64 352320 384 448416
Memory addresses

0

sector

...
addresses from a warp 2

...
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Global Memory Access for Matrix Multiplication

2D C Array in Linear Memory Space
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WIDTH
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Thread 2

A[Row*n+i] B[i*k+Col]

H
E

IG
H

T

i is the loop counter in the inner product loop of the kernel code

Col = blockIdx.x*blockDim.x + threadIdx.x

Two Access Patterns of Basic Matrix Multiplication 

A is m × n, 

B is n × k 

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

T1 T2

https://www.nvidia.com/en-us/training/teaching-kits/
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2D C Array in Linear Memory Space
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i is the loop counter in the inner product loop of the kernel code

B[i*k+Col] and Col = blockIdx.x*blockDim.x + threadIdx.x

Two Access Patterns of Basic Matrix Multiplication 

N

T0 T1 T2 T3

Load iteration 0
T0 T1 T2 T3

Load iteration 1

Access 

direction in 

kernel code

B0,2
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Matrix B accesses are coalesced

A is m × n, 

B is n × k 

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

T1 T2

https://www.nvidia.com/en-us/training/teaching-kits/
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i is the loop counter in the inner product loop of the kernel code

B[i*k+Col] and Col = blockIdx.x*blockDim.x + threadIdx.x

A[Row*n+i] and Row = blockIdx.y*blockDim.y + threadIdx.y

Two Access Patterns of Basic Matrix Multiplication 

N

T0 T1 T2 T3

Load iteration 0
T0 T1 T2 T3

Load iteration 1

Access 
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kernel code
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Matrix B accesses are coalesced Matrix A Accesses are Not Coalesced

A is m × n, 

B is n × k 

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

T1 T2

https://www.nvidia.com/en-us/training/teaching-kits/
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Matrix Sum
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CUDA Memories
Shared Memory in CUDA 

Special type of memory whose contents are explicitly 
defined and used only in the kernel source code

• one independent chunk in each SM

• accessed at much higher speed (in both latency 
and throughput) than global memory

• scope of access and sharing – all threads in a 
block

• lifetime – thread block, contents will disappear after 
the corresponding block (all threads) finishes and 
terminates execution

• accessed by memory load/store instructions

• a form of scratchpad memory in computer architecture
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https://towardsdatascience.com/how-the-hell-are-gpus-so-fast-a-e770d74a0bf

Global Memory
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Shared Memory in CUDA 
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https://towardsdatascience.com/how-the-hell-are-gpus-so-fast-a-e770d74a0bf

Global Memory

void CUDA_Kernel_static_reserve(unsigned char 

* in, unsigned char * out, int w, int h) 

{

 __shared__ float ds_1D[SIZE];
 
 __shared__ float ds_2D[SIZE_X][SIZE_Y];

 …
}

void CUDA_Kernel_dynamic_reserve(unsigned char 

* in, unsigned char * out, int w, int h) 

{

 extern __shared__ float ds_1D[];
 …
}

Static declaration:

CUDA_Kernel_dynamic_reserve <<<1, n, SIZE*sizeof(float), stream>>>(d_in, d_out, … );

Dynamic declaration:

<-- empty brackets and use of the extern specifier
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https://towardsdatascience.com/how-the-hell-are-gpus-so-fast-a-e770d74a0bf

Global Memory

void CUDA_Kernel_dynamic_reserve(...) 

{

 extern __shared__ int s[]; 
 
 int   *integerData = s;       // nI ints 
 
 float *floatData   = (float*)&integerData[nI];  // nF floats 

 char  *charData    = (char*)&floatData[nF];     // nC chars

}

Dynamic declaration: multiple dynamically sized arrays in a single kernel
• you must declare a single extern unsized array as before, and 

• use pointers to divide it into multiple arrays:

CUDA_Kernel_dynamic_reserve <<<gridSize, blockSize, 

nI*sizeof(int)+nF*sizeof(float)+nC*sizeof(char), stream>>>(...);

In the kernel launch, specify the total shared memory needed, as in the following.



CUDA Memories
Shared Memory in CUDA 

Performance benefits compared to DRAM: 

• 20-40x lower latency 

• ~15x higher bandwidth 

• accessed at 4-byte granularity 

• Global Memory granularity is 32 Bytes

Ampere generation shared memory + L1 cache

• GA102 – 128 KB (used by A40 for CG/single precision)

• Configurable up to 100 KB

• GA100 – 192 KB (used by A100 for HPC)

• Configurable up to 164 KB

Organization 

• organized in 32 banks, each 4 Bytes wide 

• bandwidth: 4 Bytes per bank per clock per SM

• 128 Bytes per clk per SM

• successive 4-byte words go to successive banks
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https://towardsdatascience.com/how-the-hell-are-gpus-so-fast-a-e770d74a0bf

Global Memory

Bank index computation examples: 

• (4B word index) % 32 

• ((1B word index) / 4 ) % 32 

• 8B word spans two successive banks



Hands-on
Matrix transpose



• tasks/matrix_transpose

• Data preparation and timing is already implemented

• Implement and launch 3 kernels
• Naïve transposition

• Transposition with shared memory

• Transposition with shared memory, where you avoid the bank conflicts

• Compare the timings

263

Hands-on: matrix transpose



Coffee break



Memory and Data 
Locality:

Tiling Technique



Motivation
Matrix Multiplication – Memory access problem
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2D C Array in Linear Memory Space
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i is the loop counter in the inner product loop of the kernel code

B[i*k+Col] and Col = blockIdx.x*blockDim.x + threadIdx.x

A[Row*n+i] and Row = blockIdx.y*blockDim.y + threadIdx.y

Two Access Patterns of Basic Matrix Multiplication 
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Load iteration 0
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Load iteration 1
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Matrix B accesses are coalesced Matrix A Accesses are Not Coalesced

A is m × n, 

B is n × k 
T1 T2

https://www.nvidia.com/en-us/training/teaching-kits/
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Thread 0 Thread 1

24 reads from Global Memory

Global Memory

https://www.nvidia.com/en-us/training/teaching-kits/
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Thread 0 Thread 1

4 reads from Global Memory

8 reads from Shared Memory

Global Memory

Shared Memory

https://www.nvidia.com/en-us/training/teaching-kits/
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Thread 0 Thread 1

