
Lectures: Lubomír Říha

Hands-on: Jakub Homola, Milan Jaroš, Radim Vavřík, Filip 
Vaverka and Joao Barbosa

IT4Innovations, VSB-TU Ostrava

GPU Programming with 
CUDA



3

Schedule: Day 1

Day 1 Length 
[minutes] Start End

Heterogeneous Parallel Computing 10

10:00 12:00

GPU Architecture 25
Hands-on: Accessing GPU accelerated nodes 25
Hands-on: Benchmark HW properties 15
CUDA Programming 30
Hands-on: Hello World in CUDA 15

Lunch break 60 12:00 13:00

CUDA Programming cont. 20

13:00 14:35
Hands-on: Vector Addition (single GPU, two versions) 40
Multi-GPU programming 15
Hands-on: Vector Addition (multi-GPU) 20

Break 20 14:35 14:55

Efficient Host-Device Data Transfer and CUDA Streams 15

14:55 16:40
Hands-on: Streams 40
Multi-Dimensional Grids 15
Hands-on: Image Blur 20
Thread Execution 15



5

Schedule: Day 2

Day 2 Length 
[minutes] Start End

CUDA Memories 10

9:00 10:30

Global Memory 15
Hands-on: Matrix Sum 20
Shared Memory – Basics 10
Shared Memory – Bank conflicts 15
Hands-on: Matrix Transpose – Shared memory bank conflicts 20

Break 20 10:30 10:50

Memory and Data Locality: Tiling Technique 15

10:50 13:00

Parallel Computation Patterns: Stencil 20
Hands-on: Stencil – 1D Convolution 20
Parallel Computation Patterns: Reduction 15
Hands-on: Parallel Reduction 20
Parallel Computation Patterns: Histogram 20
Hands-on: Histogram – Data Race, Atomics, Privatization 20



Heterogeneous Parallel 
Computing 



Accelerators in HPC
Historical Analysis 

16

Vector 

Machines

MPPs with 

Multicores and 

Heterogeneous 

Accelerators

Massively

Parallel 

Processors

1993 2008

End of Moore’s Law in Clocking!

Performance

Time

PetaFLOPS (Cell)

PetaFLOPS (GPU)

2011

TeraFLOPS (MPPs)

IBM Roadrunner (2008) 

• the first heterogeneous supercomputer

• installed in Los Alamos National Lab

• 6,480 AMD Opteron processors 

• with 52 TB RAM

• 12,960 PowerXCell 8i processors

• 296 racks - 2.35 MW power consumption



Accelerators in HPC
Historical Analysis 

17

Computer
# CPU

cores
Year

Frontier, USA 8 730 112 2022

Fugaku, Japan 7 630 848 2020

Summit, USA 2 414 592 2018

Sunway TAIHULIGHT 10 649 600 2016

TIANHE-2, CHINA 3 120 000 2015

Titan, USA 560 640 2012

Sequoia, USA 

(BlueGene/Q)
1 572 864 2012

K-Computer, Japan 548 352 2011

Tianhe-1A, China 186 368 2010

Jaguar, Cray 224 162 2009

Roadrunner, USA 122 400 2008

BlueGene/L 212 992 2007

Source: Top500 list, https://www.top500.org/lists/top500/2024/06/ 

https://www.top500.org/lists/top500/2024/06/


Accelerators in HPC
as of June 2024

18

Rank Name Computer Site Country
Rmax 

[EFlop/s]
Rpeak 

[EFlop/s]
Power 
(MW)

Energy Efficiency 
[GFlops/Watts]

Accelerator

1 Frontier
HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 
2GHz, AMD Instinct MI250X, Slingshot-11

DOE/SC/ORNL
United 
States

1,21 1,71 22,8 52,93
AMD 

MI250X

2 Aurora
HPE Cray EX - Intel Exascale Compute Blade, Xeon CPU Max 
9470 52C 2.4GHz, Intel Max GPU, Slingshot-11

DOE/SC/AANL
United 
States

1,01 1,98 38, 7 26,15 Intel Max

3 Eagle
Microsoft NDv5, Xeon Platinum 8480C 48C 2GHz, NVIDIA H100, 
Infiniband NDR

Microsoft 
Azure

United 
States

0,561 0,846
NVIDIA 
H100

4 Fugaku Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D RIKEN R-CCS Japan 0,442 0,537 29,9 14,78 None

5 LUMI
HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 
2GHz, AMD Instinct MI250X, Slingshot-11

EuroHPC
CSC

Finland 0,379 0,531 7,1 53,43
AMD 

MI250X

6 Alps
HPE Cray EX254n, NVIDIA Grace 72C 3.1GHz, NVIDIA GH200 
Superchip, Slingshot-11

CSCS Switzerland 0,270 0,353 5,2 51,98
NVIDIA 
GH200

7 Leonardo
BullSequana XH2000, Xeon Platinum 8358 32C 2.6GHz, NVIDIA 
A100 SXM4 64 GB, HDR100 Infiniband

EuroHPC
CINECA

Italy 0,241 0,306 7,5 32,19
NVIDIA 
A100

8
MareNostrum 

5 ACC
BullSequana XH3000, Xeon Platinum 8460Y+ 32C 2.3GHz, 
NVIDIA H100 64GB, Infiniband NDR

EuroHPC
BSC

Spain 0,175 0,249 4,2 42,15
NVIDIA 
H100

9 Summit
IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA 
Volta GV100, EDR Infiniband

DOE/SC/ORNL
United 
States

0,148 0,200 10,1 14,72
NVIDIA 
GV100

10
Eos NVIDIA 

DGX SuperPOD
NVIDIA DGX H100, Xeon Platinum 8480C 56C 3.8GHz, NVIDIA 
H100, Infiniband NDR400

NVIDIA 
Corporation

United 
States

0,121 0,188
NVIDIA 
H100



Accelerators in HPC
as of June 2024

19

Rank Name Computer Site Country
Rmax 

[EFlop/s]
Rpeak 

[EFlop/s]
Power 
(MW)

Energy Efficiency 
[GFlops/Watts]

Accelerator

1 Frontier
HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 
2GHz, AMD Instinct MI250X, Slingshot-11

DOE/SC/ORNL
United 
States

1,21 1,71 22,8 52,93
AMD 

MI250X

2 Aurora
HPE Cray EX - Intel Exascale Compute Blade, Xeon CPU Max 
9470 52C 2.4GHz, Intel Max GPU, Slingshot-11

DOE/SC/AANL
United 
States

1,01 1,98 38, 7 26,15 Intel Max

3 Eagle
Microsoft NDv5, Xeon Platinum 8480C 48C 2GHz, NVIDIA H100, 
Infiniband NDR

Microsoft 
Azure

United 
States

0,561 0,846
NVIDIA 
H100

4 Fugaku Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D RIKEN R-CCS Japan 0,442 0,537 29,9 14,78 None

5 LUMI
HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 
2GHz, AMD Instinct MI250X, Slingshot-11

EuroHPC
CSC

Finland 0,379 0,531 7,1 53,43
AMD 

MI250X

6 Alps
HPE Cray EX254n, NVIDIA Grace 72C 3.1GHz, NVIDIA GH200 
Superchip, Slingshot-11

CSCS Switzerland 0,270 0,353 5,2 51,98
NVIDIA 
GH200

7 Leonardo
BullSequana XH2000, Xeon Platinum 8358 32C 2.6GHz, NVIDIA 
A100 SXM4 64 GB, HDR100 Infiniband

EuroHPC
CINECA

Italy 0,241 0,306 7,5 32,19
NVIDIA 
A100

8
MareNostrum 

5 ACC
BullSequana XH3000, Xeon Platinum 8460Y+ 32C 2.3GHz, 
NVIDIA H100 64GB, Infiniband NDR

EuroHPC
BSC

Spain 0,175 0,249 4,2 42,15
NVIDIA 
H100

9 Summit
IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA 
Volta GV100, EDR Infiniband

DOE/SC/ORNL
United 
States

0,148 0,200 10,1 14,72
NVIDIA 
GV100

10
Eos NVIDIA 

DGX SuperPOD
NVIDIA DGX H100, Xeon Platinum 8480C 56C 3.8GHz, NVIDIA 
H100, Infiniband NDR400

NVIDIA 
Corporation

United 
States

0,121 0,188
NVIDIA 
H100

CUDA

HIP



Accelerators in HPC
Now

20

Rank Name Computer Site Country
Rmax 

[EFlop/s]
Rpeak 

[EFlop/s]
Power 
(MW)

Energy Efficiency 
[GFlops/Watts]

Accelerator

1 Frontier
HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 
2GHz, AMD Instinct MI250X, Slingshot-11

DOE/SC/ORNL
United 
States

1,21 1,71 22,8 52,93
AMD 

MI250X

2 Aurora
HPE Cray EX - Intel Exascale Compute Blade, Xeon CPU Max 
9470 52C 2.4GHz, Intel Max GPU, Slingshot-11

DOE/SC/AANL
United 
States

1,01 1,98 38, 7 26,15 Intel Max

3 Eagle
Microsoft NDv5, Xeon Platinum 8480C 48C 2GHz, NVIDIA H100, 
Infiniband NDR

Microsoft 
Azure

United 
States

0,561 0,846
NVIDIA 
H100

4 Fugaku Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D RIKEN R-CCS Japan 0,442 0,537 29,9 14,78 None

5 LUMI
HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 
2GHz, AMD Instinct MI250X, Slingshot-11

EuroHPC
CSC

Finland 0,379 0,531 7,1 53,43
AMD 

MI250X

6 Alps
HPE Cray EX254n, NVIDIA Grace 72C 3.1GHz, NVIDIA GH200 
Superchip, Slingshot-11

CSCS Switzerland 0,270 0,353 5,2 51,98
NVIDIA 
GH200

7 Leonardo
BullSequana XH2000, Xeon Platinum 8358 32C 2.6GHz, NVIDIA 
A100 SXM4 64 GB, HDR100 Infiniband

EuroHPC
CINECA

Italy 0,241 0,306 7,5 32,19
NVIDIA 
A100

8
MareNostrum 

5 ACC
BullSequana XH3000, Xeon Platinum 8460Y+ 32C 2.3GHz, 
NVIDIA H100 64GB, Infiniband NDR

EuroHPC
BSC

Spain 0,175 0,249 4,2 42,15
NVIDIA 
H100

9 Summit
IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA 
Volta GV100, EDR Infiniband

DOE/SC/ORNL
United 
States

0,148 0,200 10,1 14,72
NVIDIA 
GV100

10
Eos NVIDIA 

DGX SuperPOD
NVIDIA DGX H100, Xeon Platinum 8480C 56C 3.8GHz, NVIDIA 
H100, Infiniband NDR400

NVIDIA 
Corporation

United 
States

0,121 0,188
NVIDIA 
H100

CUDA

HIP

source.cu

__global__ void vector_scale(float * x, float alpha, int count)
{
    int idx = blockIdx.x * blockDim.x + threadIdx.x;
    if(idx < count) x[idx] = alpha * x[idx];
}

int main()
{
    int count = 20 * 256;
    
    float * h_data = new float[count];
    for(int i = 0; i < count; i++) h_data[i] = i;
    
    float * d_data;
    cudaMalloc(&d_data, count * sizeof(float));

    cudaMemcpy(d_data, h_data, count * sizeof(float), cudaMemcpyHostToDevice);
    vector_scale<<< 20, 256 >>>(d_data, 10, count);
    cudaMemcpy(h_data, d_data, count * sizeof(float), cudaMemcpyDeviceToHost);

    cudaFree(d_data);
    delete[] h_data;
    return 0;
}

source.hip.cpp
#include <hip/hip_runtime.h>

__global__ void vector_scale(float * x, float alpha, int count)
{
    int idx = blockIdx.x * blockDim.x + threadIdx.x;
    if(idx < count) x[idx] = alpha * x[idx];
}

int main()
{
    int count = 20 * 256;

    float * h_data = new float[count];
    for(int i = 0; i < count; i++) h_data[i] = i;

    float * d_data;    
    hipMalloc(&d_data, count * sizeof(float));

    hipMemcpy(d_data, h_data, count * sizeof(float), hipMemcpyHostToDevice);
    vector_scale<<< 20, 256 >>>(d_data, 10, count);
    hipMemcpy(h_data, d_data, count * sizeof(float), hipMemcpyDeviceToHost);

    hipFree(d_data);
    delete[] h_data;
    return 0;
}

$ nvcc source.cu –o program_cuda.x $ hipcc source.hip.cpp –o program_hip.x



Accelerators in HPC
ORNL Summit Supercomputer

21

Number of Nodes 4,608 = 27 648 GPUs

Performance
200 PF Peak, 148 Linpack (FP64)
3.3 ExaOps (FP16)

Node performance 42 TF 

Memory per Node 512 GB DDR4 + 96 GB HBM2 

NV memory per Node 1600 GB 

Total System Memory >10 PB DDR4 + HBM2 + Non-volatile

System Interconnect Dual Rail Infiniband EDR (25 GB/s) 

Interconnect Topology Non-blocking Fat Tree

Processors 
2x IBM POWER9 
6x NVIDIA Volta

File System 250 PB, 2.5 TB/s, GPFSTM 

Power Consumption 13 MW 

Summit: DOE/SC/Oak Ridge 
National Laboratory

No.1 from Jun 2018 until 
Nov 2019

• Coherent memory across entire node 
• NVLink v2 fully interconnects three GPUs and one CPU on each side node 
• PCIe Gen4 connects NVMe and NIC 
• Single shared NIC with dual EDR ports 



Accelerators in HPC
ORNL Frontier Supercomputer

22Source: Frontier’s Exascale Architecture by Scott Atchley, ExaComm2022

= 37 632 GPUs



Accelerators in HPC
ALCF Aurora Supercomputer

23Source: IXPUG Webinar: Preparing for Exascale on Aurora, https://www.ixpug.org/resources/preparing-for-exascale-on-aurora  

• Nodes: 10,624 (Racks: 166)
• CPUs: 21,248 
• GPUs: 63,744

• Peak FP Performance ≧ 2 Exaflops DP 
• Memory 

• 10.9PB of DDR @ 5.95 PB/s 
• 1.36PB of CPU HBM @ 30.5 PB/s 
• 8.16PB of GPU HBM @ 208.9 PB/s 

• Network: HPE Slingshot 11 
• Dragonfly topology

• Storage: 
• 230PB DAOS Capacity 
• 31 TB/s DAOS Bandwidth

Node characteristics:
• 6x GPUs - Intel Max GPU
• 2x CPUs - Intel Xeon Max CPU
• 768 GB GPU HBM Memory 

• 19.66 TB/s Peak GPU HBM BW 
• 128 GB CPU HBM Memory 

• 2.87 TB/s Peak CPU HBM BW 
• 1024 GB CPU DDR5 Memory 

• 0.56 TB/s Peak CPU DDR5 BW 
• ≧ 130 TF Peak Node DP FLOPS 
• 200 GB/s Max Fabric Injection 
• 8   NICs

https://www.ixpug.org/resources/preparing-for-exascale-on-aurora


Accelerators in HPC 

24

Device

Fabrica-
tion 

process
[nm]

Clock 
freq. 
[GHz]

No. of cores

Peak floating 
point 

performance 
SP/DP [TFLOPs]

Peak 
power 

consumpti
on [W]

Perf. Per Watt 
SP/DP 

[GFLOPs/W]

Theoretical 
Memory 

Bandwidth 
[GB/s]

Memory 
type

Intel Xeon® 6 - 6980P
(Granite Rapids)

5 2.0 128 16,3/8,2 500 32,7/16,3
614
844

DDR5
MRDIMM

AMD EPYC 9654 5 2.4 96 14,7/7,4 360 40,9/20,5 461 DDR5

AMD EPYC 7763 7 2.45 64 5,1/2,5 280 26/13 190 DDR4

Nvidia H100
Nvidia H200

4N 1.83 16896 (132 SMs) 67/34 700 95,7/48,5
3350
4800

HBM3

NVidia A100 7 1.41 6912 (108 SMs) 19,5/9,7 400 49/24 2039 HBM2e

AMD MI300A 5
2.1 GPU
3.7 CPU

14592 (228 CUs)
24 CPU cores

122/61,3 760 161/80 5300 HBM3

AMD MI300X 5 2.1 19,456 (304 CUs) 163/81,7 750 217/109 5300 HBM3

AMD MI250X 6 1.7 14080 (220 CUs) 47,9/47,9 560 86/86 3277 HBM2e

Intel (PVC) Max GPU 7 1.6 16384 (1024 Eus) 52,4/52,4 600 87/87 3210 HBM2e

Intel Xeon Phi KNL 14 1.3 64 5,3/2,7 215 25/12
400
102

MCDRAM
DDR4



Accelerators in HPC 
Heterogeneous Computing

26

PC

P
• Transfer of Control

• Input Data

• Output Data

• Transfer of Control

Hardware Accelerators - Speeding up the Slow Part of the Code

• Enable higher performance through fine-grained parallelism

• Offer higher computational density than CPUs

• Accelerators present heterogeneity!

