GPU Programming with CUDA

Lectures: Lubomír Říha

Hands-on: Jakub Homola, Milan Jaroš, Radim Vavřík, Filip Vaverka and Joao Barbosa

EuroHPC

Co-funded by the European Union This project has received funding from the European High Performance Computing Joint Undertaking under grant agreementNo.101139786. Views and opinions expressed are, however, those of the author(s) only and do not necessarily reflect those of the European Union orEuroHPC Joint Undertaking. Neither the European Union nor the granting authority can be held responsible for them.

Schedule: Day 1

Day 1	Length [minutes]	Start	End
Heterogeneous Parallel Computing	10	////	/////
GPU Architecture	25	$\langle \rangle \langle \rangle \rangle \rangle \rangle \rangle \rangle \langle \rangle \rangle \rangle \rangle \rangle \langle \rangle \rangle \rangle \langle \rangle \rangle \rangle \langle \rangle \rangle \langle \rangle \langle \rangle \rangle \langle \rangle \rangle \langle \rangle \rangle \langle \rangle \langle \rangle \langle \rangle \rangle \langle \rangle \langle \rangle \langle \rangle \langle \rangle \rangle \langle \rangle $	
Hands-on: Accessing GPU accelerated nodes	25	10.00	10.00
Hands-on: Benchmark HW properties	15	10.00	12.00
CUDA Programming	30		
Hands-on: Hello World in CUDA	15		
		$\langle \rangle \rangle$	
Lunch break	60	12:00	13:00
CUDA Programming cont.	20		$ \longrightarrow $
Hands-on: Vector Addition (single GPU, two versions)	40	12.00	14.25
Multi-GPU programming	15	13.00	14.35
Hands-on: Vector Addition (multi-GPU)	20		
Break	20	14:35	14:55
Efficient Host-Device Data Transfer and CUDA Streams	15		
Hands-on: Streams	40		
Multi-Dimensional Grids	15	14.55	16.40
Hands-on: Image Blur	20	1.00	10.40
Thread Execution	15		

Schedule: Day 2

Day 2	Length [minutes]	Start	End
CUDA Memories	10	$\langle /// \rangle$	
Global Memory	15		
Hands-on: Matrix Sum	20	0.00	10.20
Shared Memory – Basics	10	9.00	10:30
Shared Memory – Bank conflicts	15		
Hands-on: Matrix Transpose – Shared memory bank conflicts	20		
Break	20	10:30	10:50
Memory and Data Locality: Tiling Technique	15		
Parallel Computation Patterns: Stencil	20		
Hands-on: Stencil – 1D Convolution	20		
Parallel Computation Patterns: Reduction	15	10:50	13:00
Hands-on: Parallel Reduction	20		
Parallel Computation Patterns: Histogram	20		
Hands-on: Histogram – Data Race, Atomics, Privatization	20		

Heterogeneous Parallel Computing

Accelerators in HPC Historical Analysis

Accelerators in HPC Historical Analysis

Computer	# CPU cores	Year
Frontier, USA	8 730 112	2022
Fugaku, Japan	7 630 848	2020
Summit, USA	2 414 592	2018
Sunway TAIHULIGHT	10 649 600	2016
TIANHE-2, CHINA	3 120 000	2015
Titan, USA	560 640	2012
Sequoia, USA (BlueGene/Q)	1 572 864	2012
K-Computer, Japan	548 352	2011
Tianhe-1A, China	186 368	2010
Jaguar, Cray	224 162	2009
Roadrunner, USA	122 400	2008
BlueGene/L	212 992	2007

ACCELERATORS/CO-PROCESSORS

Accelerators in HPC as of June 2024

Rank	Name	Computer	Site	Country	Rmax [EFlop/s]	Rpeak [EFlop/s]	Power (MW)	Energy Efficiency [GFlops/Watts]	Accelerator
1	Frontier	HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11	DOE/SC/ORNL	United States	1,21	1,71	22,8	52,93	AMD MI250X
2	Aurora	HPE Cray EX - Intel Exascale Compute Blade, Xeon CPU Max 9470 52C 2.4GHz, Intel Max GPU, Slingshot-11	DOE/SC/AANL	United States	1,01	1,98	38, 7	26,15	Intel Max
3	Eagle Microsoft NDv5, Xeon Platinum 8480C 48C 2GHz, NVIDIA H100, Infiniband NDR		Microsoft Azure	United States	0,561	0,846			NVIDIA H100
4	Fugaku	gaku Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D		Japan	0,442	0,537	29,9	14,78	None
5	LUMI	HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11	EuroHPC CSC	Finland	0,379	0,531	7,1	53,43	AMD MI250X
6	Alps	HPE Cray EX254n, NVIDIA Grace 72C 3.1GHz, NVIDIA GH200 Superchip, Slingshot-11	CSCS	Switzerland	0,270	0,353	5,2	51,98	NVIDIA GH200
7	Leonardo	Leonardo BullSequana XH2000, Xeon Platinum 8358 32C 2.6GHz, NVIDIA A100 SXM4 64 GB, HDR100 Infiniband		Italy	0,241	0,306	7,5	32,19	NVIDIA A100
8	MareNostrum 5 ACC	BullSequana XH3000, Xeon Platinum 8460Y+ 32C 2.3GHz, NVIDIA H100 64GB, Infiniband NDR	EuroHPC BSC	Spain	0,175	0,249	4,2	42,15	NVIDIA H100
9	Summit	IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, EDR Infiniband	DOE/SC/ORNL	United States	0,148	0,200	10,1	14,72	NVIDIA GV100
10	Eos NVIDIA DGX SuperPOD	NVIDIA DGX H100, Xeon Platinum 8480C 56C 3.8GHz, NVIDIA H100, Infiniband NDR400	NVIDIA Corporation	United States	0,121	0,188			NVIDIA H100