+4 reads from Global Memory (8 total)

+8 reads from Shared Memory (16 total)

Global Memory

Shared Memory

https://www.nvidia.com/en-us/training/teaching-kits/
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Thread 0 Thread 1

Global Memory

Shared Memory

+4 reads from Global Memory (12 total)

+8 reads from Shared Memory (24 total)

Compare to: 24 reads from Global 

Memory without shared memory. 

https://www.nvidia.com/en-us/training/teaching-kits/
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Thread 0 Thread 1

Global Memory

Shared Memory

Tiling needs synchronization

…

Thread 0

Thread 1

Thread 2

Thread 3

Thread 4

…

Thread N-3

Thread N-2

Thread N-1

Time 

Sync

Sync. to make sure that 

all needed data are 

correctly copied to 

Shared Memory before 

threads start working on 
the data

https://www.nvidia.com/en-us/training/teaching-kits/
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Thread 0

Work on 

data

Thread 1

Work on 

data

Global Memory

Shared Memory

Tiling needs synchronization Tiling Techniques step by step

• Identify a tile of global memory contents that are 
accessed by multiple threads

• Load the tile from global memory into on-chip 
memory

• Use barrier synchronization to make sure that all 
threads are ready to start the phase

• Have the multiple threads to access their data from 
the on-chip memory

• Use barrier synchronization to make sure that all 
threads have completed the current phase

• Move on to the next tile

Sync

Sync

Sync. to make sure that 

all threads have finished 

their work in the current 

phase on the current data 
in the shared memory.

https://www.nvidia.com/en-us/training/teaching-kits/
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Thread 0

Work on 

data

Thread 1

Work on 

data

Global Memory

Shared Memory

Tiling needs synchronization Barrier Synchronization

• CUDA call to synchronize all threads in a block

__syncthreads()

• all threads in the same block must reach the 
__syncthreads() before any of the them can 
move on

• best used to coordinate the phased execution of a 
tiled algorithms

• to ensure that all elements of a tile are loaded 
at the beginning of a phase

• to ensure that all elements of a tile are 
consumed at the end of a phase

Sync

Sync

https://www.nvidia.com/en-us/training/teaching-kits/
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Convolution 

• basic example for stencil computation pattern 

• an array operation where each output data 

element is a weighted sum of a collection of 

neighboring input elements

• the weights used in the weighted sum calculation 

are defined by an input mask array, commonly 

referred to as the convolution kernel

• we will refer to these mask arrays as 

convolution masks to avoid confusion.

• the value pattern of the mask array elements 

defines the type of filtering done

• Image Blur example is a special case where all 

mask elements are of the same value and hard 

coded into the source code.

1 2 3 4 5 6 7N

3 4 5 4 3M

3 8 15 16 15Tmp

57P

* * * * *

= = = = =

1 1 1 1 1∑

P[2] = N[0]*M[0] + N[1]*M[1] + N[2]*M[2] + N[3]*M[3] + N[4]*M[4]

N[0] N[1] N[2] N[3] N[4] N[5] N[6]

P[0] P[1] P[2] P[3] P[4] P[5] P[6]

M[0] M[1] M[2] M[3] M[4]
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Convolution 

• basic example for stencil computation pattern 

• an array operation where each output data 

element is a weighted sum of a collection of 

neighboring input elements

• the weights used in the weighted sum calculation 

are defined by an input mask array, commonly 

referred to as the convolution kernel

• we will refer to these mask arrays as 

convolution masks to avoid confusion.

• the value pattern of the mask array elements 

defines the type of filtering done

• Image Blur example is a special case where all 

mask elements are of the same value and hard 

coded into the source code.

1 2 3 4 5 6 7N

3 4 5 4 3M

6 12 20 20 18Tmp

57 76P

* * * * *

= = = = =

1 1 1 1 1∑

N[0] N[1] N[2] N[3] N[4] N[5] N[6]

P[0] P[1] P[2] P[3] P[4] P[5] P[6]

M[0] M[1] M[2] M[3] M[4]

P[3] = N[1]*M[0] + N[2]*M[1] + N[3]*M[2] + N[4]*M[3] + N[5]*M[4]
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Convolution 

• basic example for stencil computation pattern 

• an array operation where each output data 

element is a weighted sum of a collection of 

neighboring input elements

• the weights used in the weighted sum calculation 

are defined by an input mask array, commonly 

referred to as the convolution kernel

• we will refer to these mask arrays as 

convolution masks to avoid confusion.

• the value pattern of the mask array elements 

defines the type of filtering done

• Image Blur example is a special case where all 

mask elements are of the same value and hard 

coded into the source code.

1 2 3 4 5 6 7N

3 4 5 4 3M

9 16 25 24 21Tmp

57 76 98P

* * * * *

= = = = =

1 1 1 1 1∑

N[0] N[1] N[2] N[3] N[4] N[5] N[6]

P[0] P[1] P[2] P[3] P[4] P[5] P[6]

M[0] M[1] M[2] M[3] M[4]

P[4] = N[2]*M[0] + N[3]*M[1] + N[4]*M[2] + N[5]*M[3] + N[6]*M[4]
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1 2 3 4 5 6 7N

3 4 5 4 3M

12 20 30 28 0Tmp

57 76 98 90P

* * * * *

= = = = =

1 1 1 1 1∑

P[5] = N[3]*M[0] + N[4]*M[1] + N[5]*M[2] + N[6]*M[3] + 0*M[4]

N[0] N[1] N[2] N[3] N[4] N[5] N[6]

P[0] P[1] P[2] P[3] P[4] P[5] P[6]

M[0] M[1] M[2] M[3] M[4]

0

Boundary condition  

• calculation of output elements near the boundaries 

(beginning and end) of the array need to deal with 

“ghost” elements

• different policies (0, replicates of boundary 

values, etc.)

https://www.nvidia.com/en-us/training/teaching-kits/
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Boundary condition  

• calculation of output elements near the boundaries 

(beginning and end) of the array need to deal with 

“ghost” elements

• different policies (0, replicates of boundary 

values, etc.)