Main Features

• Coprocessor to the CPU

• PCIe based interconnection

• Separate GPU memory

• Provide high bandwidth access to local data

• Slow access to the CPU memory 

Vector Engine
Processors



Accelerators in HPC

Accelerators

• tailored for compute-intensive, highly data 
parallel computation 

• many parallel execution units 

• have significantly faster and more advanced 
memory interfaces

• more transistors is devoted to data processing 

• less transistors for data caching and flow control

Very Efficient For

• Fast Parallel Floating Point Processing

• High Computation per Memory Access

Not As Efficient For

• Branching-Intensive Operations

• Random Access, 

• Memory-Intensive Operations

27

DRAM

Cache

ALU
Control

ALU

ALU

ALU

DRAM

CPUs
Powerful ALU
• reduced operation latency
Large caches
• convert long latency memory accesses to 

short latency cache accesses
Sophisticated control with branch 
prediction for reduced branch latency

GPUs
Small caches to boost memory throughput
Simple control with no branch prediction
Energy efficient ALUs
• many, long latency but heavily 

pipelined for high throughput
Require massive number of threads to 
tolerate latencies



Accelerators in HPC

Accelerators

• tailored for compute-intensive, highly data 
parallel computation 

• many parallel execution units 

• have significantly faster and more advanced 
memory interfaces

• more transistors is devoted to data processing 

• less transistors for data caching and flow control

Very Efficient For

• Fast Parallel Floating Point Processing

• High Computation per Memory Access

Not As Efficient For

• Branching-Intensive Operations

• Random Access, 

• Memory-Intensive Operations

28

NVIDIA Corporation 2010 

GPU are throughput devices 
• CPU cores are optimized to minimize latency between operations.
• GPUs aim to minimize latency between operations by scheduling 

multiple warps (thread bundles).



Accelerators in HPC: Current trends
Unified memory address space

29Source: NVIDIA Grace Hopper Superchip, https://www.boston.co.uk/blog/2023/07/10/nvidia-grace-hopper-superchip.aspx 

https://www.boston.co.uk/blog/2023/07/10/nvidia-grace-hopper-superchip.aspx


Accelerators in HPC: Current trends
Unified memory address space – hardware coherency

30Source: NVIDIA Grace Hopper Superchip, https://www.boston.co.uk/blog/2023/07/10/nvidia-grace-hopper-superchip.aspx 

https://www.boston.co.uk/blog/2023/07/10/nvidia-grace-hopper-superchip.aspx


Accelerators in HPC: Current trends
Unified memory address space

31Source: NVIDIA Grace Hopper Superchip, https://www.boston.co.uk/blog/2023/07/10/nvidia-grace-hopper-superchip.aspx 

https://www.boston.co.uk/blog/2023/07/10/nvidia-grace-hopper-superchip.aspx


Accelerators in HPC: Current trends
AMD APU

32Source: A. Smith et al., "Realizing the AMD Exascale Heterogeneous Processor Vision, ISCA, 2024, https://ieeexplore.ieee.org/document/10609636 

Example code and data movement/synchronization for (a) CPU-only, (b) CPU and a discrete/external GPU with 
separate memory spaces, and (c) APU with a unified memory.

(a) CPU-only (c) APU with a unified memory(b) CPU and a discrete/external GPU 
with separate memory spaces

https://ieeexplore.ieee.org/document/10609636


GPU Architecture



Accelerators in HPC
Evolution of Graphics Processors

Till 90s

• VGA controllers used to accelerate some display functions 

Mid 90s to mid 00s

• Fixed-function graphic accelerators for the OpenGL and DirectX APIs

• Some GP-GPU capabilities on top of the interface

• 3D graphic: triangle setup & rasterization, texture mapping & shading 

Modern GPUs

• Programmable multiprocessors (optimized for data-parallel ops)

• OpenGL/DirectX and general purpose language

• Some fixed function hardware (texture, raster, ops, ….)

37

Graphic Pipeline (for last 20 years)

Vertex

Triangle

Pixel

ROP

Memory

T&L evolved to vertex shading

Triangle, point, line - setup

Flat shading, texturing, eventually, 
Pixel shading

Blending, Z-buffering, antialliasing

Wider and faster over years 



Accelerators in HPC
Non-unified GPU Architecture GeForce 7800 GTX

38
38

Triangle Setup/Raster

Shader Instruction Dispatch

Fragment Crossbar

Memory

Partition

Memory

Partition

Memory

Partition

Memory

Partition

Z-Cull

8 Vertex Engines

24 Pixel Shaders

16 Raster Operation Pipelines



Accelerators in HPC
Why Unify Shader Processors?

39



Accelerators in HPC
Unified Architecture G80 - Graphics Mode

40

L2

FB

SP SP

L1

TF

T
h

re
a

d
 P

ro
c

e
s

s
o

r

Vtx Thread Issue

Setup / Rstr / ZCull

Geom Thread Issue Pixel Thread Issue

Input Assembler

Host

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

L2

FB

L2

FB

L2

FB

L2

FB

L2

FB

The future of GPUs is programmable processing architecture built around the processor.



Accelerators in HPC
Why Unify Shader Processors?

41



Accelerators in HPC
Why Unify Shader Processors?

42

Dynamic resource realocation



Accelerators in HPC
Unified Architecture G80 - Graphics Mode

43

L2

FB

SP SP

L1

TF

T
h

re
a

d
 P

ro
c

e
s

s
o

r

Vtx Thread Issue

Setup / Rstr / ZCull

Geom Thread Issue Pixel Thread Issue

Input Assembler

Host

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

L2

FB

L2

FB

L2

FB

L2

FB

L2

FB

The future of GPUs is programmable processing architecture built around the processor.



Accelerators in HPC
Unified Architecture G80 - Compute Mode

44
• processors execute computing threads
• new operating mode - HW interface for computing or accelerator

Load/store

Global Memory

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture TextureTexture

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Load/store Load/store Load/store Load/store Load/store



45https://www.nextplatform.com/2020/05/28/diving-deep-into-the-nvidia-ampere-gpu-architecture/ 

Evolution of NVIDIA GPU Accelerators in HPC

Performance

Fast local memory

https://www.nextplatform.com/2020/05/28/diving-deep-into-the-nvidia-ampere-gpu-architecture/


Accelerators in HPC
NVIDIA A40 Architecture

• Based on Ampere architecture GA102 
chip designed for 3D graphics rather 
than scientific computing 

• GA102 GPU also features 168 FP64 
units (two per SM), 

• FP64 TFLOP rate is 1/64th the TFLOP 
rate of FP32 operations. 

• the small number of FP64 hardware 
units are included to ensure any 
programs with FP64 code operate 
correctly

46https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf 

GA102 Full GPU with 84 SMs

https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf


Accelerators in HPC
NVIDIA A40 Architecture

47

https://www.nvidia.com/content/PDF/nvidia-ampere-
ga-102-gpu-architecture-whitepaper-v2.pdf 

GA102 Full GPU with 84 SMs

• Based on Ampere architecture GA102 
chip designed for 3D graphics rather 
than scientific computing 

• GA102 GPU also features 168 FP64 
units (two per SM), 

• FP64 TFLOP rate is 1/64th the TFLOP 
rate of FP32 operations. 

• the small number of FP64 hardware 
units are included to ensure any 
programs with FP64 code operate 
correctly

https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf


Accelerators in HPC
NVIDIA A40 Architecture

GA102 Streaming Multiprocessor (SM)

• includes four SM processing blocks (also called partitions)

• 32 FP32 operations per clock, or 

• 16 FP32 and 16 INT32 operations per clock

• In compute mode, the GA102 SM will support the following 
configurations:

• 128 KB L1 + 0 KB Shared Memory

• 120 KB L1 + 8 KB Shared Memory

• 112 KB L1 + 16 KB Shared Memory

• 96 KB L1 + 32 KB Shared Memory

• 64 KB L1 + 64 KB Shared Memory

• 28 KB L1 + 100 KB Shared Memory

48

https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-
architecture-whitepaper-v2.pdf 

https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf


Accelerators in HPC
NVIDIA A40 Architecture

Tensor Cores

• specialized execution units designed specifically for performing 
the tensor / matrix operations that are the core compute function 
used in Deep Learning

• accelerate the matrix-matrix multiplication

49https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf 

Ampere architecture tensor core 

https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf


Accelerators in HPC
NVIDIA A100 Architecture

• Based on Ampere architecture GA100 
chip designed for scientific computing 

• The NVIDIA A100 GPU implementation 
of the GA100 GPU includes the following 
units:

• 108 Streaming Multiprocessors (SMs)

• 6912 FP32 CUDA Cores per GPU 

• 64 FP32 CUDA Cores per SM

• 432 Third-generation Tensor Cores per 
GPU

• 4 Third-generation Tensor Cores 
per SM

• 5 HBM2 stacks, 

• 10x 512-bit Memory Controllers

50https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf 

GA100 Full GPU with 128 SMs

https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf


Accelerators in HPC
NVIDIA A100 Architecture

51

https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-
ampere-architecture-whitepaper.pdf 

• Based on Ampere architecture GA100 
chip designed for scientific computing 

• The NVIDIA A100 GPU implementation 
of the GA100 GPU includes the following 
units:

• 108 Streaming Multiprocessors (SMs)

• 6912 FP32 CUDA Cores per GPU 

• 64 FP32 CUDA Cores per SM

• 432 Third-generation Tensor Cores per 
GPU

• 4 Third-generation Tensor Cores 
per SM

• 5 HBM2 stacks, 

• 10x 512-bit Memory Controllers

https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf


Accelerators in HPC
NVIDIA A100 Architecture

GA100 Streaming Multiprocessor (SM)

• includes four SM processing blocks (also called partitions)

• 16 FP32 operations per clock, 

• 16 INT32 operations per clock, and 

• 8 FP64 operations per clock, 

• FP64 Tensor Core operations running 2x faster DFMA 
operations

• 192 KB of combined shared memory and L1 data cache

52

https://images.nvidia.com/aem-dam/en-zz/Solutions/data-
center/nvidia-ampere-architecture-whitepaper.pdf 

https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf


General Architecture of 
GPU Accelerated Compute Node 

54

CPU 0

GPU 0

GPU Memory

(GDDR,

HBM,…)

CPU Memory

(DDR4,…)
I/O Hub (IOH)

NVMe 

storage

Network 

Interface

QPI/UPI

12.8 GB/s (QPI)

20.8 GB/s (UPI)

PCIe: 16-lanes Gen3: 16 GB/s (Gen4: 32 GB/s)

DDR4 2666 MHz

128 GB/s

100s of GB

GDDR5: 100s GB/s, 10s of GB

HBM2: ~1 TB/s, 10s of GB

CPU 1
CPU Memory

(DDR4,…)

I/O Hub 

(IOH)
GPU

GPU Memory

(GDDR, HBM,…)



Evolution of GPU Accelerated nodes

55

CPU
CPU Memory

(DDR)
I/O Hub (IOH) Network 

Interface

GPU

accelerator 

CPU 0
CPU Memory

(DDR)
I/O Hub (IOH) Network 

Interface

GPU 0

accelerator 

CPU 1
CPU Memory

(DDR)
I/O Hub (IOH) Network 

Interface

GPU 1

accelerator 

ORNL Titan, CSCS Piz Daint, …. 

Dual socket machines with one GPU per CPU

• 1:1 ratio between processors and accelerators
• GPUs used to have relativelly small amount of memory



Evolution of GPU Accelerated nodes

CPU 0
CPU Memory

(DDR)

I/O Hub (IOH)

&

PCI-e switches

Network 

Interface

GPU 0

accelerator 

CPU 1
CPU Memory

(DDR)
I/O Hub (IOH)

&

PCI-e switches

Network 

Interface

GPU 1

accelerator 

Network 

Interface

GPU 0

accelerator 

Network 

Interface

GPU 1

accelerator 

NVLink         interconnect

• Dominant architecture in todays systems: 1:2 ratio between processors and accelerators.
• A100 GPUs now have 40 or 80GB of memory – 160 - 320 GB of GPU memory in total  



Evolution of GPU Accelerated nodes

N
V

S
w

it
c
h

 b
a

s
e
d

 n
e
tw

o
rk

CPU 0

CPU 

Memory

(DDR)

I/O Hub

&

PCI-e 

switches
Network 

Interface

CPU 1

CPU 

Memory

(DDR) I/O Hub

&

PCI-e 

switches

Network 

Interface

Network 

Interface

Network 

Interface

GPU 0
accelerator 

GPU 1
accelerator

GPU 2
accelerator

GPU 3
accelerator

GPU 4
accelerator

GPU 5
accelerator

GPU 6
accelerator

GPU 7
accelerator 

• Fat GPU nodes contain 8 GPUs: 1:4 ratio between processors and accelerators.
• 40 or 80 GB per GPU --> 320 or 640 GB of GPU memory in total which can be shared among GPUs  



Karolina GPU Accelerated nodes

N
V

S
w

it
c
h

 b
a

s
e
d

 n
e
tw

o
rk

CPU 0

AMD EPYC 

7763 - 64 cores

CPU 

Memory

(DDR)

I/O Hub

&

PCI-e 

switches
Network 

Interface

CPU 1

AMD EPYC 

7763 - 64 cores

CPU 

Memory

(DDR) I/O Hub

&

PCI-e 

switches

Network 

Interface

Network 

Interface

Network 

Interface

GPU 0

A100 

GPU 1

A100

GPU 2

A100

GPU 3

A100

GPU 4

A100

GPU 5

A100

GPU 6

A100 

GPU 7

A100

• Karolina GPU nodes contain 8 GPUs: 1:4 ratio between processors and accelerators.
• 40 GB per GPU --> 320 GB of GPU memory in total which can be shared among GPUs  



Compute node evaluation of the 
Karolina GPU Accelerated nodes  

62

$ nvidia-smi topo -m 

 GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 mlx5_0 mlx5_1 mlx5_2 mlx5_3 CPU Affinity NUMA Affinity
GPU0  X NV12 NV12 NV12 NV12 NV12 NV12 NV12 SYS PXB SYS SYS 48-63 3
GPU1 NV12  X NV12 NV12 NV12 NV12 NV12 NV12 SYS PXB SYS SYS 48-63 3
GPU2 NV12 NV12  X NV12 NV12 NV12 NV12 NV12 PXB SYS SYS SYS 16-31 1
GPU3 NV12 NV12 NV12  X NV12 NV12 NV12 NV12 PXB SYS SYS SYS 16-31 1
GPU4 NV12 NV12 NV12 NV12  X NV12 NV12 NV12 SYS SYS SYS PXB 112-127 7
GPU5 NV12 NV12 NV12 NV12 NV12  X NV12 NV12 SYS SYS SYS PXB 112-127 7
GPU6 NV12 NV12 NV12 NV12 NV12 NV12  X NV12 SYS SYS PXB SYS 80-95 5
GPU7 NV12 NV12 NV12 NV12 NV12 NV12 NV12  X SYS SYS PXB SYS 80-95 5
mlx5_0 SYS SYS PXB PXB SYS SYS SYS SYS  X SYS SYS SYS  
mlx5_1 PXB PXB SYS SYS SYS SYS SYS SYS SYS  X SYS SYS  
mlx5_2 SYS SYS SYS SYS SYS SYS PXB PXB SYS SYS  X SYS  
mlx5_3 SYS SYS SYS SYS PXB PXB SYS SYS SYS SYS SYS  X  