1 2 3 4 5 6 7N

3 4 5 4 3M

15 24 35 0 0Tmp

57 76 98 90 74P

* * * * *

= = = = =

1 1 1 1 1∑

P[3] = N[4]*M[0] + N[5]*M[1] + N[6]*M[2] + 0*M[3] + 0*M[4]

N[0] N[1] N[2] N[3] N[4] N[5] N[6]

P[0] P[1] P[2] P[3] P[4] P[5] P[6]

M[0] M[1] M[2] M[3] M[4]

0 0

https://www.nvidia.com/en-us/training/teaching-kits/


Parallel Computation Patterns
Basic Stencil kernel

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

__global__ void convolution_1D_basic_kernel(
     float *N, float *M, float *P, 
     int Mask_Width, int Width) 
{
  int i = blockIdx.x * blockDim.x + threadIdx.x;

  float Pvalue = 0;
  int   N_start_point = i – (Mask_Width/2);

  for (int j = 0; j < Mask_Width; j++) {
    if (N_start_point + j >= 0 && N_start_point + j < Width)    
    {
      Pvalue += N[N_start_point + j] * M[j];
    }
  }

  P[i] = Pvalue;
}

https://www.nvidia.com/en-us/training/teaching-kits/
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1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9

4 5 6 7 8 5 6

5 6 7 8 5 6 7

6 7 8 9 0 1 2

7 8 9 0 1 2 3

1

2

3

2

1

2

3

4

3

2

3

4

5

4

3

2

3

4

3

2

1

2

3

2

1

1

4

9

8

5

4

9

16

15

12

9

16

25

25

21

8

15

24

21

16

5

12

21

16

5

1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 6 7 8 9

4 5 6 7 8 5 6

5 6 7 8 5 6 7

6 7 8 9 0 1 2

7 8 9 0 1 2 3

N M Ptmp

∑* =

2D Convolution 

https://www.nvidia.com/en-us/training/teaching-kits/


321

Parallel Computation Patterns
Stencil

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9

4 5 6 7 8 5 6

5 6 7 8 5 6 7

6 7 8 9 0 1 2

7 8 9 0 1 2 3

1

2

3

2

1

2

3

4

3

2

3

4

5

4

3

2

3

4

3

2

1

2

3

2

1

0

0

0

0

0

0

3

8

9

8

0

8

15

16

15

0

9

16

15

12

0

8

15

12

7

1 2 3 4 5 6 7

2 4 5 6 7 8

3 4 6 7 8 9

4 5 6 7 8 5 6

5 6 7 8 5 6 7

6 7 8 9 0 1 2

7 8 9 0 1 2 3

N M

P

tmp

∑ 176

0 0 0 0

0

0

0

0

0

* =

Ghost cells (apron cells, halo cells)

2D Convolution – boundaries with ghost cells 
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__global__ 
void convolution_2D_basic_kernel(unsigned char * in, unsigned char * mask, unsigned char * out, int maskWidth, int w, int h) {
  int Col = blockIdx.x * blockDim.x + threadIdx.x;
  int Row = blockIdx.y * blockDim.y + threadIdx.y;

  if (Col < w && Row < h) {
    int pixVal = 0;

    N_start_col = Col – (maskwidth/2);
    N_start_row = Row – (maskwidth/2);

    // Get the of the surrounding box
    for(int j = 0; j < maskWidth; ++j) {
      for(int k = 0; k < maskWidth; ++k) {

        int curRow = N_start_row + j;
        int curCol = N_start_col + k;
        // Verify we have a valid image pixel
        if(curRow > -1 && curRow < h && curCol > -1 && curCol < w) {
          pixVal += in[curRow * w + curCol] * mask[j*maskWidth+k];
        }
      }
    }

    // Write our new pixel value out
    out[Row * w + Col] = (unsigned char)(pixVal);
  }
}

1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9

4 5 6 7 8 5 6

5 6 7 8 5 6 7

6 7 8 9 0 1 2

7 8 9 0 1 2 3

1

2

3

2

1

2

3

4

3

2

3

4

5

4

3

2

3

4

3

2

1

2

3

2

1

N M

*

Col

Row
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__global__ 
void convolution_2D_basic_kernel(unsigned char * in, unsigned char * mask, unsigned char * out, int maskWidth, int w, int h) {
  int Col = blockIdx.x * blockDim.x + threadIdx.x;
  int Row = blockIdx.y * blockDim.y + threadIdx.y;

  if (Col < w && Row < h) {
    int pixVal = 0;

    N_start_col = Col – (maskwidth/2);
    N_start_row = Row – (maskwidth/2);

    // Get the of the surrounding box
    for(int j = 0; j < maskWidth; ++j) {
      for(int k = 0; k < maskWidth; ++k) {

        int curRow = N_start_row + j;
        int curCol = N_start_col + k;
        // Verify we have a valid image pixel
        if(curRow > -1 && curRow < h && curCol > -1 && curCol < w) {
          pixVal += in[curRow * w + curCol] * mask[j*maskWidth+k];
        }
      }
    }

    // Write our new pixel value out
    out[Row * w + Col] = (unsigned char)(pixVal);
  }
}

1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9

4 5 6 7 8 5 6

5 6 7 8 5 6 7

6 7 8 9 0 1 2

7 8 9 0 1 2 3

1

2

3

2

1

2

3

4

3

2

3

4

5

4

3

2

3

4

3

2

1

2

3

2

1

N M

*

N_start_row

N_start_col
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__global__ 
void convolution_2D_basic_kernel(unsigned char * in, unsigned char * mask, unsigned char * out, int maskWidth, int w, int h) {
  int Col = blockIdx.x * blockDim.x + threadIdx.x;
  int Row = blockIdx.y * blockDim.y + threadIdx.y;

  if (Col < w && Row < h) {
    int pixVal = 0;

    N_start_col = Col – (maskwidth/2);
    N_start_row = Row – (maskwidth/2);

    // Get the of the surrounding box
    for(int j = 0; j < maskWidth; ++j) {
      for(int k = 0; k < maskWidth; ++k) {

        int curRow = N_start_row + j;
        int curCol = N_start_col + k;
        // Verify we have a valid image pixel
        if(curRow > -1 && curRow < h && curCol > -1 && curCol < w) {
          pixVal += in[curRow * w + curCol] * mask[j*maskWidth+k];
        }
      }
    }

    // Write our new pixel value out
    out[Row * w + Col] = (unsigned char)(pixVal);
  }
}

1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9

4 5 6 7 8 5 6

5 6 7 8 5 6 7

6 7 8 9 0 1 2

7 8 9 0 1 2 3

1

2

3

2

1

2

3

4

3

2

3

4

5

4

3

2

3

4

3

2

1

2

3

2

1

N M

*

N_start_col + maskWidth

N_start_row
+

maskWidth

N_start_row

N_start_col
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1
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MaskUsing constant memory and caching for Mask
• mask is used by all threads but not modified in the convolution kernel

• all threads in a warp access the same locations at each point in time

• CUDA devices provide constant memory whose contents are aggressively cached

• cached values are broadcast to all threads in a warp

• effectively magnifies memory bandwidth without consuming shared memory

• use of const  __restrict__ qualifiers for the mask parameter informs the 

compiler that it is eligible for constant caching, for example:

__global__ void convolution_2D_kernel(

 float *P,  

 float *N, 

 int height, int width,     

   const float __restrict__ *M) 

{ ... }

More info: https://developer.nvidia.com/blog/cuda-pro-tip-optimize-pointer-aliasing/ 

3 4 5 4 3

Mask

https://www.nvidia.com/en-us/training/teaching-kits/
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Tiling Opportunity Convolution

• calculation of adjacent output elements involve shared 

input elements

• e.g., N[2] is used in calculation of P[0], P[1], P[2], P[3] 

and P[4] assuming a 1D convolution Mask_Width of 

width 5

• we can load all the input elements required by all threads 

in a block into the shared memory to reduce global 

memory accesses

1 2 3 4 5 6 7

N[0] N[1] N[2] N[3] N[4] N[5] N[6]

P[0]

1 2 3 4 5 6 7 P[1]

1 2 3 4 5 6 7 P[2]

1 2 3 4 5 6 7 P[3]

1 2 3 4 5 6 7 P[4]

1 2 3 4 5 6 7 P[5]

1 2 3 4 5 6 7 P[6]
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21N

P 1 2 3 4 5 6 7 72 81 90 99 108 117 126 135 16 17 18 19 20 21

1 2 3 2 1

M Mask_Width / 2 (integer arithmetics)  

1 2 3 2 1 …

Input tile size = T + Mask_Width -1

Output tile size = T  

0

0

Assume that we want to have each block to calculate T output elements
• T + Mask_Width -1 input elements are needed to calculate T output elements

• T + Mask_Width -1 is usually not a multiple of T, except for small T values

• T is usually significantly larger than Mask_Width

Tile considerations

https://www.nvidia.com/en-us/training/teaching-kits/
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P 72 81 90 99 108 117 126 135

Tile 1

• each thread block calculates one output tile

• each output tile width is T

• T is 8 in this example

Tile 0 Tile N

Output tile size = T  

Output tile definition

Tile 3

…

https://www.nvidia.com/en-us/training/teaching-kits/
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20N

P 1 2 3 4 5 6 7 72 81 90 99 108 117 126 135 16 17 18 19 20

M

Input tile size = T + Mask_Width -1

Output tile size - T  

0

0

7 8 9 10 11 12 13 14 15 16 17 18Tile in a shared memory: Ns 

• each input tile has all values needed to calculate the corresponding output tile.

Input Tile in Shared Memory 

https://www.nvidia.com/en-us/training/teaching-kits/
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Design 1: The size of each thread block matches 

the size of an output tile
• All threads participate in calculating output elements

• blockDim.x would be 8 in our example

• Some threads need to load more than one input 

element into the shared memory

Design 2: The size of each thread block matches the 

size of an input tile
• Some threads will not participate in calculating output elements

• blockDim.x would be 12 in our example

• Each thread loads one input element into the shared memory

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20N

P 1 2 3 4 5 6 7 72 81 90 99 108 117 126 135 16 17 18 19 20

Input tile size = T + Mask_Width -1

Output tile size - T  

0

0

7 8 9 10 11 12 13 14 15 16 17 18Tile in a shared memory: Ns 

• each input tile has all values needed to calculate the corresponding output tile.
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Design 1: The size of each thread block matches 

the size of an output tile
• All threads participate in calculating output elements

• blockDim.x would be 8 in our example

• Some threads need to load more than one input 

element into the shared memory

Design 2: The size of each thread block matches the 

size of an input tile
• Some threads will not participate in calculating output elements

• blockDim.x would be 12 in our example

• Each thread loads one input element into the shared memory

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20N

P 1 2 3 4 5 6 7 72 81 90 99 108 117 126 135 16 17 18 19 20

Input tile size = T + Mask_Width -1

Output tile size - T  

0

0

7 8 9 10 11 12 13 14 15 16 17 18Tile in a shared memory: Ns 

• each input tile has all values needed to calculate the corresponding output tile.

https://www.nvidia.com/en-us/training/teaching-kits/
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20N

P 1 2 3 4 5 6 7 72 81 90 99 108 117 126 135 16 17 18 19 20

Output tile size - T = O_TILE_WIDTH 

0

0

For each thread:

• index_i = index_o – n

• where: 

• n is Mask_Width/2

• n is 2 in this example

Thread to Input and Output Data Mapping

Thread 0 reads this Thread 0 writes this

1 2 3 2 1

n = Mask_Width / 2

https://www.nvidia.com/en-us/training/teaching-kits/
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20N 0

Thread to Input and Output Data Mapping

7 8 9 10 11 12 13 14 15 16 17 18Shared memory: Ns 

P 1 2 3 4 5 6 7 72 81 90 99 108 117 126 135 16 17 18 19 200

t0

t0index_o(t0) 

index_i(t0) 

1 2 3 2 1

n = Mask_Width / 2

index_o = blockIdx.x * O_TILE_WIDTH + threadIdx.x;
index_i = index_o - Mask_Width/2;

https://www.nvidia.com/en-us/training/teaching-kits/
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20N 0

• all threads participate in 

loading input tiles

Thread to Input and Output Data Mapping

if((index_i >= 0) && (index_i < Width)) {
  Ns[threadIdx.x] = N[index_i];
}
else{
  Ns[threadIdx.x] = 0.0f;
}
__syncthreads()

7 8 9 10 11 12 13 14 15 16 17 18Shared memory: Ns 

t0index_i(t0) 

https://www.nvidia.com/en-us/training/teaching-kits/
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20N 0