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

Note:
CPU: 2 x AMD Zen 3 EPYC  7763, 2.45 GHz and GPU: 8x NVIDIA A100 SXM4 GPUs 



Compute node evaluation of the 
Karolina GPU Accelerated nodes  

63

$ nvidia-smi topo -m 

 GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 mlx5_0 mlx5_1 mlx5_2 mlx5_3 CPU Affinity NUMA Affinity
GPU0  X NV12 NV12 NV12 NV12 NV12 NV12 NV12 SYS PXB SYS SYS 48-63 3
GPU1 NV12  X NV12 NV12 NV12 NV12 NV12 NV12 SYS PXB SYS SYS 48-63 3
GPU2 NV12 NV12  X NV12 NV12 NV12 NV12 NV12 PXB SYS SYS SYS 16-31 1
GPU3 NV12 NV12 NV12  X NV12 NV12 NV12 NV12 PXB SYS SYS SYS 16-31 1
GPU4 NV12 NV12 NV12 NV12  X NV12 NV12 NV12 SYS SYS SYS PXB 112-127 7
GPU5 NV12 NV12 NV12 NV12 NV12  X NV12 NV12 SYS SYS SYS PXB 112-127 7
GPU6 NV12 NV12 NV12 NV12 NV12 NV12  X NV12 SYS SYS PXB SYS 80-95 5
GPU7 NV12 NV12 NV12 NV12 NV12 NV12 NV12  X SYS SYS PXB SYS 80-95 5
mlx5_0 SYS SYS PXB PXB SYS SYS SYS SYS  X SYS SYS SYS  
mlx5_1 PXB PXB SYS SYS SYS SYS SYS SYS SYS  X SYS SYS  
mlx5_2 SYS SYS SYS SYS SYS SYS PXB PXB SYS SYS  X SYS  
mlx5_3 SYS SYS SYS SYS PXB PXB SYS SYS SYS SYS SYS  X  

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

Note:
CPU: 2 x AMD Zen 3 EPYC  7763, 2.45 GHz and GPU: 8x NVIDIA A100 SXM4 GPUs 

NVSwitch NVSwitch NVSwitch NVSwitch NVSwitch NVSwitch

PCIe
switch

GPU GPU GPU GPU GPU GPU GPU GPU

PCIe
switch

PCIe
switch

PCIe
switch

PCIe
switch

CPU
Infinity
fabric

PCIe

NVLink

CPU

IB 
0

IB 
1

IB 
0

IB 
3

IB 
2



Karolina GPU Accelerated nodes 
NVLink GPU to GPU interconnect

64Note: CPU: 2 x AMD Zen 3 EPYC  7763, 2.45 GHz and GPU: 8x NVIDIA A100 SXM4 GPUs 

1) 8x NVIDIA A100 (320GB)
2) 6x NVIDIA NVSwitches
3) 4x Mellanox ConnectX-6 (200 Gb/s) 
4) Dual 64-Core AMD CPUs and 1 TB System Memory

Unidirectional Bandwidth [GB/s]

Bandwidth for accessing remote memory over NVLink 3.0 
for all combinations of GPUs

NVSwitch NVSwitch NVSwitch NVSwitch NVSwitch NVSwitch

PCIe
switch

GPU GPU GPU GPU GPU GPU GPU GPU

PCIe
switch

PCIe
switch

PCIe
switch

PCIe
switch

CPU
Infinity
fabric

PCIe

NVLink

CPU

IB 
0

IB 
1

IB 
0

IB 
3

IB 
2 GPU 0 1 2 3 4 5 6 7

0 1180 244 255 251 255 255 249 255
1 251 1202 256 245 256 256 252 257

2 248 256 1195 255 252 255 255 248
3 252 257 257 1198 253 255 255 249

4 244 255 256 249 1173 254 249 253

5 251 256 255 251 256 1198 255 252
6 256 251 255 255 253 254 1195 248

7 257 256 248 255 257 251 255 1206



Karolina GPU Accelerated nodes -
Partial node allocation

N
V

S
w

it
c
h

 b
a

s
e
d

 n
e
tw

o
rk

CPU 0

32 cores

32 cores

CPU 

Memory

(DDR)

I/O Hub

&

PCI-e 

switches

Network 

Interface

GPU 0

A100 

GPU 1

A100

Network 

Interface

GPU 2

A100

GPU 3

A100

CPU 1

AMD EPYC 

7763 - 64 cores

CPU 

Memory

(DDR) I/O Hub

&

PCI-e 

switches

Network 

Interface

Network 

Interface

GPU 4

A100

GPU 5

A100

GPU 6

A100 

GPU 7

A100

• Karolina GPU nodes contain 8 GPUs: 1:4 ratio between processors and accelerators.
• 40 GB per GPU --> 320 GB of GPU memory in total which can be shared among GPUs  



Karolina GPU Accelerated nodes -
Partial node allocation

N
V

S
w

it
c
h

 b
a

s
e
d

 n
e
tw

o
rk

CPU 0

32 cores

32 cores

CPU 

Memory

(DDR)

I/O Hub

&

PCI-e 

switches

Network 

Interface

GPU 0

A100 

GPU 1

A100

Network 

Interface

GPU 2

A100

GPU 3

A100

CPU 1

AMD EPYC 

7763 - 64 cores

CPU 

Memory

(DDR) I/O Hub

&

PCI-e 

switches

Network 

Interface

Network 

Interface

GPU 4

A100

GPU 5

A100

GPU 6

A100 

GPU 7

A100

• Karolina GPU nodes contain 8 GPUs: 1:4 ratio between processors and accelerators.
• 40 GB per GPU --> 320 GB of GPU memory in total which can be shared among GPUs  



Hands on:
Connecting to Karolina cluster 

and 
installation of VS Code



Hands on 
Accessing GPU accelerated nodes

• IT4Innovations Documentation: https://docs.it4i.cz/

• What OS do you use? (Linux, Windows, MacOS)

• Accessing the Clusters
• https://docs.it4i.cz/general/shell-and-data-access/

• Generate SSH key pairs (id_rsa, id_rsa.pub):
• ssh-keygen (preferred): https://docs.it4i.cz/general/accessing-the-clusters/shell-access-and-data-transfer/ssh-keys/ 

• IT4I Account
• Training Login Credentials

• https://extranet.it4i.cz/ssp/?action=changesshkey

• https://youtu.be/zM1EPE3qw-8

69

https://docs.it4i.cz/
https://docs.it4i.cz/general/shell-and-data-access/
https://docs.it4i.cz/general/accessing-the-clusters/shell-access-and-data-transfer/ssh-keys/
https://extranet.it4i.cz/ssp/?action=changesshkey
https://youtu.be/zM1EPE3qw-8


Hands on 
Accessing GPU accelerated nodes

• SSH configuration
• Windows: c:\Users\jarXXX\.ssh\

• Linux: /home/jarXXX/.ssh/

• MacOS: /Users/jarXXX/.ssh/

• .ssh/*
• authorized_keys

• config

• id_rsa

• id_rsa.pub

• known_hosts

70

host karolina
    HostName karolina.it4i.cz
    IdentityFile ~/.ssh/id_rsa
    User dd-XX-XX-XX



Hands on 
Accessing GPU accelerated nodes

71

Linux: sudo apt install openssh-client
 cd ~/.ssh
 ssh-keygen

Windows: cd %USERPROFILE%/.ssh
  ssh-keygen



Hands on 
Accessing GPU accelerated nodes

• Print SSH public key
• Windows: cd c:\Users\jarXXX\.ssh\

  notepad id_rsa_training.pub

• Linux/MacOS: cd /home/jarXXX/.ssh/
      cat id_rsa_training.pub

• IT4I Account
• Training Login Credentials

• https://extranet.it4i.cz/ssp/?action=changesshkey

• https://youtu.be/zM1EPE3qw-8

72

https://extranet.it4i.cz/ssp/?action=changesshkey
https://youtu.be/zM1EPE3qw-8


Hands on 
Visual Studio Code

• VSCode
• https://code.visualstudio.com/download

73

• Extensions
• https://marketplace.visualstudio.com/items?

itemName=ms-vscode-remote.remote-ssh

https://code.visualstudio.com/download
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-ssh
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-ssh


Hands on 
Visual Studio Code

75



Hands on 
Visual Studio Code

77

host karolina
    HostName karolina.it4i.cz
    IdentityFile ~/.ssh/id_rsa
    User dd-XX-XX-XX



Hands on 
Visual Studio Code

78



Hands on 
Visual Studio Code

79



Hands on 
Visual Studio Code (via Open OnDemand)

80

• OOD: https://docs.it4i.cz/general/accessing-the-clusters/graphical-user-interface/ood/

• VPN – IT4I
• https://docs.it4i.cz/general/accessing-the-clusters/vpn-access/

• Windows: Download the FortiClient app from the official page or the Windows Store.

• Mac: Download the FortiClient VPN app from the Apple Store.

• Linux: Download the FortiClient or OpenFortiVPN app.

Windows: Linux:

$cat ~/it4i-vpn-config

host = reconnect.it4i.cz
port = 443
username = USER
set-dns = 1
pppd-use-peerdns = 0

$sudo openfortivpn -c ~/it4i-vpn-config 

VS Code (via OOD)
https://ood-karolina.it4i.cz/

https://docs.it4i.cz/general/accessing-the-clusters/graphical-user-interface/ood/
https://docs.it4i.cz/general/accessing-the-clusters/vpn-access/
https://www.fortinet.com/support/product-downloads#vpn
https://apps.microsoft.com/store/detail/forticlient/9WZDNCRDH6MC?hl=en-us&gl=us
https://apps.apple.com/cz/app/forticlient-vpn/id1475674905?l=cs
https://www.fortinet.com/support/product-downloads/linux
https://github.com/adrienverge/openfortivpn
https://ood-karolina.it4i.cz/


• https://code.it4i.cz/training/cuda_examples

• Clone the repository on Karolina
• git clone https://code.it4i.cz/training/cuda_examples.git

• Open the repository folder in VS Code (Open Folder)

• Tasks – assignments and starting codes for the exercises

• Solution – finished solutions

81

Hands-on exercises git repository

https://code.it4i.cz/training/cuda_examples


Access Karolina GPU nodes
• 8 GPUs and 128 CPU cores per node, 72 nodes

• Possible to allocate only 1 GPU and 16 cores = 1/8 of the node

• salloc -A DD-24-88 -p qgpu --gpus 1  --nodes 1 --time 2:00:00
• Request 1 GPU on 1 node for 2 hours

• salloc -A DD-24-88 -p qgpu
• Default: 1 GPU, 1 node, 24h time limit

• salloc -A DD-24-88 -p qgpu --gpus 4            --time 2:00:00
• Request 4 GPUs for 2 hours. You might get the GPUs scattered across 1-4 nodes

• salloc -A DD-24-88 -p qgpu --gpus 4  --nodes 1 --time 2:00:00
• Request 4 GPUs on 1 node for 2 hours

• salloc -A DD-24-88 -p qgpu --gpus 16 --nodes 2 --time 2:00:00
• Request 16 GPUs on 2 nodes for 2 hours. You will get 2 full nodes.

• No way to enforce to get 4 “neighboring” GPUs on the node

• qgpu_exp – higher priority, but max 8 GPUs for 1 hour

• salloc -> sbatch … ./job.sh to submit batch jobs

-A, --account
-p, --partition
-N, --nodes
-t, --time
-G, --gpus

https://docs.it4i.cz/general/karolina-slurm/#using-gpu-queues

https://docs.it4i.cz/general/karolina-slurm/#using-gpu-queues


• No need to hope for a free node

• We have a reservation prepared

• Wednesday, 2024-10-09
• salloc --account=DD-24-88 --reservation=dd-24-88_2024-10-09T08:00:00_2024-10-

09T17:30:00_7_qgpu --nodes 1 --gpus 2 --cpus-per-gpu 16

• Thursday, 2024-10-10
• salloc --account=DD-24-88 --reservation=dd-24-88_2024-10-10T09:00:00_2024-10-

10T14:30:00_7_qgpu --nodes 1 --gpus 2 --cpus-per-gpu 16

• Load the CUDA module to setup the environment
• module load CUDA

Access Karolina GPU node



Hands on: 
Benchmark Hardware 

Properties 



Hands on 
Benchmark Hardware Properties 

• cd /home/dd-XX-XX-XX/cuda_examples/tasks/benchmarks

• Run the following benchmarks and complete the TODO values on the following 2 slides

• Retrieve information about the available GPUs, find global memory capacity

• ./run_1_device_query.sh

• Measure CPU memory (RAM) bandwidth

• ./run_2_memory_bw_cpu.sh

• Measure GPU memory bandwidth, compare it with CPU memory bandwidth

• ./run_3_memory_bw_gpu.sh

• Measure CPU-GPU data transfer bandwidth

• ./run_4_copy_bw_cpu_gpu.sh

• Measure GPU-GPU data transfer bandwidth, compare with CPU-GPU data transfer bandwidth

• ./run_5_copy_bw_gpu_gpu.sh

93



Hands on 
Benchmark Hardware Properties 

95

CPU 0
AMD EPYC 7763 – 
32 out of 64 cores

GPU 0

A100

GPU Memory
TODO1:

Capacity: ____ GB

CPU Memory

(DDR4,…)
I/O Hub (IOH)

Network 

Interface

PCIe: 16-lane PCIe Gen4: 32 GB/s theoretical bandwidth 

Benchmark: bandwidthTest from CUDA samples

TODO4: Measure PCIe bandwidth: ____ GB/s

Theoretical 205 GB/s per chip or ±100 GB/s per 32 cores 

Benchmark: STREAM benchmark

TODO2: Measure CPU memory bandwidth: ____ GB/s

HBM2: Theoretical bandwidth: 1550 GB/s

Benchmark: BabelStream

TODO3: Measure actual global memory 

bandwidth: ____ GB/s



Hands on 
Benchmark Hardware Properties 

97

N
V

S
w

it
c
h

 

b
a

s
e

d
 

n
e

tw
o

rk

CPU

32 cores

32 cores

CPU 

Memory

(DDR)

I/O Hub

&

PCI-e 

switches

Network 

Interface

GPU 0

A100 

GPU 1

A100

Measure GPU interconnect performance 

Theoretical bandwidth: 600 GB/s (NVLink 3.0)

Benchmark: OSU benchmark

TODO5: Measure GPU to GPU mem. 

bandwidth: ____ GB 



$ ./run_5_copy_bw_gpu_gpu.sh

  ...

# OSU MPI-CUDA Bandwidth Test

# Send Buffer on DEVICE (D) and Receive Buffer on DEVICE 

(D)

# Size        Bandwidth (MB/s)

1024                    221.03

2048                    440.67

4096                    863.83

8192                   1714.29

16384                  3539.78

32768                  7118.31

65536                 14161.52

131072                28030.01

262144                50905.00

524288                84376.06

1048576              131603.12

2097152              178780.51

4194304              218991.18

8388608              243920.48

16777216             258973.37

33554432             269537.56

67108864             274921.10

134217728            278010.86

268435456            279650.07

$ ./run_2_memory_bw_cpu.sh

 ...

-------------------------------------------------------------

Function    Best Rate MB/s  Avg time     Min time     Max time

Copy:           81048.9     0.197680     0.197412     0.197956

Scale:          54754.0     0.292969     0.292216     0.293471

Add:            61358.3     0.391617     0.391145     0.392164

Triad:          61553.2     0.390135     0.389907     0.390916

-------------------------------------------------------------

Solution Validates: avg error less than 1.000000e-13 on all three arrays

-------------------------------------------------------------

Hands on – solution, output
Benchmark Hardware Properties

100

$ ./run_1_device_query.sh

 ...