• some threads do not 

participate in calculating 

output

Thread to Input and Output Data Mapping

float output = 0.0f; 
/2;

if (threadIdx.x < O_TILE_WIDTH){
 output = 0.0f;
 for(j = 0; j < Mask_Width; j++) {

 output += M[j] * Ns[j+threadIdx.x];
 }
 P[index_o] = output;
}

7 8 9 10 11 12 13 14 15 16 17 18Shared memory: Ns 

P 1 2 3 4 5 6 7 72 81 90 99 108 117 126 135 16 17 18 19 200

t0

t0index_o(t0) 

index_i(t0) 

https://www.nvidia.com/en-us/training/teaching-kits/
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Setting Block Size

...
index_o = blockIdx.x * O_TILE_WIDTH + 
          threadIdx.x;
index_i = index_o – n - Mask_Width/2;

if((index_i >= 0) && (index_i < Width)) {
  Ns[threadIdx.x] = N[index_i];
}
else{
  Ns[threadIdx.x] = 0.0f;
}
__syncthreads()
if (threadIdx.x < O_TILE_WIDTH){
  float output = 0.0f;
  for(j = 0; j < Mask_Width; j++) {
    output += M[j] * Ns[j+threadIdx.x];
  }
  P[index_o] = output;
} ...

#define O_TILE_WIDTH 1020
#define BLOCK_WIDTH (O_TILE_WIDTH +  
                    (Mask_Width-1))

dim3 dimBlock(BLOCK_WIDTH,1, 1);

dim3 dimGrid((Width-1)/O_TILE_WIDTH+1, 1, 1)

Kernel code (partial)

https://www.nvidia.com/en-us/training/teaching-kits/


Parallel Computation Patterns
Stencil

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

The Efficiency of Tiling
• Significant reduction of Global Memory bandwidth  

1D Convolution 
• The reduction ratio – how many times tiling 

reduces accesses to Global Memory

• MASK_WIDTH * 

(O_TILE_WIDTH)/(O_TILE_WIDTH+MASK_WIDTH-1)

O_TILE_WIDTH 16 32 64 128 256

MASK_WIDTH= 5 4.0 4.4 4.7 4.9 4.9

MASK_WIDTH = 9 6.0 7.2 8.0 8.5 8.7

2D Convolution 
• The reduction ratio is:

• O_TILE_WIDTH2 * MASK_WIDTH2 / 

(O_TILE_WIDTH+MASK_WIDTH-1)2

  

O_TILE_WIDTH 8 16 32 64

MASK_WIDTH = 5 11.1 16 19.7 22.1

MASK_WIDTH = 9 20.3 36 51.8 64

Tile size has significant effect on of the memory bandwidth reduction ratio.

This often argues for larger shared memory size.  

https://www.nvidia.com/en-us/training/teaching-kits/
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• tasks/convolution_1d

• Finish the TODO tasks
• Finish the naïve 1D convolution kernel
• Finish the 1D convolution kernel that uses shared 

memory and tiling

• Compare the execution times
• Why do you think the difference is so small?

• Recommend ssize_t type for indexing

Expected output:

Naive implementation

  Everything seems OK

  Kernel time: 87.584770 ms

Shared memory implementation

  Everything seems OK

  Kernel time: 84.019203 ms

1 2 3 4 5 6 7N

3 4 5 4 3M

6 12 20 20 18Tmp

57 76P

* * * * *

= = = = =

1 1 1 1 1∑

N[0] N[1] N[2] N[3] N[4] N[5] N[6]

P[0] P[1] P[2] P[3] P[4] P[5] P[6]

M[0] M[1] M[2] M[3] M[4]
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Parallel Reduction 
• a commonly used strategy for processing large input data sets

• there is no required order of processing elements in a data set (associative and commutative)

Approach:
• partition the data set into smaller chunks

• have each thread to process a chunk

• use a reduction tree to summarize the results from each chunk into the final answer

• we will focus on the reduction tree step now

Reduction also enables other techniques
• reduction is also needed to clean up after some commonly used parallelizing transformations

• Example: privatization

• multiple threads write into an output location

• replicate the output location so that each thread has a private output location (privatization)

• use a reduction tree to combine the values of private locations into the original output location

https://www.nvidia.com/en-us/training/teaching-kits/
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Parallel Reduction 
• summarize a set of input values into one value using a 

“reduction operation”

• Max, Min, Sum, Product, … 

• can be used with a user defined reduction operation function 

if the operation: 

• is associative and commutative

• has a well-defined identity value (e.g., 0 for sum)

An Efficient Sequential Reduction O(N)

• initialize the result as an identity value for the reduction 

operation

• Smallest possible value for max reduction

• Largest possible value for min reduction

• 0 for sum reduction

• 1 for product reduction

• iterate through the input and perform the reduction operation 

between the result value and the current input value

• N-1 reduction operations performed for N input values

• each input value is only visited once – an O(N) algorithm

3 1 7 0 4 1 6 3

3 7 4 6

7 6

7

max max max max

max max

max

A parallel reduction tree algorithm performs N-1 

operations in log(N) steps
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Parallel Sum Reduction on GPU

Parallel implementation

• each thread adds two values in each step,

• recursively halve # of threads,

• takes log(n) steps for n elements, 

• requires n/2 threads

Assume an in-place reduction using shared memory

• the original vector is in device global memory

• the shared memory is used to hold a partial sum vector

• initially, the partial sum vector is simply the original 

vector

• each step brings the partial sum vector closer to the sum

• the final sum will be in element 0 of the partial sum 

vector

• reduces global memory traffic due to reading and writing 

partial sum values

• thread block size limits n to be less than or equal to 

2,048

3 1 7 0 4 1 6 3

4 7 5 9

11 14

25

sum sum sum sum

sum sum

sum

Data

Thread 0 Thread 1 Thread 2 Thread 3

Step 1

Step 2

Step 3
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__shared__ float partialSum[2*BLOCK_SIZE];

unsigned int t     = threadIdx.x;
unsigned int start = 2 * blockIdx.x * blockDim.x;

partialSum[t]          = input[start + t];
partialSum[blockDim+t] = input[start +
                               blockDim.x + t];

// The reduction step 
for (unsigned int stride = 1; 
                  stride <= blockDim.x; 
                  stride *= 2) 
{
  __syncthreads();
  if (t % stride == 0)
    partialSum[2*t]+= partialSum[2*t+stride];
}