Detected 2 CUDA Capable device(s)

Device 0: "NVIDIA A100-SXM4-40GB"

  CUDA Driver Version / Runtime Version          12.4 / 12.4

  CUDA Capability Major/Minor version number:    8.0

  Total amount of global memory:                 40326 MBytes (42285268992 bytes)

  (108) Multiprocessors, (064) CUDA Cores/MP:    6912 CUDA Cores

  GPU Max Clock rate:                            1290 MHz (1.29 GHz)

  Memory Clock rate:                             1215 Mhz

  Memory Bus Width:                              5120-bit

  L2 Cache Size:                                 41943040 bytes

  Maximum Texture Dimension Size (x,y,z)         1D=(131072), 2D=(131072, 65536), 

3D=(16384, 16384, 16384)

  Maximum Layered 1D Texture Size, (num) layers  1D=(32768), 2048 layers

  Maximum Layered 2D Texture Size, (num) layers  2D=(32768, 32768), 2048 layers

  Total amount of constant memory:               65536 bytes

  Total amount of shared memory per block:       49152 bytes

  Total shared memory per multiprocessor:        167936 bytes

  Total number of registers available per block: 65536

  Warp size:                                     32

  Maximum number of threads per multiprocessor:  2048

  Maximum number of threads per block:           1024

  Max dimension size of a thread block (x,y,z): (1024, 1024, 64)

  Max dimension size of a grid size    (x,y,z): (2147483647, 65535, 65535)

  Maximum memory pitch:                          2147483647 bytes

  Texture alignment:                             512 bytes

  Concurrent copy and kernel execution:          Yes with 3 copy engine(s)

  Run time limit on kernels:                     No

  Integrated GPU sharing Host Memory:            No

  Support host page-locked memory mapping:       Yes

  Alignment requirement for Surfaces:            Yes

  Device has ECC support:                        Enabled

  Device supports Unified Addressing (UVA):      Yes

  Device supports Managed Memory:                Yes

  Device supports Compute Preemption:            Yes

  Supports Cooperative Kernel Launch:            Yes

  Supports MultiDevice Co-op Kernel Launch:      Yes

  Device PCI Domain ID / Bus ID / location ID:   0 / 76 / 0

  Compute Mode:

     < Default (multiple host threads can use ::cudaSetDevice() with device 

simultaneously) >

Device 1: "NVIDIA A100-SXM4-40GB“

...

> Peer access from NVIDIA A100-SXM4-40GB (GPU0) -> NVIDIA A100-SXM4-40GB (GPU1) : Yes

> Peer access from NVIDIA A100-SXM4-40GB (GPU1) -> NVIDIA A100-SXM4-40GB (GPU0) : Yes

$ ./run_3_memory_bw_gpu.sh

 ...

Function    MBytes/sec  Min (sec)   Max         Average     

Copy        1398531.090 0.00077     0.00077     0.00077     

Mul         1374268.159 0.00078     0.00079     0.00078     

Add         1384314.665 0.00116     0.00120     0.00118     

Triad       1388344.358 0.00116     0.00120     0.00117     

Dot         1288563.379 0.00083     0.00088     0.00085

$ ./run_4_copy_bw_cpu_gpu.sh

 ...

Host to Device Bandwidth, 1 Device(s)

 PINNED Memory Transfers

   Transfer Size (Bytes)        Bandwidth(GB/s)

   32000000                     24.5

 Device to Host Bandwidth, 1 Device(s)

 PINNED Memory Transfers

   Transfer Size (Bytes)        Bandwidth(GB/s)

   32000000                     25.9



CUDA Programming



Ways to Accelerate Applications

102

Applications

Libraries

Easy to use

Most Performance

Programming 

Languages

Most Performance

Most Flexibility

Easy to use

Portable code

Compiler

Directives

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

Libraries

• ease of use: 

• enables GPU acceleration without 
any GPU programming

• drop-in: 

• follow standard APIs

• minimal code changes

• quality: 

• high-quality implementations

https://www.nvidia.com/en-us/training/teaching-kits/


Ways to Accelerate Applications

103Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

Compiler Directives

• ease of use

• compiler takes care of details of parallelism 
management and data movement

• portable

• code is generic, not specific to any type of 
hardware

• Example: OpenACC

• Compiler directives for C, C++, and FORTRAN

Applications

Libraries

Easy to use

Most Performance

Programming 

Languages

Most Performance

Most Flexibility

Easy to use

Portable code

Compiler

Directives

#pragma acc parallel loop 

copyin(input1[0:inputLength],input2[0:inputLength]), 

copyout(output[0:inputLength])

  for(i = 0; i < inputLength; ++i) {

    output[i] = input1[i] + input2[i];

  }

https://www.nvidia.com/en-us/training/teaching-kits/


Ways to Accelerate Applications

104Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

Programming Languages

• Performance: best control of parallelism and 
data movement

• Flexible: the computation does not need to fit 
into a limited set of library patterns or directives

• Complex: programmer often needs to express 
more details 

CUDA C, OpenACCC

CUDA C++, ThrustC++

HybridizerC#CUDA Fortran, OpenACCFortran

PyCUDA, NumbaPython

MATLAB, MathematicaNumerical analytics

GPU Programming Languages

Applications

Libraries

Easy to use

Most Performance

Programming 

Languages

Most Performance

Most Flexibility

Easy to use

Portable code

Compiler

Directives

https://www.nvidia.com/en-us/training/teaching-kits/


CUDA programming
Data Parallelism

105Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

Vector addition example

Vector A A[0] A[1] A[2] A[N-1]

Vector B B[0] B[1] B[2] B[N-1]

Vector C C[0] C[1] C[2] C[N-1]

𝐴 + 𝐵 = 𝐶// Compute vector sum C = A + B

void vecAdd(float *h_A, float *h_B, float *h_C, int n)

{

  int i;

  for (i = 0; i < n; i++) 

 h_C[i] = h_A[i] + h_B[i];

}

int main()

{

 // Memory allocation for h_A, h_B, and h_C

 // read h_A and h_B from file for N elements

 …

 vecAdd(h_A, h_B, h_C, N);

}

https://www.nvidia.com/en-us/training/teaching-kits/


CUDA programming
Heterogenous Program

106

Memory Allocation in Host memory

& Initialization of Values

Memory Allocation in Device memory

Data transfer from Host to Device

Computation in Device

Data transfer from Device to Host

Deallocation of Device Memory

CPU GPU #include <cuda.h>

void vecAdd(float *h_A, float *h_B, float *h_C, 

int n)

{

  int size = n* sizeof(float); 

  float *d_A, *d_B, *d_C;

  

  // allocate device memory for A, B, and C

  // copy A and B to device memory 

  

  // kernel launch code 

  // – GPU performs the actual vector addition

  // copy C from the device memory

  // Free device vectors

}

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

https://www.nvidia.com/en-us/training/teaching-kits/


CUDA programming
Partial Overview of CUDA Memories

107

(Device) Grid

Global Memory

Block (0, 0)

Thread (0, 0)

Registers

Block (0, 1)

Thread (0, 0)

Registers

Thread (0, 1)

Registers

Thread (0, 1)

Registers

Host

Host 

memory

Device code (kernel) can:

• R/W per-thread registers

• R/W all-shared global memory

Host code can

• Transfer data to/from per grid global 

memory 

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

https://www.nvidia.com/en-us/training/teaching-kits/


CUDA programming
Partial Overview of CUDA Memories

108

(Device) Grid

Global Memory

Block (0, 0)

Thread (0, 0)

Registers

Block (0, 1)

Thread (0, 0)

Registers

Thread (0, 1)

Registers

Thread (0, 1)

Registers

Host

Host 

memory

cudaMalloc()

• Allocates an object in the device global memory

• Two parameters

• Address of a pointer to the allocated object

• Size of allocated object in terms of bytes

cudaFree()

• Frees object from device 

global memory

• One parameter

• Pointer to freed object

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

https://www.nvidia.com/en-us/training/teaching-kits/


CUDA programming
Partial Overview of CUDA Memories

109

(Device) Grid

Global Memory

Block (0, 0)

Thread (0, 0)

Registers

Block (0, 1)

Thread (0, 0)

Registers

Thread (0, 1)

Registers

Thread (0, 1)

Registers

Host

Host 

memory

cudaMemcpy()

• memory data transfer

• Requires four parameters

• Pointer to destination 

• Pointer to source

• Number of bytes copied

• Type/Direction of transfer

• Transfer to device is synchronous 

with respect to the host

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

https://www.nvidia.com/en-us/training/teaching-kits/


CUDA programming
Explicit Memory Management

110

Memory Allocation in Host memory

& Initialization of Values

CPU
int main(){

 float *h_A, *h_B, *h_C;

 int n = 10000000 // size of an array 

 int size = n * sizeof(float); 

 h_A = (float*)malloc(size); 

 h_B = (float*)malloc(size);

 h_C = (float*)malloc(size);

 // Initialize array

 for(int i = 0; i < array_size; i++){

 h_A[i] = 1.0f; 

 h_B[i] = 2.0f;}

 vecAdd(h_A, h_B, h_C, n);

 // Deallocate host memory 

 free(h_A); free(h_A); free(h_C);

}

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

https://www.nvidia.com/en-us/training/teaching-kits/


CUDA programming
Explicit Memory Management

111

Memory Allocation in Host memory

& Initialization of Values

Memory Allocation in Device memory

CPU GPU void vecAdd(float *h_A, float *h_B, float *h_C, 

int n)

{

  int size = n * sizeof(float); 

  float *d_A, *d_B, *d_C;

  cudaMalloc((void **) &d_A, size);  

  cudaMalloc((void **) &d_B, size);

  cudaMalloc((void **) &d_C, size);

Host
memory

h_A

h_B

h_C

Device 
memory

d_A

d_B

d_C

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

https://www.nvidia.com/en-us/training/teaching-kits/


CUDA programming
Explicit Memory Management

112

Memory Allocation in Host memory

& Initialization of Values

Memory Allocation in Device memory

Data transfer from Host to Device

CPU GPU void vecAdd(float *h_A, float *h_B, float *h_C, 

int n)

{

  int size = n * sizeof(float); 

  float *d_A, *d_B, *d_C;

  cudaMalloc((void **) &d_A, size);  

  cudaMalloc((void **) &d_B, size);

  cudaMalloc((void **) &d_C, size);

  cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);

   cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);

  

Host
memory

h_A

h_B

h_C

Device 
memory

d_A

d_B

d_C

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

https://www.nvidia.com/en-us/training/teaching-kits/


CUDA programming
Explicit Memory Management

113

Memory Allocation in Host memory

& Initialization of Values

Memory Allocation in Device memory

Data transfer from Host to Device

CPU GPU void vecAdd(float *h_A, float *h_B, float *h_C, 

int n)

{

  int size = n * sizeof(float); 

  float *d_A, *d_B, *d_C;

  cudaMalloc((void **) &d_A, size);  

  cudaMalloc((void **) &d_B, size);

  cudaMalloc((void **) &d_C, size);

  cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);

   cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);  

  

  // Kernel run

  cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);

  

Host
memory

h_A

h_B

h_C

Device 
memory

d_A

d_B

d_C

Computation in Device

Data transfer from Device to Host

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

https://www.nvidia.com/en-us/training/teaching-kits/


CUDA programming
Explicit Memory Management

114

Memory Allocation in Host memory

& Initialization of Values

Memory Allocation in Device memory

Data transfer from Host to Device

Computation in Device

Data transfer from Device to Host

CPU GPU void vecAdd(float *h_A, float *h_B, float *h_C, 

int n)

{

  int size = n * sizeof(float); 

  float *d_A, *d_B, *d_C;

  cudaMalloc((void **) &d_A, size);  

  cudaMalloc((void **) &d_B, size);

  cudaMalloc((void **) &d_C, size);

  cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);

   cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);  

  

  // Kernel run

  cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);

  

  cudaFree(d_A); 

  cudaFree(d_B); 

  cudaFree(d_C);

}

Deallocation of Device Memory

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

https://www.nvidia.com/en-us/training/teaching-kits/


CUDA programming
Unified Memory

115

GPU 0

Global Memory

Host

Host 

memory

• Single memory address space accessible from all CPUs/GPUs in a single server 

• maintain single copy of data

• On-demand page migration - hardware/software handles automatically the data migration between the 

host and the device maintaining consistency between them

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

GPU 1

Global Memory

GPU 2

Global Memory

Unified Memory

https://www.nvidia.com/en-us/training/teaching-kits/


CUDA programming
Unified Memory

116

(Device) Grid

Global Memory

Block (0, 0)

Thread (0, 0)

Registers

Block (0, 1)

Thread (0, 0)

Registers

Thread (0, 1)

Registers

Thread (0, 1)

Registers

Host

Host 

memory

Unified Memory

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

Device code (kernel) can:

• R/W per-thread registers

• R/W all-shared global memory

• R/W managed memory (Unified 

Memory)

Host code can

• Transfer data to/from per grid global 

memory 

• R/W managed memory Unified 

Memory)

In modern GPUs:

• there are specialized hardware units managing page faulting

• data is migrated on demand, meaning that data gets copied only on page fault

• possibility to oversubscribe memory, enabling larger arrays than the device memory size

https://www.nvidia.com/en-us/training/teaching-kits/


CUDA programming
Unified Memory

117

(Device) Grid

Global Memory

Block (0, 0)

Thread (0, 0)

Registers

Block (0, 1)

Thread (0, 0)

Registers

Thread (0, 1)

Registers

Thread (0, 1)

Registers

Host

Host 

memory

Unified Memory

cudaMallocManaged(void** ptr, size_t size)

• Allocates an object in the Unified 

Memory address space.

• Two parameters, with an optional third 

parameter.

• Address of a pointer to the 

allocated object

• Size of the allocated object in 

terms of bytes

• [Optional] Flag indicating if 

memory can be accessed from any 

device or stream

cudaFree()

• Frees object from unified memory.

• One parameter

• Pointer to freed object

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

Can be optimized

• cudaMemAdvise(), 

• cudaMemPrefetchAsync(),

• cudaMemcpyAsync()

https://www.nvidia.com/en-us/training/teaching-kits/


CUDA programming
Unified Memory

118

Memory Allocation in Host memory

& Initialization of Values

CPU
int main(){

 float *h_A, *h_B, *h_C;

 int n = 10000000 // size of an array 

 int size = n * sizeof(float); 

 h_A = (float*)malloc(size); 

 h_B = (float*)malloc(size);

 h_C = (float*)malloc(size);

 // Initialize array

 for(int i = 0; i < array_size; i++){

 h_A[i] = 1.0f; 

 h_B[i] = 2.0f;}

 vecAdd(h_A, h_B, h_C, n);

 // Deallocate host memory 

 free(h_A); free(h_B); free(h_C);

}

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

https://www.nvidia.com/en-us/training/teaching-kits/


CUDA programming
Unified Memory

119

int main(){

 float *A, *B, *C;

 int n = 10000000 // size of an array 

 int size = n * sizeof(float); 

 cudaMallocManaged(&A, size); 

 cudaMallocManaged(&B, size); 

 cudaMallocManaged(&C, size); 

 // Initialize array

 for(int i = 0; i < array_size; i++){

 A[i] = 1.0f; 

 B[i] = 2.0f;}

 vecAdd(A, B, C, n);

 // Deallocate host memory 

 cudaFree(A); cudaFree(B); cudaFree(C);

}

int main(){

 float *h_A, *h_B, *h_C;

 int n = 10000000 // size of an array 

 int size = n * sizeof(float); 

 h_A = (float*)malloc(size); 

 h_B = (float*)malloc(size);

 h_C = (float*)malloc(size);

 // Initialize array

 for(int i = 0; i < array_size; i++){

 h_A[i] = 1.0f; 

 h_B[i] = 2.0f;}

 vecAdd(h_A, h_B, h_C, n);

 // Deallocate host memory 

 free(h_A); free(h_A); free(h_C);

}

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

https://www.nvidia.com/en-us/training/teaching-kits/


CUDA programming
Unified Memory

120

void vecAdd(float *A, float *B, float *C, int n)

{

 // Kernel run

}

void vecAdd(float *h_A, float *h_B, float *h_C, 

int n)

{

  int size = n * sizeof(float); 

  float *d_A, *d_B, *d_C;

  cudaMalloc((void **) &d_A, size);  

  cudaMalloc((void **) &d_B, size);

  cudaMalloc((void **) &d_C, size);

  cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);

  cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);  

  

  // Kernel run

  cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);

  

  cudaFree(d_A); 

  cudaFree(d_B); 

  cudaFree(d_C);

}

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

https://www.nvidia.com/en-us/training/teaching-kits/


CUDA programming
CUDA Execution Model

121

Serial code - host

Serial code - host

Parallel Kernel (device)

KernelA<<< nBlk, nTid >>>(args);

Heterogeneous host (CPU) + device (GPU) application C program

• Serial parts in host C code

• Parallel parts in device SPMD kernel code

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

blockIdx.x - thread-block index

blockDim.x - number of threads in the block

threadIdx.x - thread index within a block

…
0 1 2 254 255

…

https://www.nvidia.com/en-us/training/teaching-kits/


CUDA programming
Device Code / Kernel

122

Device code or kernel 

• __global__ defines a kernel function

Host code – kernel execution

• say_hello<<< 2, 4 >>>()

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

__global__ void say_hello()

{

  int global_index  = blockIdx.x * blockDim.x + threadIdx.x;

  int total_threads = blockDim.x * gridDim.x;

  printf("Hello from thread %d, 

          block %d, 

          my global index is %d, 

          total number of threads is %d\n", 

    threadIdx.x, 

    blockIdx.x, 

    global_index, 

    total_threads);

}

Each thread uses indices to decide what data to work on

• blockIdx.x – block index in x direction

• threadIdx.x – thread index in x direction 

• blockDim.x – block size (# of threads per block) in x dir.