Parallel Computation Patterns
Reduction
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A Simple Thread Block Design
• each thread block takes 2*BlockDim.x input elements

• each thread loads 2 elements into shared memory

__syncthreads() is needed to ensure that all elements of each 
step of partial sums have been generated before the next step

3 1 7 0 4 1 6 3

4 7 5 9

11 14

25

sum sum sum sum

sum sum

sum

Data

Thread 0 Thread 1 Thread 2 Thread 3

Step 1

Step 2

Step 3
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Global Picture

• at the end of the kernel, Thread 0 in each block 

writes the sum of the thread block in partialSum[0] 

into a vector indexed by the blockIdx.x

• there can be a large number of such sums if the 

original vector is very large

• the host code may iterate and launch another kernel

• if there are only a small number of sums, the host 

can simply transfer the data back and add them 

together

• alternatively, Thread 0 of each block could use 

atomic operations to accumulate into a global sum 

variable.

3 1 7 0 4 1 6 3

4 7 5 9

11 14

25

sum sum sum sum

sum sum

sum

Data

Thread 0 Thread 1 Thread 2 Thread 3

Step 1

Step 2

Step 3
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Naive Thread to Data Mapping
• each thread is responsible for an even-index location of the 

partial sum vector (location of responsibility)

• after each step, half of the threads are no longer needed

• one of the inputs is always from the location of responsibility

• in each step, one of the inputs comes from an increasing 

distance away

Control Divergence of Naïve Kernel 
• in each iteration, two control flow paths will be sequentially 

traversed for each warp

• threads that perform addition and threads that do not

• threads that do not perform addition still consume execution 

resources

• half or fewer of threads will be executing after the first step

• all odd-index threads are disabled after first step

• after the 5th step, entire warps in each block will fail the if 

test, poor resource utilization but no divergence

• this can go on for a while, up to 6 more steps (stride = 32, 

64, 128, 256, 512, 1024), where each active warp only has 

one productive thread until all warps in a block retire 

3 1 7 0 4 1 6 3

4 7 5 9

11 14

25

sum sum sum sum

sum sum

sum

Data

Thread 0 Thread 1 Thread 2 Thread 3

Step 1

Step 2

Step 3

https://www.nvidia.com/en-us/training/teaching-kits/


Parallel Computation Patterns
Reduction

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

Better Thread to Data Mapping
• in some algorithms, one can shift the index usage to 

improve the divergence behavior

• Commutative and associative operators

• always compact the partial sums into the front 

locations in the partialSum[ ] array

• keep the active threads consecutive

3 1 7 0 4 1 6 3

7 2 13 3

20 5

25

sum sum sum sum

sum sum

sum

Data

Thread 
0

Thread 
1

Thread 
2

Thread 
3

Step 1

Step 2

Step 3

for (unsigned int stride = blockDim.x; 
                  stride > 0; 
                  stride /= 2) 
{
  __syncthreads();
  if (t < stride)
    partialSum[t] += partialSum[t+stride];
  }
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3 1 7 0 4 1 6 3

7 2 13 3

20 5

25

sum sum sum sum

sum sum

sum

Data

Thread 
0

Thread 
1

Thread 
2

Thread 
3

Step 1

Step 2

Step 3

A Quick Analysis for a 1024 thread block

• no divergence in the first 5 steps

• 1024, 512, 256, 128, 64, 32 consecutive threads 

are active in each step

• All threads in each warp either all active or all 

inactive

• the final 5 steps will still have divergence 

for (unsigned int stride = blockDim.x; 
                  stride > 0; 
                  stride /= 2) 
{
  __syncthreads();
  if (t < stride)
    partialSum[t] += partialSum[t+stride];
  }
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• tasks/reduction

• Complete the TODO1, the rest is a bonus task for you now
• Write the implementation of the reduction sum kernel

• Inside a block, use the described parallel reduction
• Add the block result to the total result using atomicAdd

• atomicAdd(destination_pointer, value)

• Launch the kernel in main()
• Compile with additional flag -arch=native  (or -arch=sm_80  for A100)

Expected output:

Shared memory sum reduction

  Correct result is  10432810085616533504.0

  Computed result is 10432810086381977600.0

  Relative error is 7.337e-11

  The results are close enough

  Kernel time: 36.642815 ms

https://www.nvidia.com/en-us/training/teaching-kits/
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Histogram

• A method for extracting notable features and patterns from 

large data sets

• Basic histograms - for each element in the data set, use the 

value to identify a “bin counter” to increment

A Text Histogram Example

• define the bins as four-letter sections of the alphabet: a-d, e-

h, i-l, n-p, …

• for each character in an input string, increment the 

appropriate bin counter.

• in the phrase “Programming Massively Parallel Processors” 

the output histogram is shown below:
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A simple parallel histogram algorithm
• partition the input into sections

• have each thread to take a section of the input

• each thread iterates through its section.

• for each letter, increment the appropriate bin counter

Input Partitioning Affects Memory Access Efficiency
Sectioned partitioning 

• results in poor memory access efficiency

• adjacent threads do not access adjacent memory locations

• accesses are not coalesced

• DRAM bandwidth is poorly utilized

Interleaved partitioning
• all threads process a contiguous section of elements 

• they all move to the next section and repeat

• the memory accesses are coalesced

1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Thread id 
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Interleaved partitioning of input

Iteration 2Iteration 1

https://www.nvidia.com/en-us/training/teaching-kits/
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Interleaved partitioning of input
• for every input element thread increments selected bin

• bin incrementation results in 

• Read-modify-write operation 

• can result in Data Race 

Data Race in Parallel Thread Execution

thread1: thread2: Old  Mem[x]

New  Old + 1

Mem[x]  New

Old  Mem[x]

New  Old + 1

Mem[x]  New

• Old and New are per-thread register variables.

Question 1: If Mem[x] was initially 0, what would the value of Mem[x] be after threads 1 and 2 have completed?

Question 2: What does each thread get in their Old variable?