Kernel Code

Grid dimension = # of blocks

Block dimension = # of threads per block

blockIdx.x - 0

blockDim.x - 4

threadIdx.x - 0 to 3

0 1 2 3

Thread Block 0

blockIdx.x - 1

blockDim.x - 4

threadIdx.x - 0 to 3

0 1 2 3

Thread Block 1

https://www.nvidia.com/en-us/training/teaching-kits/


Lunch break



Hands-On
Hello world in CUDA



Hands-On
Hello world in CUDA

• Start simple with a classic hello world

• tasks/hello_world/hello_world.cu

• Print info in each thread

• Thread index, number of threads in block (=block size)

• Block index, number of blocks (=grid size)

• Global index of thread, total number of threads (need to calculate first)

• Compile using

• nvcc hello_world.cu -o hello_world.x

• And run with

• ./hello_world.x

130

Sample output (might be in different order):

Launching the kernel with 2 blocks, each with 4 threads

Kernel was launched, waiting for its completion

Hello from thread 0/4, block 0/2, my global index is 0/8

Hello from thread 1/4, block 0/2, my global index is 1/8

Hello from thread 2/4, block 0/2, my global index is 2/8

Hello from thread 3/4, block 0/2, my global index is 3/8

Hello from thread 0/4, block 1/2, my global index is 4/8

Hello from thread 1/4, block 1/2, my global index is 5/8

Hello from thread 2/4, block 1/2, my global index is 6/8

Hello from thread 3/4, block 1/2, my global index is 7/8

Kernel execution completed

blockIdx.x

global index

threadIdx.x

0 0 0 0 1 1 1 1

0 1 2 3 0 1 2 3

0 1 2 3 4 5 6 7



CUDA Programming
cont.



CUDA programming
Arrays of Parallel Threads

132

A CUDA kernel is executed by a grid (array) of threads 

• All threads in a grid run the same kernel code (Single Program Multiple Data)

• Each thread has indexes that it uses to compute memory addresses and make control decisions

i = blockIdx.x * blockDim.x + threadIdx.x;

C[i] = A[i] + B[i];

…
0 1 2 254 255

…

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

https://www.nvidia.com/en-us/training/teaching-kits/


CUDA programming
Thread Blocks

133

Divide thread array into multiple blocks

• Threads within a block cooperate via

• shared memory, 

• atomic operations and 

• barrier synchronization

• Threads in different blocks do not interact

i = blockIdx.x * blockDim.x + threadIdx.x;

C[i] = A[i] + B[i];

…

0 1 2 254 255

…

i = blockIdx.x * blockDim.x + threadIdx.x;

C[i] = A[i] + B[i];

…

0 1 2 254 255

…

i = blockIdx.x * blockDim.x + threadIdx.x;

C[i] = A[i] + B[i];

…

0 1 2 254 255

…

Thread Block 0 Thread Block 1 Thread Block N-1

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

blockIdx and threadIdx

• Each thread uses indices to decide what data to work on

• blockIdx: 1D, 2D, or 3D

• threadIdx: 1D, 2D, or 3D 

https://www.nvidia.com/en-us/training/teaching-kits/


CUDA programming
Vector Addition Kernel

134

Device code or kernel 

• compute vector sum C = A + B

• each thread performs one pair-wise addition

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

__global__

void vecAddKernel(float* A, float* B, float* C, int n)

{

 int i = threadIdx.x + blockDim.x * blockIdx.x;

  if(i<n) C[i] = A[i] + B[i];

}

__global__ defines a kernel function

• each “__” consists of two underscore characters

• kernel function must return void

Each thread uses indices to decide what data to work on

• blockIdx.x – block index in x direction

• threadIdx.x – thread index in x direction 

• blockDim.x – block size (# of threads per block) in x dir.

• Note: 1D indexing uses .x only, 2D uses .x, .y and 3D uses .x, .y, .z

https://www.nvidia.com/en-us/training/teaching-kits/


CUDA programming
Vector Addition Kernel Launch

135

Host code 

• Kernel execution – host code that launches kernel 

• GPU hardware creates a grid of threads 

• each thread executes the kernel function from previous slide 

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

void vecAdd(float* h_A, float* h_B, float* h_C, int n)

{

 // d_A, d_B, d_C allocations and memory copies are done

 //      x y z direction 

 dim3 DimGrid (2, 1, 1); // number of blocks per grid to be launched

 dim3 DimBlock(4, 1, 1); // number of threads per block to be launched 

 vecAddKernel<<<DimGrid,DimBlock>>>(d_A, d_B, d_C, n);

}

https://www.nvidia.com/en-us/training/teaching-kits/


CUDA programming
Vector Addition Kernel Launch

136

Host code 

• Kernel execution – host code that launches kernel 

• GPU hardware creates a grid of threads 

• each thread executes the kernel function from previous slide 

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

void vecAdd(float* h_A, float* h_B, float* h_C, int n)

{

 // d_A, d_B, d_C allocations and memory copies are done

 // launches 2 block in a grid and 4 threads per block

 vecAddKernel<<<2,4>>>(d_A, d_B, d_C, n);}

}

https://www.nvidia.com/en-us/training/teaching-kits/


CUDA programming
Vector Addition Kernel Launch

137

Host code 

• Executes ceil(n/256.0) blocks of 256 threads each

• the ceiling function makes sure that there are enough threads to cover all elements.

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

void vecAdd(float* h_A, float* h_B, float* h_C, int n)

{

 // d_A, d_B, d_C allocations and memory copies are done 

 vecAddKernel<<<ceil(n/256.0),256>>>(d_A, d_B, d_C, n);

}

https://www.nvidia.com/en-us/training/teaching-kits/


CUDA programming
Vector Addition Kernel Launch

138

Host code 

• This is an equivalent way to express the ceiling function.

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

void vecAdd(float* h_A, float* h_B, float* h_C, int n)

{

 // d_A, d_B, d_C allocations and memory copies are done

 dim3 DimGrid((n-1)/256 + 1, 1, 1);

 dim3 DimBlock(256, 1, 1);

 vecAddKernel<<<DimGrid,DimBlock>>>(d_A, d_B, d_C, n);

}

https://www.nvidia.com/en-us/training/teaching-kits/


CUDA programming
Vector Addition Kernel Launch

139

• Host: launches „extra“ block to 
cover all elements – ensures that 
there is enough threads to 
process all elements 

• Kernel: controls that thread does 
not read unallocated memory 

• Host: DimBlock equals to

• Kernel: blockDim

• Kenel: threadIdx is in range <0, 
DimBlock)

• Kenel: blockIdx is in range <0, 
DimGrid)

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

void vecAdd(float* h_A, float* h_B, float* h_C, int n)

{

 dim3 DimGrid( ceil(n/256.0) , 1, 1);

 dim3 DimBlock(256, 1, 1);

 vecAddKernel<<<DimGrid,DimBlock>>>(d_A, d_B, d_C, n);

}

__global__

void vecAddKernel(float* A, float* B, float* C, int n)

{

 int i = threadIdx.x + blockDim.x * blockIdx.x;

  if(i<n) C[i] = A[i] + B[i];

}

https://www.nvidia.com/en-us/training/teaching-kits/


CUDA programming
Vector Addition – with kernel exec.

140

Memory Allocation in Host memory

& Initialization of Values

Memory Allocation in Device memory

Data transfer from Host to Device

Computation in Device

Data transfer from Device to Host

CPU GPU void vecAdd(float *h_A, float *h_B, float *h_C, 

int n)

{

  int size = n * sizeof(float); 

  float *d_A, *d_B, *d_C;

  cudaMalloc((void **) &d_A, size);  

  cudaMalloc((void **) &d_B, size);

  cudaMalloc((void **) &d_C, size);

  cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);

   cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);  

  

  vecAddKernel<<<ceil(n/256.0),256>>>

   (d_A, d_B, d_C, n);

  cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);

  

  cudaFree(d_A); 

  cudaFree(d_B); 

  cudaFree(d_C);

}

Deallocation of Device Memory

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

https://www.nvidia.com/en-us/training/teaching-kits/


Use CUDA Events for timing CUDA related execution time.

• Works as "markers" in execution queue

• Besides timing, they are crucial for GPU synchronization

• Important! In order to compute elapsed time correctly. Both events 
must "happen". That is, they need to reach the end of execution 
queue

• Can be ensured by waiting for the event to "happen" using 
cudaEventSynchronize() or synchronization with entire 
GPU by cudaDeviceSynchronize()

141

void vecAdd(float *h_A, float *h_B, float *h_C, int n)

{

 …

 float timeInMs;

 cudaEvent_t startEvent, endEvent;

 cudaEventCreate(&startEvent);

 cudaEventCreate(&endEvent);

 cudaEventRecord(startEvent);

 vecAddKernel<<<ceil(n/256.0),256>>>

 (d_A, d_B, d_C, n);

 cudaEventRecord(endEvent);

 cudaDeviceSynchronize();

 cudaEventElapsedTime

 (&timeInMs, startEvent, endEvent);

 

 cudaEventDestroy(endEvent);

 cudaEventDestroy(startEvent);

 …

}

CUDA programming
Kernel timing using events



2x Hands-on
Vector Addition

manual memcpy; managed memory 



• CUDA functions return error code (cudaError_t)

• We should check it, so it won’t be silently ignored

• Complicated to do error checking with every CUDA function call

• Create a macro (already provided in our examples)

• Wrap every function call in the macro and after kernel launch, also check for errors

143

#define CUDACHECK(err) do { cuda_check((err), __FILE__, __LINE__); } while(false)

inline void cuda_check(cudaError_t error_code, const char *file, int line)

{

    if (error_code != cudaSuccess)

    {

        fprintf(stderr, "CUDA Error %d: %s. In file '%s' on line %d\n", error_code, cudaGetErrorString(error_code), file, line);

        exit(error_code);

    }

}

CUDA programming
Error checking

cudaError_t cudaMalloc ( void** devPtr, size_t size );

CUDACHECK(cudaMalloc( ... )); my_kernel<<< ... >>>(...);

CUDACHECK(cudaPeekAtLastError());



• tasks/vector_add_classic/vector_add_classic.cu

• C = A + B

• Implement the vector add on GPU yourself
• Vector already initialized on CPU

• Allocate memory on GPU

• Copy vectors to GPU

• Implement and launch kernel

• Copy result vector back to CPU

• Free the allocated GPU memory

• Use the CUDACHECK() macro to do error checking

144

Hands-on: vector add with manual memory transfers

Sample output:

Input A:

  0.000   1.000   2.000   3.000   4.000   5.000   6.000   7.000   8.000   9.000

Input B:

  0.000  10.000  20.000  30.000  40.000  50.000  60.000  70.000  80.000  90.000

Output C:

  0.000  11.000  22.000  33.000  44.000  55.000  66.000  77.000  88.000  99.000

The result is CORRECT!

BONUS for those who are finished: vector_add_pinned



• tasks/vector_add_managed

• C = A + B

• Implement the vector add on GPU again, but use managed memory
• Copy your solution from the previous hands-on

• Kernel and its launch stays the same

• Only memory management changes

• No host and device array, only single array in managed memory

• Use cudaMallocManaged to allocate the arrays

• No cudaMemcpy needed

• cudaDeviceSynchronize required now

145

Hands-on: vector add with managed memory

Sample output:

Input A:

  0.000   1.000   2.000   3.000   4.000   5.000   6.000   7.000   8.000   9.000

Input B:

  0.000  10.000  20.000  30.000  40.000  50.000  60.000  70.000  80.000  90.000

Output C:

  0.000  11.000  22.000  33.000  44.000  55.000  66.000  77.000  88.000  99.000

The result is CORRECT!

BONUS for those who are finished: vector_add_thread_mapping



Multi-GPU Programming



CUDA programming
MultiGPU programing basics

152

Compute node architecture

N
V

S
w

it
c
h

 b
a

s
e
d

 n
e
tw

o
rk

CPU 0

32 cores

32 cores

CPU 

Memory

(DDR)

I/O Hub

&

PCI-e 

switches

Network 

Interface

GPU 0

A100 

GPU 1

A100

Network 

Interface

GPU 2

A100

GPU 3

A100

CPU 1

AMD EPYC 

7763 - 64 cores

CPU 

Memory

(DDR) I/O Hub

&

PCI-e 

switches

Network 

Interface

Network 

Interface

GPU 4

A100

GPU 5

A100

GPU 6

A100 

GPU 7

A100



CUDA programming
MultiGPU programing basics

153Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

Multi-GPU system

• GPU's are numbered from 0 to n-1, where n is the number of GPU’s.

• The CUDA driver always starts with a default active device.

• There are two broad types of Multi GPU communication:

• Through the PCIE bus

• Through NVLINK

$ nvidia-smi topo -m 

        GPU0    GPU1    GPU2    GPU3    GPU4    GPU5    GPU6    GPU7    mlx5_0    mlx5_1    mlx5_2    mlx5_3    CPU Affinity    NUMA Affinity

GPU0     X      NV12    NV12    NV12    NV12    NV12    NV12    NV12    SYS       PXB       SYS       SYS       48-63           3

GPU1    NV12     X      NV12    NV12    NV12    NV12    NV12    NV12    SYS       PXB       SYS       SYS       48-63           3

GPU2    NV12    NV12     X      NV12    NV12    NV12    NV12    NV12    PXB       SYS       SYS       SYS       16-31           1

GPU3    NV12    NV12    NV12     X      NV12    NV12    NV12    NV12    PXB       SYS       SYS       SYS       16-31           1

GPU4    NV12    NV12    NV12    NV12     X      NV12    NV12    NV12    SYS       SYS       SYS       PXB       112-127         7

GPU5    NV12    NV12    NV12    NV12    NV12     X      NV12    NV12    SYS       SYS       SYS       PXB       112-127         7

GPU6    NV12    NV12    NV12    NV12    NV12    NV12     X      NV12    SYS       SYS       PXB       SYS       80-95           5

GPU7    NV12    NV12    NV12    NV12    NV12    NV12    NV12     X      SYS       SYS       PXB       SYS       80-95           5

mlx5_0  SYS     SYS     PXB     PXB     SYS     SYS     SYS     SYS      X        SYS       SYS       SYS        

mlx5_1  PXB     PXB     SYS     SYS     SYS     SYS     SYS     SYS     SYS        X        SYS       SYS        

mlx5_2  SYS     SYS     SYS     SYS     SYS     SYS     PXB     PXB     SYS       SYS        X        SYS        

mlx5_3  SYS     SYS     SYS     SYS     PXB     PXB     SYS     SYS     SYS       SYS       SYS        X

CPU 0

PCIE

GPU0

GPU1

GPU2

GPU3

CPU 1

PCIE

GPU4

GPU5

GPU6

GPU7

NVLINK

https://www.nvidia.com/en-us/training/teaching-kits/


CUDA programming
CUDA host API calls for Multi GPU's

154Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

cudaSetDevice()

• Set GPU device to use for device code execution on the active host 
thread.

• Requires one parameter:

• An int with the device id number

• This function doesn’t affect other host threads, meaning that setting the 
device on one thread will not set the device in other host threads. Also 
doesn’t affect previous async calls.

cudaGetDeviceCount()

• Get the number of CUDA-capable devices in the 

system.