Unfortunately, the answers may vary according to the relative execution timing between the two threads, which is referred to as a 

data race. 
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Parallel Computation Patterns
Histogram

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

Data race examples

Time Thread 1 Thread 2

1 (0) Old  Mem[x]

2 (1) New  Old + 1

3 (1) Mem[x]  New

4 (1) Old  Mem[x]

5 (2) New  Old + 1

6 (2) Mem[x]  New

Timing Scenario #1

• Thread 1 Old = 0

• Thread 2 Old = 1

• Mem[x] = 2 after the 

sequence

Time Thread 1 Thread 2

1 (0) Old  Mem[x]

2 (1) New  Old + 1

3 (1) Mem[x]  New

4 (1) Old  Mem[x]

5 (2) New  Old + 1

6 (2) Mem[x]  New

Timing Scenario #2

• Thread 1 Old = 1

• Thread 2 Old = 0

• Mem[x] = 2 after the 

sequence

https://www.nvidia.com/en-us/training/teaching-kits/
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Data race examples

Timing Scenario #3

• Thread 1 Old = 0

• Thread 2 Old = 0

• Mem[x] = 1 after the 

sequence

Timing Scenario #4

• Thread 1 Old = 0

• Thread 2 Old = 0

• Mem[x] = 1 after the 

sequence

Time Thread 1 Thread 2

1 (0) Old  Mem[x]

2 (1) New  Old + 1

3 (0) Old  Mem[x]

4 (1) Mem[x]  New

5 (1) New  Old + 1

6 (1) Mem[x]  New

Time Thread 1 Thread 2

1 (0) Old  Mem[x]

2 (1) New  Old + 1

3 (0) Old  Mem[x]

4 (1) Mem[x]  New

5 (1) New  Old + 1

6 (1) Mem[x]  New

https://www.nvidia.com/en-us/training/teaching-kits/
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Atomic Operations Ensure Good Outcomes

Timing Scenario #3

• Thread 1 Old = 0

• Thread 2 Old = 0

• Mem[x] = 1 after the 

sequence

Timing Scenario #4

• Thread 1 Old = 0

• Thread 2 Old = 0

• Mem[x] = 1 after the 

sequence

Time Thread 1 Thread 2

1 (0) Old  Mem[x]

2 (1) New  Old + 1

3 (0) Old  Mem[x]

4 (1) Mem[x]  New

5 (1) New  Old + 1

6 (1) Mem[x]  New

Time Thread 1 Thread 2

1 (0) Old  Mem[x]

2 (1) New  Old + 1

3 (0) Old  Mem[x]

4 (1) Mem[x]  New

5 (1) New  Old + 1

6 (1) Mem[x]  New

thread1:

thread2: Old  Mem[x]
New  Old + 1
Mem[x]  New

Old  Mem[x]
New  Old + 1
Mem[x]  New

thread1:

thread2: Old  Mem[x]
New  Old + 1
Mem[x]  New

Old  Mem[x]
New  Old + 1
Mem[x]  New

Or 

https://www.nvidia.com/en-us/training/teaching-kits/
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Atomic Operations

thread1:

thread2: Old  Mem[x]
New  Old + 1
Mem[x]  New

Old  Mem[x]
New  Old + 1
Mem[x]  New

thread1:

thread2: Old  Mem[x]
New  Old + 1
Mem[x]  New

Old  Mem[x]
New  Old + 1
Mem[x]  New

Or 

Key Concepts of Atomic Operations

• a read-modify-write operation performed by a single hardware instruction 

on a memory location address

• read the old value, calculate a new value, and write the new value to 

the location

• the hardware ensures that no other threads can perform another read-

modify-write operation on the same location until the current atomic 

operation is complete

• any other threads that attempt to perform an atomic operation on the 

same location will typically be held in a queue

• all threads perform their atomic operations serially on the same 

location

https://www.nvidia.com/en-us/training/teaching-kits/
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Atomic Operations

thread1:

thread2: Old  Mem[x]
New  Old + 1
Mem[x]  New

Old  Mem[x]
New  Old + 1
Mem[x]  New

thread1:

thread2: Old  Mem[x]
New  Old + 1
Mem[x]  New

Old  Mem[x]
New  Old + 1
Mem[x]  New

Or 

Atomic Arithmetic Operations in CUDA
• performed by calling functions that are translated into single instructions 

(a.k.a. intrinsic functions or intrinsics)

• Atomic add, sub, inc, dec, min, max, exch (exchange), CAS (compare 

and swap)

• Read CUDA C programming Guide for details

Example: Atomic Add

  int atomicAdd(int* address, int val); 

• reads the 32-bit word old from the location pointed to by address in global or 

shared memory, computes (old + val), and stores the result back to memory 

at the same address. 

• these three operations are performed in one atomic transaction. The 

function returns old. 

More Atomic Adds in CUDA
• unsigned 32-bit integer atomic add - unsigned int atomicAdd
• unsigned 64-bit integer atomic add, single-precision floating-point atomic 

add, double-precision floating-point atomic add, 16-bit floating-point atomic 

add, …
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A Basic Text Histogram Kernel
• The kernel receives a pointer to the input buffer of byte 

values

• Each thread process the input  in a strided pattern

__global__ void histo_kernel(
                 unsigned char *buffer,
                 long size, 
                 unsigned int *histo) 
{
  int i = threadIdx.x + blockIdx.x * blockDim.x;

  // stride is total number of threads
  int stride = blockDim.x * gridDim.x;

  // All threads handle blockDim.x * gridDim.x
  // consecutive elements
  while (i < size) {
    int alphabet_position = buffer[i] – “a”;
    if (alphabet_position >= 0 && alpha_position < 26)   
    {
      atomicAdd(&(histo[alphabet_position/4]), 1);
    }
    i += stride;
  }
}

https://www.nvidia.com/en-us/training/teaching-kits/
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A Basic Text Histogram Kernel

__global__ void histo_kernel(
                 unsigned char *buffer,
                 long size, 
                 unsigned int *histo) 
{
  int i = threadIdx.x + blockIdx.x * blockDim.x;

  // stride is total number of threads
  int stride = blockDim.x * gridDim.x;

  // All threads handle blockDim.x * gridDim.x
  // consecutive elements
  while (i < size) {
    int alphabet_position = buffer[i] – “a”;
    if (alphabet_position >= 0 && alpha_position < 26)   
    {
      atomicAdd(&(histo[alphabet_position/4]), 1);
    }
    i += stride;
  }
}