• Requires one parameter:

• An int pointer to store the device count

cudaGetDevice()

• Get GPU device being currently used by the 

active host thread

• Requires one parameter:

• An int pointer to store the device id

CPU 0

PCIE

GPU0

GPU1

GPU2

GPU3

CPU 1

PCIE

GPU4

GPU5

GPU6

GPU7

NVLINK

https://www.nvidia.com/en-us/training/teaching-kits/


CUDA programming
CUDA host API calls for Multi GPU's

155Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

cudaSetDevice()

• Set GPU device to use for device code execution on the active host 
thread.

• Requires one parameter:

• An int with the device id number

• This function doesn’t affect other host threads, meaning that setting the 
device on one thread will not set the device in other host threads. Also 
doesn’t affect previous async calls.

Memory allocation

To allocate or associate memory with a specific device using non-Managed CUDA-API calls, it’s necessary to 

call cudaSetDevice() before doing the allocation call.

• cudaMalloc() - allocates an object in the device global memory

• cudaHostAlloc(), cudaMallocHost() - allocates pinned memory on the host 

CPU 0

PCIE

GPU0

GPU1

GPU2

GPU3

CPU 1

PCIE

GPU4

GPU5

GPU6

GPU7

NVLINK

https://www.nvidia.com/en-us/training/teaching-kits/


CUDA programming
CUDA runtime calls affected by cudaSetDevice 

156Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

• If cudaSetDevice() was called before a kernel launching call, the kernel 
will execute in the active device. 

• It’s crucial that every non managed memory being used in the kernel 
resides in the active device, otherwise an error will occur.

• If cudaSetDevice() was called before a cudaStreamCreate(), then the 
stream will be associated with the active device.

• The synchronization functions: cudaDeviceSynchronize(), 
cudaStreamSynchronize() are also affected by cudaSetDevice(), 
synchronizing tasks only for the active device on the active host thread

CPU 0

PCIE

GPU0

GPU1

GPU2

GPU3

CPU 1

PCIE

GPU4

GPU5

GPU6

GPU7

NVLINK

https://www.nvidia.com/en-us/training/teaching-kits/


CUDA programming
Vector Addition – with kernel exec.

157

Memory Allocation in Host memory

& Initialization of Values

Memory Allocation in Device memory

Data transfer from Host to Device

Computation in Device

Data transfer from Device to Host

CPU GPU void vecAdd(float *h_A, float *h_B, float *h_C, 

int n)

{

  int size = n * sizeof(float); 

  float *d_A, *d_B, *d_C;

  cudaMalloc((void **) &d_A, size);  

  cudaMalloc((void **) &d_B, size);

  cudaMalloc((void **) &d_C, size);

  cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);

   cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);  

  

  vecAddKernel<<<ceil(n/256.0),256>>>

   (d_A, d_B, d_C, n);

  cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);

  

  cudaFree(d_A); 

  cudaFree(d_B); 

  cudaFree(d_C);

}

Deallocation of Device Memory

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

https://www.nvidia.com/en-us/training/teaching-kits/


CUDA programming
Multi-GPU Vector Addition – Part 1

158

Memory Allocation in Host memory

& Initialization of Values

Memory Allocation in Device memory

Data transfer from Host to Device

CPU
void vecAdd(float *h_A, float *h_B, float *h_C, int n)

{

 int n0 = n / 2; 

 int n1 = n - n0;

 int size0 = n0 * sizeof(float); 

 int size1 = n1 * sizeof(float); 

 float *d_A0, *d_B0, *d_C0;

 float *d_A1, *d_B1, *d_C1;
  

 cudaSetDevice(0);

 cudaMalloc((void **) &d_A0, size0);  

 cudaMalloc((void **) &d_B0, size0);

 cudaMalloc((void **) &d_C0, size0);

 cudaMemcpy(d_A0, &h_A[0], size0, cudaMemcpyHostToDevice);

 cudaMemcpy(d_B0, &h_B[0], size0, cudaMemcpyHostToDevice);  
  

 cudaSetDevice(1);

 cudaMalloc((void **) &d_A1, size1);  

 cudaMalloc((void **) &d_B1, size1);

 cudaMalloc((void **) &d_C1, size1);

 cudaMemcpy(d_A1, &h_A[n0], size1, cudaMemcpyHostToDevice);

 cudaMemcpy(d_B1, &h_B[n0], size1, cudaMemcpyHostToDevice);  

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

https://www.nvidia.com/en-us/training/teaching-kits/


CUDA programming
Multi-GPU Vector Addition – Part 2

159

Memory Allocation in Host memory

& Initialization of Values

Memory Allocation in Device memory

Data transfer from Host to Device

CPU  

 int n0 = floor(n/2.0);

 int n1 = ceil(n/2.0); 

 int size0 = n0 * sizeof(float); 

 int size1 = n1 * sizeof(float); 

 cudaSetDevice(0);

 vecAddKernel<<<ceil(n0/256.0),256>>> (d_A0, d_B0, d_C0, n0);  

 cudaSetDevice(1);

 vecAddKernel<<<ceil(n1/256.0),256>>> (d_A1, d_B1, d_C1, n1);

 cudaMemcpy(&h_C[0], d_C0, size, cudaMemcpyDeviceToHost);

 cudaMemcpy(&h_C[n0],d_C1, size, cudaMemcpyDeviceToHost);

 cudaFree(d_A0); cudaFree(d_A1); 

 cudaFree(d_B0); cudaFree(d_B1); 

 cudaFree(d_C0); cudaFree(d_C1);

}

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

Computation in Device

Data transfer from Device to Host

Deallocation of Device Memory

https://www.nvidia.com/en-us/training/teaching-kits/


CUDA programming
GPU selection

161Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

Environment variable controlling devices visibility
• Useful for selecting or restricting the set of available GPUs for specific application 

even without the access to the source code

• Execute export CUDA_VISIBLE_DEVICES=<comma separated list of GPU IDs> 
before running the app

• To list all available GPU IDs run nvidia-smi from command line

• Single GPU applications:

export CUDA_VISIBLE_DEVICES=0 ./app

• Multi GPU applications:

export CUDA_VISIBLE_DEVICES=0,1 ./app

https://www.nvidia.com/en-us/training/teaching-kits/


Hands-on
Multi-GPU Vector Addition 



• tasks/vector_add_multigpu

• Use multiple GPUs to perform the vector add operation

• 2 GPUs available today

• Start from the solution to the vector_add_managed hands-on

• Launch the kernel 2 times, once for each GPU
• Calculate indexes where each GPU should start and end
• Don’t modify the kernel, just pass it different arguments

• Use cudaSetDevice() to set the currently used GPU device

• Try to write the code for any number of GPUs
• Use cudaGetDeviceCount() to query the number of GPUs
• Loop through every GPU on the system

163

Hands-on: vector add, multi-GPU



Coffee break



Efficient Host-Device 
Data Transfer and 

CUDA Streams



CPU-GPU Data Transfer using DMA

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

CPU-GPU Data Transfer using DMA
• DMA (Direct Memory Access) hardware is used by cudaMemcpy() for better efficiency

• CPU is not used and perform useful calculations 

• DMA is hardware unit used to transfer given number of bytes

• between physical memory address space regions

• uses system interconnect: in current systems PCI-Express 

Virtual Memory Management 

• Problem for DMA: not all variables and data structures are always located in the 

physical memory

Data Transfer and Virtual Memory 

• DMA uses ONLY physical addresses

• when cudaMemcpy() copies an array, it is implemented as one or more DMA transfers

Solution: Pinned Memory

• pinned memory are virtual memory pages that are specially selected, and they cannot 

be paged out (removed from physical memory)

• pinned memory is allocated with a special system API function call

CPU memory that serve as the source or destination of a DMA transfer must be 

allocated as pinned memory

CPU Main Memory (DRAM)

GPU card 

(or other I/O cards)

DMAGlobal 

Memory

PCIe

https://www.nvidia.com/en-us/training/teaching-kits/


CPU-GPU Data Transfer using DMA

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

CUDA data transfer uses pinned memory.
• the DMA used by cudaMemcpy() requires that any source or destination in 

the host memory is allocated as pinned memory

• if a source or destination of a cudaMemcpy() in the host memory is not 

allocated in pinned memory, it needs to be first copied to a pinned memory – 

extra overhead

• cudaMemcpy() is faster if the host memory source or destination is allocated 

in pinned memory since no extra copy is needed

Using Pinned Memory in CUDA
• use the allocated pinned memory and its pointer the same way as those 

returned by malloc();

• the only difference is that the allocated memory cannot be paged by the OS

• the cudaMemcpy() function should be about 2X faster with pinned memory

• pinned memory is a limited resource

• over-subscription can have serious consequences 

CPU Main Memory (DRAM)

GPU card 

(or other I/O cards)

DMAGlobal 

Memory

PCIe

Allocate/Free Pinned Memory

cudaHostAlloc(), three parameters

• Address of pointer to the allocated memory

• Size of the allocated memory in bytes

• Option – use cudaHostAllocDefault for now

cudaFreeHost(), one parameter

• Pointer to the memory to be freed

https://www.nvidia.com/en-us/training/teaching-kits/


Pinned Memory

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

Example: Vector Addition Host Code

CPU Main Memory (DRAM)

GPU card 

(or other I/O cards)

DMAGlobal 

Memory

PCIe

int main()
{
  float *h_A, *h_B, *h_C;
  …
  cudaHostAlloc((void **) &h_A, N* sizeof(float), cudaHostAllocDefault);
  cudaHostAlloc((void **) &h_B, N* sizeof(float), cudaHostAllocDefault); 
  cudaHostAlloc((void **) &h_C, N* sizeof(float), cudaHostAllocDefault); 
  …
  // cudaMemcpy() runs 2X faster
}

https://www.nvidia.com/en-us/training/teaching-kits/


Concurrency using CUDA Streams 

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

System can perform multiple CUDA operations simultaneously: 
• multiple CUDA kernels on GPU

• one cudaMemcpyAsync from Host to Device 

• one cudaMemcpyAsync from Device to Host 

• computation on the CPU

CUDA Stream
• a sequence of operations that execute in issue-order on the GPU

Stream Semantics

• Two  operations  issued  into  the  same  stream  will  execute  in  

issue-order.    Operation  B  issued  after  Operation  A  will  not  begin  

to execute  until  Operation  A  has  completed. 

• Two  operations  issued  into  separate  streams  have  no  ordering 

prescribed  by  CUDA.  Operation  A  issued  into  stream  1  may  

execute before,  during,  or  after  Operation  B  issued  into  stream  2. 

• Operation: Usually, cudaMemcpyAsync or  a  kernel  call. More generally,  

most  CUDA  API  calls  that  take  a  stream  parameter,  as  well as 

stream callbacks.

Transfer 

CPU → GPU

Transfer 

GPU → CPU
Kernel 

Transfer 

CPU → GPU

Transfer 

GPU → CPU

Kernel 

Kernel 

Kernel 

Kernel 

Kernel 

Kernel 

Kernel 

…

Transfer 

CPU → GPU

Kernel 

Transfer 

GPU → CPU

Transfer 

GPU → CPU

time

Sequential execution

Concurrent execution

CPU execution – multi-threaded

https://www.nvidia.com/en-us/training/teaching-kits/


Concurrency using CUDA Streams 

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

Default Stream (aka Stream '0’)
• Stream used when no stream is specified

• Completely synchronous w.r.t. host and device

• As if cudaDeviceSynchronize() inserted before and after every 

CUDA operation

• Exceptions – asynchronous w.r.t. 

• hostKernel launches in the default stream

• cudaMemcpy*Async

• cudaMemset*Async

• cudaMemcpy within the same device 

• H2D cudaMemcpy of 64kB or less

Requirements for Concurrency

Transfer 

CPU → GPU

Transfer 

GPU → CPU
Kernel 

Transfer 

CPU → GPU

Transfer 

GPU → CPU

Kernel 

Kernel 

Kernel 

Kernel 

Kernel 

Kernel 

Kernel 

…

Transfer 

CPU → GPU

Kernel 

Transfer 

GPU → CPU

Transfer 

GPU → CPU

time

Sequential execution

Concurrent execution

CPU execution – multi-threaded

https://www.nvidia.com/en-us/training/teaching-kits/


Concurrency using CUDA Streams 

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

CUDA Streams  – How  to  use  them?

• Create/Destroy
• cudaStream_t stream;
• cudaStreamCreate(&stream);
• cudaStreamDestroy(stream);

• Launch
• my_kernel<<<grid,block,0,stream>>>(...);
• cudaMemcypAsync(  …,  stream  );

• Synchronize
• cudaStreamSynchronize(stream);

Transfer 

CPU → GPU

Transfer 

GPU → CPU
Kernel 

Transfer 

CPU → GPU

Transfer 

GPU → CPU

Kernel 

Kernel 

Kernel 

Kernel 

Kernel 

Kernel 

Kernel 

…

Transfer 

CPU → GPU

Kernel 

Transfer 

GPU → CPU

Transfer 

GPU → CPU

time

Sequential execution

Concurrent execution

CPU execution – multi-threaded

https://www.fz-juelich.de/SharedDocs/Downloads/IAS/JSC/EN/slides/cuda/09-cuda-streams-

https://www.nvidia.com/en-us/training/teaching-kits/


Concurrency using CUDA Streams 

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

Basic Example 1: KERNEL CONCURRENCY
• assume foo only utilizes 50% of the GPU 

• using user streams

cudaStream_t stream1, stream2;

cudaStreamCreate(&stream1);
cudaStreamCreate(&stream2);

foo<<<blocks,threads,0,stream1>>>();
foo<<<blocks,threads,0,stream2>>>();

cudaStreamDestroy(stream1);
cudaStreamDestroy(stream2);

Kernel 

https://www.fz-juelich.de/SharedDocs/Downloads/IAS/JSC/EN/slides/cuda/09-cuda-streams-

Kernel 

Stream 1 

Stream 2 

CPU

https://www.nvidia.com/en-us/training/teaching-kits/


Concurrency using CUDA Streams 

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

Basic Example 2: CONCURRENT MEMORY COPIES
• assume pinned memory

Synchronous
  cudaMemcpy(...);
  foo<<<...>>>();

Asynchronous Same Stream
  cudaMemcpyAsync(...,stream1);
  foo<<<...,stream1>>>();

Asynchronous Different Streams
  cudaMemcpyAsync(...,stream1);
  foo<<<...,stream2>>>();

Data Transfer 

https://www.fz-juelich.de/SharedDocs/Downloads/IAS/JSC/EN/slides/cuda/09-cuda-streams-

Kernel Stream 1 

CPU

Data Transfer Kernel Stream 1 

CPU

Data Transfer 

Kernel 

Stream 1 

Stream 2 

CPU

https://www.nvidia.com/en-us/training/teaching-kits/


CPU-GPU Data Transfer using DMA

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

Serialized Data Transfer and Computation
• So far, the way we use cudaMemcpy serializes data 

transfer and GPU computation for VecAddKernel()

Ideal, Pipelined Timing

• Divide large vectors into segments

• Overlap transfer and compute of adjacent segments

Let CUDA devices overlap transfers and kernels 

execution

Stream 1

Stream 2

Stream 3

Stream 4

Stream 1

Stream 2

Stream 3

Stream 4

Transfer 

A

Transfer 

B

Transfer 

C

Kernel 

C = A + B

T

A1

T

B1

T

C1
K1

T

C2

T

C3

T

C4
K2 K3 K4

T

A2

T

A3

T

A4

T

B2

T

B3

T

B4

T

A1

T

B1

T

C1
K1

T

C2

T

C3

T

C4

K2

K3

K4

T

A2

T

A3

T

A4

T

B2

T

B3

T

B4

T

C1

T

C2

T

C3

T

C4

K1

K2

K3

K4

T

A1

T

A2

T

A3

T

A4

T

B1

T

B2

T

B3

T

B4

T

C1

T

C2

T

C3

T

C4

K1 K2 K3 K4

T

A1

T

A2

T

A3

T

A4

T

B1

T

B2

T

B3

T

B4
D to H engine 

H to D engine 

GPU processing

time

https://www.nvidia.com/en-us/training/teaching-kits/


CPU-GPU Data Transfer using DMA

Nvidia: https://www.olcf.ornl.gov/wp-content/uploads/2020/07/07_Concurrency.pdf 

Serialized Data Transfer and Computation

//non-streamed version 
cudaMemcpy(d_a, h_a, size, cudaMemcpyHostToDevice); 
cudaMemcpy(d_b, h_b, size, cudaMemcpyHostToDevice); 
Kernel<<<b, t>>>(d_a, d_b, d_c, N); 
cudaMemcpy(h_c, d_c, size, cudaMemcpyDeviceToHost);

//streamed version 
// c    – number of pipeline phases 
// ns   – total number of streams used 
// size – size of input arrays 
cudaStream_t stream[ns];
for (int i = 0; i < ns; ++i)
  cudaStreamCreate(&stream[i]);

for (int i = 0, i<c; i++){ 
  size_t off = (size/c)*i; 
  cudaMemcpyAsync(d_a+off, h_a+off, size/c, cudaMemcpyHostToDevice, stream[i%ns]); 
  cudaMemcpyAsync(d_b+off, h_b+off, size/c, cudaMemcpyHostToDevice, stream[i%ns]); 
  Kernel<<<b/c, t, 0, stream[i%ns]>>>(d_a+off, d_b+off, d_c+off, N/c); 
  cudaMemcpyAsync(h_c+off, d_c+off, size/c, cudaMemcpyDeviceToHost, stream[i%ns]);
}

T

C1

T

C2

T

C3

T

C4

K1 K2 K3 K4

T

A1

T

A2

T

A3

T

A4

T

B1

T

B2

T

B3

T

B4
D to H engine 

H to D engine 

GPU processing

Transfer 

A

Transfer 

B

Transfer 

C

Kernel 

C = A + B

https://www.olcf.ornl.gov/wp-content/uploads/2020/07/07_Concurrency.pdf


Hands On:
Asynchronous execution, 

streams,
pipelining



• tasks/vector_add_stream

• Copy the solution of the vector add pinned task
• E.g.   cp ../../solution/vector_add_pinned/vector_add_pinned.cu .

• It just allocates the CPU array differently

• Modify the code such that GPU operations run asynchronously
• Use cudaMemcpyAsync(…) for copy

• Kernel is already asynchronous

• Create a cuda stream and use it to launch all the GPU operations
• cudaStreamCreate(), cudaStreamDestroy()

• Additional stream parameter in cudaMemcpyAsync() and in <<< >>>

• Increase the count and add some printf to observe the asychronicity

186

Hands-on: asynchronous execution



• tasks/vector_add_overlap

• More efficient vector add – overlap computation with memory transfer

• Copy the solution of the previous task utilizing streams

• Modify the kernel so that the computation takes longer    --->

• Use the pipelining described before
• Create an array of 4 streams

• Split the vector into 20 sections (not really, just pointer arithmetic)

• For each (i-th) section: copyin, compute, copyout in (i%4)-th stream

• Measure the time using e.g. cuda events (or std::chrono, or omp_get_wtime())
• Measure only the copy+compute time, not malloc etc.

• Vary the number of sections and streams and observe the timing differences

187

Hands-on: pipelining

if(idx < count)

{

    for(int r = 0; r < 200; r++)

    {

        c[idx] = a[idx] + b[idx];

    }

}



188



Multi-Dimensional Grids



CUDA programming
Multi-Dimensional Grid

192Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

host device

Kernel 1

Grid 1
Block 
(0, 0)

Block 
(1, 1)

Block 
(1, 0)

Block 
(0, 1)

Grid 2

Block (1,0)

Thread
(0,0,0)Thread

(0,1,3)
Thread
(0,1,0)

Thread
(0,1,1)

Thread
(0,1,2)

Thread
(0,0,0)

Thread
(0,0,1)

Thread
(0,0,2)

Thread
(0,0,3)

(1,0,0) (1,0,1) (1,0,2) (1,0,3)

https://www.nvidia.com/en-us/training/teaching-kits/


Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

1 block: 

16×16 

threads 

per block

62×76 picture
Work distribution

• image will be addressed in 2D 
blocks of size

• 16x16 threads 

• some threads, highlighted in orange, 
will be idle 

Control flow divergence

• not all threads in a Block will follow 
the same control flow path

CUDA programming
Processing a Picture with a 2D Grid

https://www.nvidia.com/en-us/training/teaching-kits/


Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

1 block: 

16×16 

threads 

per block

62×76 picture
Work distribution

• image will be addressed in 2D 
blocks of size

• 16x16 threads 

• some threads, highlighted in orange, 
will be idle 

Control flow divergence

• not all threads in a block will follow 
the same control flow path

• 4 different paths in this case 

CUDA programming
Processing a Picture with a 2D Grid

1 2

3 4

https://www.nvidia.com/en-us/training/teaching-kits/


CUDA programming
Processing a Picture with a 2D Grid

195Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

Kernel

M0,2

M1,1

M0,1M0,0

M1,0

M0,3

M1,2 M1,3

M0,2M0,1M0,0 M0,3 M1,1M1,0 M1,2 M1,3 M2,1M2,0 M2,2 M2,3

M2,1M2,0 M2,2 M2,3

M3,1M3,0 M3,2 M3,3

M3,1M3,0 M3,2 M3,3

M

Row*Width+Col = 2*4+1 = 9 

M2M1M0 M3 M5M4 M6 M7 M9M8 M10 M11 M13M12 M14 M15

M

Row-Major Layout in C/C++__global__ void PictureKernel(float* d_Pin, 

      float* d_Pout, 

      int height, 

      int width)

{

 // Calculate the row # of 

 // the d_Pin and d_Pout element

 int Row = blockIdx.y*blockDim.y + threadIdx.y;

 

 // Calculate the column # of 

 // the d_Pin and d_Pout element

 int Col = blockIdx.x*blockDim.x + threadIdx.x;

 // each thread computes one 

 // element of d_Pout if in range

 if ((Row < height) && (Col < width)) {

  d_Pout[Row*width+Col] = 2.0*d_Pin[Row*width+Col];

 }

}

https://www.nvidia.com/en-us/training/teaching-kits/


CUDA programming
Processing a Picture with a 2D Grid

196Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

Kernel

__global__ void PictureKernel(float* d_Pin, 

      float* d_Pout, 

      int height, 

      int width)

{

 // Calculate the row # of 

 // the d_Pin and d_Pout element

 int Row = blockIdx.y*blockDim.y + threadIdx.y;

 

 // Calculate the column # of 

 // the d_Pin and d_Pout element

 int Col = blockIdx.x*blockDim.x + threadIdx.x;

 // each thread computes one 

 // element of d_Pout if in range

 if ((Row < height) && (Col < width)) {

  d_Pout[Row*width+Col] = 2.0*d_Pin[Row*width+Col];

 }

}

dim3 DimGrid((n-1)/16 + 1, (m-1)/16+1, 1);

dim3 DimBlock(16, 16, 1);

PictureKernel<<<DimGrid,DimBlock>>>(d_Pin, d_Pout, m, n);

Host Code for Launching 2D kernel

• assume that the picture is m × n, (height × width)

• m pixels in y dimension and n pixels in x dimension

• input d_Pin has been allocated on and copied to device

• output d_Pout has been allocated on device

https://www.nvidia.com/en-us/training/teaching-kits/


CUDA programming
Converting color image to grayscale

197Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

grayPixel[I,J] = 0.21*r + 0.71*g + 0.07*b

// we have 3 channels corresponding to RGB

// The input image is encoded as unsigned characters [0, 255]

__global__ void colorConvert(unsigned char * grayImage,

       unsigned char * rgbImage,

               int width, int height) {

 

 int col = threadIdx.x + blockIdx.x * blockDim.x;

 int row = threadIdx.y + blockIdx.y * blockDim.y;

 if (col < width && row < height) {

  // get 1D coordinate for the grayscale image

  int grayOffset = row*width + col;

  // one can think of the RGB image having

  // CHANNEL times columns than the gray scale image

  int  rgbOffset = grayOffset*CHANNELS;

  unsigned char r = rgbImage[rgbOffset + 0]; // red value for pix

  unsigned char g = rgbImage[rgbOffset + 1]; // green value for pix

  unsigned char b = rgbImage[rgbOffset + 2]; // blue value for pix

  // perform the rescaling and store it

  // We multiply by floating point constants

grayImage[grayOffset] = 0.21f*r + 0.71f*g + 0.07f*b;

}

}

Host code for launching the kernel is the same as in previou s slide. 

RGB Kernel: RGB color image

• 3 values per pix

• r - red

• g - green

• b - blue

Grayscale image 

• only intesity

https://www.nvidia.com/en-us/training/teaching-kits/


CUDA programming
Converting color image to grayscale

198Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

// we have 3 channels corresponding to RGB

// The input image is encoded as unsigned characters [0, 255]

__global__ void colorConvert(unsigned char * grayImage,

       unsigned char * rgbImage,

               int width, int height) {

 

 int col = threadIdx.x + blockIdx.x * blockDim.x;

 int row = threadIdx.y + blockIdx.y * blockDim.y;

 if (col < width && row < height) {

  // get 1D coordinate for the grayscale image

  int grayOffset = row*width + col;

  // one can think of the RGB image having

  // CHANNEL times columns than the gray scale image

  int  rgbOffset = grayOffset*CHANNELS;

  unsigned char r = rgbImage[rgbOffset + 0]; // red value for pix

  unsigned char g = rgbImage[rgbOffset + 1]; // green value for pix

  unsigned char b = rgbImage[rgbOffset + 2]; // blue value for pix

  // perform the rescaling and store it

  // We multiply by floating point constants

grayImage[grayOffset] = 0.21f*r + 0.71f*g + 0.07f*b;

}

}

Host code for launching the kernel is the same as in previou s slide. 

RGB Kernel: 

grayPixel[I,J] = 0.21*r + 0.71*g + 0.07*b

RGB color image

• 3 values per pix

• r - red

• g - green

• b - blue

Grayscale image 

• only intesity

https://www.nvidia.com/en-us/training/teaching-kits/


CUDA programming
Converting color image to grayscale

199Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

// we have 3 channels corresponding to RGB

// The input image is encoded as unsigned characters [0, 255]

__global__ void colorConvert(unsigned char * grayImage,

       unsigned char * rgbImage,

               int width, int height) {

 

 int col = threadIdx.x + blockIdx.x * blockDim.x;

 int row = threadIdx.y + blockIdx.y * blockDim.y;

 if (col < width && row < height) {

  // get 1D coordinate for the grayscale image

  int grayOffset = row*width + col;

  // one can think of the RGB image having

  // CHANNEL times columns than the gray scale image

  int  rgbOffset = grayOffset*CHANNELS;

  unsigned char r = rgbImage[rgbOffset + 0]; // red value for pix

  unsigned char g = rgbImage[rgbOffset + 1]; // green value for pix

  unsigned char b = rgbImage[rgbOffset + 2]; // blue value for pix

  // perform the rescaling and store it

  // We multiply by floating point constants

grayImage[grayOffset] = (unsigned char)(0.21f*r + 0.71f*g + 0.07f*b);

}

}

Host code for launching the kernel is the same as in previou s slide. 

RGB Kernel: 

grayPixel[I,J] = 0.21*r + 0.71*g + 0.07*b

RGB color image

• 3 values per pix

• r - red

• g - green

• b - blue

Grayscale image 

• only intesity

https://www.nvidia.com/en-us/training/teaching-kits/


CUDA programming
Image Blur

200Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

BlurPixel[I,J] = Average value of all pixel in 

a mask

Blur Filter

• calculates average value 
inside the mask

• BLUR_SIZE value

1 block: 

16×16 

threads 

per block

https://www.nvidia.com/en-us/training/teaching-kits/


Hands-on
Image Blur

201Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

// we have 1 channel, therefore a grayscale image

// The input image is encoded as unsigned characters [0, 255]

__global__ void BlurKernel(unsigned char * inImage,

      unsigned char * outImage,

              int width, int height) {
 

 int col = threadIdx.x + blockIdx.x * blockDim.x;

 int row = threadIdx.y + blockIdx.y * blockDim.y;

 if (col < width && row < height) {

  int pixVal = 0; int pixels = 0;

  // Get the average of the surrounding 2xBLUR_SIZE x 2xBLUR_SIZE box

  for(int blurRow = -BLUR_SIZE; blurRow < BLUR_SIZE+1; ++blurRow) {

   for(int blurCol = -BLUR_SIZE; blurCol < BLUR_SIZE+1; ++blurCol) {

    int curRow = row + blurRow;

    int curCol = col + blurCol;

   

    // Verify we have a valid image pixel

    if(curRow > -1 && curRow < h && curCol > -1 && curCol < w) {

     pixVal = pixVal + inImage[curRow * w + curCol]; 

     pixels = pixels + 1; // Total number of accumulated pixels

    }

   }

  }
 

  // Write our new pixel value out

  outImage[Row * width + Col] = (unsigned char)(pixVal / pixels); }

}

1 block: 

16×16 

threads 

per block

BLUR_SIZE=2

BlurPixel[I,J] = Average value of all pixel in 

a mask

https://www.nvidia.com/en-us/training/teaching-kits/


Hands-on
Image Blur



• tasks/image_blur

• Complete the TODO tasks
• Allocate managed memory for original (input) and blurred (output) image

• height*width, unsigned char

• Implement and launch the kernel
• Use 2D blocks and grid, and the dim3 type

• Here, blur_size should be a kernel parameter instead of a global macro

• There is no actual image
• Just a pattern that is easy to check for correctness

203

Hands-on: image blur

blur_size=2

Correct output:

Everything seems OK



Thread Execution



Thread Execution

Transparent scaling of GPU kernels 

• Kernel execution is broken in Grid of Blocks 

• blocks can be executed in any order 
relative to others

• hardware is free to assign blocks to any 
Streaming Multiprocessor (SM) at any time

• a kernel scales to any number of 
parallel processors

• this property ensures correct execution on 
GPUs with

• different number of Streaming 
Multiprocessors (different performance, 
different model of GPU accelerators 
(A100, A40, ...)

• different GPU architectures (Pascal, 
Volta, Ampere, … )

208

https://towardsdatascience.com/how-the-hell-are-gpus-so-fast-a-e770d74a0bf

NVIDIA Jetson AGX Xavier

• ARM based embedded 

single board computer 

with on-chip GPU

• GPU with 8 SMs 

NVIDIA V100

• HPC accelerator  

• GPU with 80 SMs 

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

https://www.nvidia.com/en-us/training/teaching-kits/


Thread Execution and Warps 

Thread Execution

• blocks are assigned to Streaming Multiprocessors (SM)

• up to 32 blocks can be assigned to one SM as resources allow

• Ampere generation SM can take up to 2048 threads 

• could be 256 (threads/block) * 8 blocks 

• or 512 (threads/block) * 4 blocks, etc.

• SM maintains thread/block idx #s

• SM manages/schedules thread execution

Warps as Scheduling Units

• each Block is divided and executed as 32-thread Warps

• an implementation decision, not part of the CUDA programming 
model

• warps are scheduling units in SM

• threads in a warp execute in SIMD fashion 

• future GPUs may have different number of threads in each warp

• for instance, AMD GPUs have warp size 64 threads 

209Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

T_0 T_1 T_2 T_3 T_4 T_5 T_6 T_7 T_8 T_30T_31

…
T_0 T_1 T_2 T_3 T_4 T_5 T_6 T_7 T_8 T_30T_31

…
T_0 T_1 T_2 T_3 T_4 T_5 T_6 T_7 T_8 T_30T_31

…
T_0 T_1 T_2 T_3 T_4 T_5 T_6 T_7 T_8 T_30T_31

…

Block 1 Warps

T_0 T_1 T_2 T_3 T_4 T_5 T_6 T_7 T_8 T_30T_31

…
T_0 T_1 T_2 T_3 T_4 T_5 T_6 T_7 T_8 T_30T_31

…
T_0 T_1 T_2 T_3 T_4 T_5 T_6 T_7 T_8 T_30T_31

…
T_0 T_1 T_2 T_3 T_4 T_5 T_6 T_7 T_8 T_30T_31

…

Block 2 Warps

T_0 T_1 T_2 T_3 T_4 T_5 T_6 T_7 T_8 T_30T_31

…
T_0 T_1 T_2 T_3 T_4 T_5 T_6 T_7 T_8 T_30T_31

…
T_0 T_1 T_2 T_3 T_4 T_5 T_6 T_7 T_8 T_30T_31

…
T_0 T_1 T_2 T_3 T_4 T_5 T_6 T_7 T_8 T_30T_31

…

Block 3 Warps

SM 1

SM 2

SM 3

https://www.nvidia.com/en-us/training/teaching-kits/


Thread Execution and Warps 

Thread Execution cont. 