Final 

Copy

*histo

…Block 0 Block 1 Block N

Atomic Updates

Heavy contention and serialization
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Privatization
• Privatization is a technique for reducing 

latency, increasing throughput, and 

reducing serialization

Final 

Copy

*histo

…Block 0 Block 1 Block N

Atomic Updates

Copy 0 Copy 1

Final 

Copy

Copy N…

Block 0 Block 1 Block N

Much less contention and serialization

Heavy contention and serialization

Much less contention 
and serialization
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Privatization
• privatization is a technique for reducing latency, increasing 

throughput, and reducing serialization

Cost and Benefit of Privatization
Cost

• overhead for creating and initializing private copies

• overhead for accumulating the contents of private copies into the 

final copy

Benefit

• much less contention and serialization in accessing both the 

private copies and the final copy

• the overall performance can often be improved more than 10x

Shared Memory Atomics for Histogram 
• each subset of threads are in the same block

• much higher throughput than DRAM (100x) or L2 (10x) atomics

• less contention – only threads in the same block can access a 

shared memory variable

• this is a very important use case for shared memory!

Copy 0 Copy 1

Final 

Copy

Copy N…

Block 0 Block 1 Block N

Much less contention and serialization
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Privatized Histogram kernel __global__ void histo_kernel(unsigned char *buffer,
                             long size, unsigned int *histo) 
{
  __shared__ unsigned int histo_private[7];

  if (threadIdx.x < 7) histo_private[threadidx.x] = 0;
  

  __syncthreads();

  int i = threadIdx.x + blockIdx.x * blockDim.x;
  // stride is total number of threads
  int stride = blockDim.x * gridDim.x;
  while (i < size) {
    int alphabet_position = buffer[i] – “a”;
    if (alphabet_position >= 0 && alpha_position < 26) {
      atomicAdd(&(private_histo[alphabet_position/4]), 1); }
    i += stride;
  }
  

  // wait for all other threads in the block to finish
  __syncthreads();

  if (threadIdx.x < 7) {
    atomicAdd(&(histo[threadIdx.x]), private_histo[threadIdx.x] );
  }
}

Create private copies of the 

histo[] array for each thread block

Initialize the bin counters in the 

private copies of histo[] 

Build Private Histogram

Build Final Histogram
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• tasks/histogram

• Finish the TODO1 and TODO2 tasks
• Naïve implementation – atomicAdd directly to result in global memory
• Privatization – atomicAdd to shared memory, then atomicAdd the results to global memory
• TODO3 is a bonus for you

• Again, only the kernel and its launch is up to you
• Array init and error check already implemented

Expected output:

Histogram naive

  Everything seems OK

  Kernel time: 453.779449 ms

Histogram using shared memory

  Everything seems OK

  Kernel time: 24.850431 ms

https://www.nvidia.com/en-us/training/teaching-kits/
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HIP

• Created by AMD to mimic CUDA
• To ease users’ transition from NVIDIA to AMD GPUs

• Works on both AMD and NVIDIA GPUs
• cuda* functions and types replaced by hip*
• hip* libraries (BLAS etc.)

• Wrappers around cuda* or roc* functions

• Hipify – convert CUDA source code to HIP code

• ROCm software ecosystem/platform
• roc* libraries (blas, sparse, fft, …)

• Frontier (#1) and LUMI (#5) use AMD GPUs



HIP

source.cu

__global__ void vector_scale(float * x, float alpha, int count)
{
    int idx = blockIdx.x * blockDim.x + threadIdx.x;
    if(idx < count) x[idx] = alpha * x[idx];
}

int main()
{
    int count = 20 * 256;
    
    float * h_data = new float[count];
    for(int i = 0; i < count; i++) h_data[i] = i;
    
    float * d_data;
    cudaMalloc(&d_data, count * sizeof(float));

    cudaMemcpy(d_data, h_data, count * sizeof(float), cudaMemcpyHostToDevice);
    vector_scale<<< 20, 256 >>>(d_data, 10, count);
    cudaMemcpy(h_data, d_data, count * sizeof(float), cudaMemcpyDeviceToHost);

    cudaFree(d_data);
    delete[] h_data;
    return 0;
}

source.hip.cpp
#include <hip/hip_runtime.h>

__global__ void vector_scale(float * x, float alpha, int count)
{
    int idx = blockIdx.x * blockDim.x + threadIdx.x;
    if(idx < count) x[idx] = alpha * x[idx];
}

int main()
{
    int count = 20 * 256;

    float * h_data = new float[count];
    for(int i = 0; i < count; i++) h_data[i] = i;

    float * d_data;    
    hipMalloc(&d_data, count * sizeof(float));

    hipMemcpy(d_data, h_data, count * sizeof(float), hipMemcpyHostToDevice);
    vector_scale<<< 20, 256 >>>(d_data, 10, count);
    hipMemcpy(h_data, d_data, count * sizeof(float), hipMemcpyDeviceToHost);

    hipFree(d_data);
    delete[] h_data;
    return 0;
}

$ nvcc source.cu –o program_cuda.x $ hipcc source.hip.cpp –o program_hip.x



SYCL

• Open standard, modern C++17 interface
• A way to do parallel programming not only for GPUs

• CPUs, FPGAs

• Primary way to utilize Intel GPUs
• Aurora supercomputer (#2)

• Source code portability. Not necessarily performance 
portability.

• Implementations for all of Intel, AMD and NVIDIA GPUs 
exist
• DPC++ (Intel), AdaptiveCPP

• oneAPI – SYCL interface for high performance libraries (BLAS, 

SPARSE, FFT, …)
• Also a standard
• Has implementations for all of Intel, AMD and NVIDIA GPUs

• Intel’s oneAPI, Codeplay





Hands-on
Matrix sum
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Hands-on
Matrix sum

. . .

. . .
• tasks/matrix_sum

• Sum of values in a matrix
• Horizontally
• Vertically

• Complete the TODO tasks
• Implement the two kernels
• 1D kernels iterating over the rows/columns

• Think about the memory access pattern
• Do not think about each thread individually, think about the 

threadblock (or rather warp) as a whole

sum_vertical

sum_horizontal

Expected output:

Horizontal sum seems OK

Vertical sum seems OK

Matrix init:             25.087 ms

Matrix sum horizontal:   61.935 ms

Matrix sum vertical:     30.567 ms

Using coalesced memory accesses was  2.03 times faster
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