• SM implements zero-overhead warp scheduling

• Warps whose next instruction has its operands ready for 
consumption are eligible for execution

• Eligible Warps are selected for execution based on a prioritized 
scheduling policy

• All threads in a warp execute the same instruction when 
selected

210Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

T_0 T_1 T_2 T_3 T_4 T_5 T_6 T_7 T_8 T_30T_31

…
T_0 T_1 T_2 T_3 T_4 T_5 T_6 T_7 T_8 T_30T_31

…
T_0 T_1 T_2 T_3 T_4 T_5 T_6 T_7 T_8 T_30T_31

…
T_0 T_1 T_2 T_3 T_4 T_5 T_6 T_7 T_8 T_30T_31

…

Block 1 Warps

T_0 T_1 T_2 T_3 T_4 T_5 T_6 T_7 T_8 T_30T_31

…
T_0 T_1 T_2 T_3 T_4 T_5 T_6 T_7 T_8 T_30T_31

…
T_0 T_1 T_2 T_3 T_4 T_5 T_6 T_7 T_8 T_30T_31

…
T_0 T_1 T_2 T_3 T_4 T_5 T_6 T_7 T_8 T_30T_31

…

Block 2 Warps

T_0 T_1 T_2 T_3 T_4 T_5 T_6 T_7 T_8 T_30T_31

…
T_0 T_1 T_2 T_3 T_4 T_5 T_6 T_7 T_8 T_30T_31

…
T_0 T_1 T_2 T_3 T_4 T_5 T_6 T_7 T_8 T_30T_31

…
T_0 T_1 T_2 T_3 T_4 T_5 T_6 T_7 T_8 T_30T_31

…

Block 3 Warps

SM 1

SM 2

SM 3

https://www.nvidia.com/en-us/training/teaching-kits/


Thread Execution and Warps 

Warps in Multi-dimensional Thread Blocks

• The thread blocks are first linearized into 1D in row major order

• In x-dimension first, y-dimension next, and z-dimension last

• Linearized thread blocks are partitioned in warps 

• Thread indices within a warp are consecutive and increasing

• Warp 0 starts with Thread 0

• DO NOT rely on any ordering within or between warps

• If there are any dependencies between threads, you must 
__syncthreads() to get correct results (more later)

211Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

T_0 T_1 T_2 T_3 T_4 T_5 T_6 T_7 T_8 T_30T_31

…
T_0 T_1 T_2 T_3 T_4 T_5 T_6 T_7 T_8 T_30T_31

…
T_0 T_1 T_2 T_3 T_4 T_5 T_6 T_7 T_8 T_30T_31

…
T_0 T_1 T_2 T_3 T_4 T_5 T_6 T_7 T_8 T_30T_31

…

Block 1 Warps

T_0 T_1 T_2 T_3 T_4 T_5 T_6 T_7 T_8 T_30T_31

…
T_0 T_1 T_2 T_3 T_4 T_5 T_6 T_7 T_8 T_30T_31

…
T_0 T_1 T_2 T_3 T_4 T_5 T_6 T_7 T_8 T_30T_31

…
T_0 T_1 T_2 T_3 T_4 T_5 T_6 T_7 T_8 T_30T_31

…

Block 2 Warps

T_0 T_1 T_2 T_3 T_4 T_5 T_6 T_7 T_8 T_30T_31

…
T_0 T_1 T_2 T_3 T_4 T_5 T_6 T_7 T_8 T_30T_31

…
T_0 T_1 T_2 T_3 T_4 T_5 T_6 T_7 T_8 T_30T_31

…
T_0 T_1 T_2 T_3 T_4 T_5 T_6 T_7 T_8 T_30T_31

…

Block 3 Warps

SM 1

SM 2

SM 3

https://www.nvidia.com/en-us/training/teaching-kits/


Thread Execution and Warps 

SIMD Execution Among Threads in a Warp

• All threads in a warp must execute the same instruction at any point 
in time

• This works efficiently if all threads follow the same control flow path

• All if-then-else statements make the same decision

• All loops iterate the same number of times

Example of a SIMD code: 

212Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

T_0 T_1 T_2 T_3 T_4 T_5 T_6 T_7 T_8 T_30T_31

…
T_0 T_1 T_2 T_3 T_4 T_5 T_6 T_7 T_8 T_30T_31

…
T_0 T_1 T_2 T_3 T_4 T_5 T_6 T_7 T_8 T_30T_31

…
T_0 T_1 T_2 T_3 T_4 T_5 T_6 T_7 T_8 T_30T_31

…

Block 1 Warps

SM

SMs are SIMD Processors

__global__

void vecAddKernel(float* A, float* B, float* C, int n)

{

  int i = threadIdx.x + blockDim.x * blockIdx.x;

  

  C[i] = A[i] + B[i];

}

https://www.nvidia.com/en-us/training/teaching-kits/


Thread Execution and Warps 

213Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

if(foo(threadIdx.x))

 {

  do_A();

 }

 else

 {

  do_B();

 }

Control Divergence

• control divergence occurs when threads in a warp 
take different control flow paths by making different 
control decisions 

• some take the then-path and others take the 
else-path of an if-statement

• some threads take different number of loop 
iterations than others

• The execution of threads taking different paths are 
serialized in current GPUs

• the control paths taken by the threads in a 
warp are traversed one at a time until there is 
no more

• during the execution of each path, all threads 
taking that path will be executed in parallel

https://www.nvidia.com/en-us/training/teaching-kits/


Thread Execution and Warps 

214Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

Control Divergence

The number of different paths can be large 
when considering nested control flow 

statements.

https://www.nvidia.com/en-us/training/teaching-kits/


Thread Execution and Warps 

215Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

Control Divergence

The number of different paths can be large 
when considering nested control flow 

statements.

The control diverges is problem only among threads 

within a warp.

The control divergence among warps is perfectly fine 

as long as all threads within a warp execute the same 

instruction.

https://www.nvidia.com/en-us/training/teaching-kits/


Thread Execution and Warps 

216Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 

__global__

void vecAddKernel(float* A, float* B, float* C, int n)

{

  int i = threadIdx.x + blockDim.x * blockIdx.x;

  

  if(i<n) C[i] = A[i] + B[i];

}

Divergence can arise when branch or loop condition is a function of thread indices

https://www.nvidia.com/en-us/training/teaching-kits/


End of Day 1


	Default Section
	Slide 1: GPU Programming with CUDA
	Slide 3
	Slide 5

	Heterogeneous Parallel Computing
	Slide 15: Heterogeneous Parallel Computing 
	Slide 16: Accelerators in HPC Historical Analysis 
	Slide 17: Accelerators in HPC Historical Analysis 
	Slide 18: Accelerators in HPC as of June 2024
	Slide 19: Accelerators in HPC as of June 2024
	Slide 20: Accelerators in HPC Now
	Slide 21: Accelerators in HPC ORNL Summit Supercomputer
	Slide 22: Accelerators in HPC ORNL Frontier Supercomputer
	Slide 23: Accelerators in HPC ALCF Aurora Supercomputer
	Slide 24: Accelerators in HPC 
	Slide 26: Accelerators in HPC  Heterogeneous Computing
	Slide 27: Accelerators in HPC
	Slide 28: Accelerators in HPC
	Slide 29: Accelerators in HPC: Current trends Unified memory address space
	Slide 30: Accelerators in HPC: Current trends Unified memory address space – hardware coherency
	Slide 31: Accelerators in HPC: Current trends Unified memory address space
	Slide 32: Accelerators in HPC: Current trends AMD APU

	GPU Architecture
	Slide 36: GPU Architecture
	Slide 37: Accelerators in HPC Evolution of Graphics Processors
	Slide 38: Accelerators in HPC Non-unified GPU Architecture GeForce 7800 GTX
	Slide 39: Accelerators in HPC Why Unify Shader Processors?
	Slide 40: Accelerators in HPC Unified Architecture G80 - Graphics Mode
	Slide 41: Accelerators in HPC Why Unify Shader Processors?
	Slide 42: Accelerators in HPC Why Unify Shader Processors?
	Slide 43: Accelerators in HPC Unified Architecture G80 - Graphics Mode
	Slide 44: Accelerators in HPC Unified Architecture G80 - Compute Mode
	Slide 45: Evolution of NVIDIA GPU Accelerators in HPC
	Slide 46: Accelerators in HPC NVIDIA A40 Architecture
	Slide 47: Accelerators in HPC NVIDIA A40 Architecture
	Slide 48: Accelerators in HPC NVIDIA A40 Architecture
	Slide 49: Accelerators in HPC NVIDIA A40 Architecture
	Slide 50: Accelerators in HPC NVIDIA A100 Architecture
	Slide 51: Accelerators in HPC NVIDIA A100 Architecture
	Slide 52: Accelerators in HPC NVIDIA A100 Architecture
	Slide 54: General Architecture of  GPU Accelerated Compute Node 
	Slide 55: Evolution of GPU Accelerated nodes
	Slide 56: Evolution of GPU Accelerated nodes
	Slide 57: Evolution of GPU Accelerated nodes
	Slide 61: Karolina GPU Accelerated nodes
	Slide 62: Compute node evaluation of the  Karolina GPU Accelerated nodes  
	Slide 63: Compute node evaluation of the  Karolina GPU Accelerated nodes  
	Slide 64: Karolina GPU Accelerated nodes  NVLink GPU to GPU interconnect
	Slide 65: Karolina GPU Accelerated nodes - Partial node allocation
	Slide 66: Karolina GPU Accelerated nodes - Partial node allocation

	Hands On - Connecting to Cluster
	Slide 68: Hands on: Connecting to Karolina cluster  and  installation of VS Code
	Slide 69: Hands on  Accessing GPU accelerated nodes
	Slide 70: Hands on  Accessing GPU accelerated nodes
	Slide 71: Hands on  Accessing GPU accelerated nodes
	Slide 72: Hands on  Accessing GPU accelerated nodes
	Slide 73: Hands on  Visual Studio Code
	Slide 75: Hands on  Visual Studio Code
	Slide 77: Hands on  Visual Studio Code
	Slide 78: Hands on  Visual Studio Code
	Slide 79: Hands on  Visual Studio Code
	Slide 80: Hands on  Visual Studio Code (via Open OnDemand)
	Slide 81: Hands-on exercises git repository
	Slide 82: Access Karolina GPU nodes
	Slide 83: Access Karolina GPU node

	Hands On - Benchmark Hardware Properties
	Slide 88: Hands on:  Benchmark Hardware Properties 
	Slide 93: Hands on  Benchmark Hardware Properties 
	Slide 95: Hands on  Benchmark Hardware Properties 
	Slide 97: Hands on  Benchmark Hardware Properties 
	Slide 100: Hands on – solution, output Benchmark Hardware Properties

	CUDA Programming - Part 1
	Slide 101: CUDA Programming
	Slide 102: Ways to Accelerate Applications
	Slide 103: Ways to Accelerate Applications
	Slide 104: Ways to Accelerate Applications
	Slide 105: CUDA programming Data Parallelism
	Slide 106: CUDA programming Heterogenous Program
	Slide 107: CUDA programming Partial Overview of CUDA Memories
	Slide 108: CUDA programming Partial Overview of CUDA Memories
	Slide 109: CUDA programming Partial Overview of CUDA Memories
	Slide 110: CUDA programming Explicit Memory Management
	Slide 111: CUDA programming Explicit Memory Management
	Slide 112: CUDA programming Explicit Memory Management
	Slide 113: CUDA programming Explicit Memory Management
	Slide 114: CUDA programming Explicit Memory Management
	Slide 115: CUDA programming Unified Memory
	Slide 116: CUDA programming Unified Memory
	Slide 117: CUDA programming Unified Memory
	Slide 118: CUDA programming Unified Memory
	Slide 119: CUDA programming Unified Memory
	Slide 120: CUDA programming Unified Memory
	Slide 121: CUDA programming CUDA Execution Model
	Slide 122: CUDA programming Device Code / Kernel
	Slide 123: Lunch break

	Hands On - CUDA Hello World
	Slide 124: Hands-On Hello world in CUDA
	Slide 130: Hands-On Hello world in CUDA

	CUDA Programming - Part 2.
	Slide 131: CUDA Programming cont.
	Slide 132: CUDA programming Arrays of Parallel Threads
	Slide 133: CUDA programming Thread Blocks
	Slide 134: CUDA programming Vector Addition Kernel
	Slide 135: CUDA programming Vector Addition Kernel Launch
	Slide 136: CUDA programming Vector Addition Kernel Launch
	Slide 137: CUDA programming Vector Addition Kernel Launch
	Slide 138: CUDA programming Vector Addition Kernel Launch
	Slide 139: CUDA programming Vector Addition Kernel Launch
	Slide 140: CUDA programming Vector Addition – with kernel exec.
	Slide 141

	Hands On - Vector Addition - single GPU
	Slide 142: 2x Hands-on Vector Addition manual memcpy; managed memory 
	Slide 143
	Slide 144: Hands-on: vector add with manual memory transfers
	Slide 145: Hands-on: vector add with managed memory

	Multi-GPU Programming
	Slide 151: Multi-GPU Programming
	Slide 152: CUDA programming MultiGPU programing basics
	Slide 153: CUDA programming MultiGPU programing basics
	Slide 154: CUDA programming CUDA host API calls for Multi GPU's
	Slide 155: CUDA programming CUDA host API calls for Multi GPU's
	Slide 156: CUDA programming CUDA runtime calls affected by cudaSetDevice 
	Slide 157: CUDA programming Vector Addition – with kernel exec.
	Slide 158: CUDA programming Multi-GPU Vector Addition – Part 1
	Slide 159: CUDA programming Multi-GPU Vector Addition – Part 2
	Slide 161: CUDA programming GPU selection

	Hands On - Vector Addition - Multi-GPU
	Slide 162: Hands-on Multi-GPU Vector Addition 
	Slide 163: Hands-on: vector add, multi-GPU

	Efficient Host-Device Data Transfer and CUDA Streams
	Slide 167: Coffee break
	Slide 168: Efficient Host-Device Data Transfer and  CUDA Streams
	Slide 169: CPU-GPU Data Transfer using DMA
	Slide 170: CPU-GPU Data Transfer using DMA
	Slide 171: Pinned Memory
	Slide 172: Concurrency using CUDA Streams 
	Slide 173: Concurrency using CUDA Streams 
	Slide 174: Concurrency using CUDA Streams 
	Slide 175: Concurrency using CUDA Streams 
	Slide 176: Concurrency using CUDA Streams 
	Slide 177: CPU-GPU Data Transfer using DMA
	Slide 178: CPU-GPU Data Transfer using DMA

	CUDA Stream Hands-on - on vector add
	Slide 185: Hands On: Asynchronous execution, streams, pipelining
	Slide 186: Hands-on: asynchronous execution
	Slide 187: Hands-on: pipelining
	Slide 188

	Multi-Dimensional Grids
	Slide 191: Multi-Dimensional Grids
	Slide 192: CUDA programming Multi-Dimensional Grid
	Slide 193: CUDA programming Processing a Picture with a 2D Grid
	Slide 194: CUDA programming Processing a Picture with a 2D Grid
	Slide 195: CUDA programming Processing a Picture with a 2D Grid
	Slide 196: CUDA programming Processing a Picture with a 2D Grid
	Slide 197: CUDA programming Converting color image to grayscale
	Slide 198: CUDA programming Converting color image to grayscale
	Slide 199: CUDA programming Converting color image to grayscale
	Slide 200: CUDA programming Image Blur
	Slide 201: Hands-on Image Blur

	Hands On - Image Blur
	Slide 202: Hands-on Image Blur
	Slide 203: Hands-on: image blur

	Thread Execution
	Slide 207: Thread Execution
	Slide 208: Thread Execution
	Slide 209: Thread Execution and Warps 
	Slide 210: Thread Execution and Warps 
	Slide 211: Thread Execution and Warps 
	Slide 212: Thread Execution and Warps 
	Slide 213: Thread Execution and Warps 
	Slide 214: Thread Execution and Warps 
	Slide 215: Thread Execution and Warps 
	Slide 216: Thread Execution and Warps 

	CUDA Memories
	Slide 217: End of Day 1