Accelerators in HPC as of June 2024

Rank	Name	Computer	Site	Country	Rmax [EFlop/s]	Rpeak [EFlop/s]	Power (MW)	Energy Efficiency [GFlops/Watts]	Accelerator
1	Frontier	HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11	DOE/SC/ORNL	United States	1,21	1,71	22,8	52,93	AMD MI250X
2	Aurora	HPE Cray EX - Intel Exascale Compute Blade, Xeon CPU Max 9470 52C 2.4GHz, Intel Max GPU, Slingshot-11	DOE/SC/AANL	United States	JDA	198	38,7	26,15	Intel Max
3	Eagle	Microsoft NDv5, Xeon Platinum 8480C 48C 2GHz, NVIDIA H100, Infiniband NDR	Microsoft Azure	United States	0,561	0,846	\mathbb{H}		NVIDIA H100
4	Fugaku	Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D	RIKEN R-CCS	Japan		0,537		14,78	None
5	LUMI	HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11	EuroHPC CSC	Finland	0,379	0,531	7,1	<u> </u>	AMD MI250X
6	Alps	HPE Cray EX254n, NVIDIA Grace 72C 3.1GHz, NVIDIA GH200 Superchip, Slingshot-11	CSCS	Switzerland	0,270	0,353	5,2	4,98	NVIDIA GH200
7	Leonardo	BullSequana XH2000, Xeon Platinum 8358 32C 2.6GHz, NVIDIA A100 SXM4 64 GB, HDR100 Infiniband	EuroHPC CINECA	Italy	0,241	0,306	7,5	32,19	NVIDIA A100
8	MareNostrum 5 ACC	BullSequana XH3000, Xeon Platinum 8460Y+ 32C 2.3GHz, NVIDIA H100 64GB, Infiniband NDR	EuroHPC BSC	Spain	0,175	0,249	4,2	42,15	NVIDIA H100
9	Summit	IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, EDR Infiniband	DOE/SC/ORNL	United States	0,148	0,200	10,1	14,72	NVIDIA GV100
10	Eos NVIDIA DGX SuperPOD	NVIDIA DGX H100, Xeon Platinum 8480C 56C 3.8GHz, NVIDIA H100, Infiniband NDR400	NVIDIA Corporation	United States	0,121	0,188		7	NVIDIA H100

Accelerators in HPC Now

```
source.hip.cpp
                          source.cu
                                                                                   #include <hip/hip runtime.h>
  global void vector_scale(float * x, float alpha, int count)
                                                                                     global void vector_scale(float * x, float alpha, int count)
    int idx = blockIdx.x * blockDim.x + threadIdx.x;
                                                                                       int idx = blockIdx.x * blockDim.x + threadIdx.x;
    if(idx < count) x[idx] = alpha * x[idx];</pre>
                                                                                       if(idx < count) x[idx] = alpha * x[idx];</pre>
}
                                                                                   int main()
int main()
{
    int count = 20 * 256;
                                                                                       int count = 20 * 256;
    float * h data = new float[count];
                                                                                       float * h data = new float[count];
    for(int i = 0; i < count; i++) h data[i] = i;
                                                                                       for(int i = 0; i < count; i++) h data[i] = i;
    float * d data;
                                                                                       float * d data:
    cudaMalloc(&d data, count * sizeof(float));
                                                                                       hipMalloc(&d data, count * sizeof(float));
    cudaMemcpy(d data, h data, count * sizeof(float), cudaMemcpyHostToDevice);
                                                                                       hipMemcpy(d data, h data, count * sizeof(float), hipMemcpyHostToDevice);
    vector scale \langle \langle 20, \overline{2}56 \rangle \rangle \langle d data, 10, count \rangle;
                                                                                       vector scale<<< 20, 256 >>>(d data, 10, count);
                                                                                       hipMemcpy(h_data, d_data, count * sizeof(float), hipMemcpyDeviceToHost);
    cudaMemcpy(h_data, d_data, count * sizeof(float), cudaMemcpyDeviceToHost);
    cudaFree(d data);
                                                                                       hipFree(d data);
    delete[] h data;
                                                                                       delete[] h data;
    return 0;
                                                                                       return 0;
                                                                                   }
}
                                                                                   $ hipcc source.hip.cpp -o program_hip.x
$ nvcc source.cu -o program cuda.x
TU
                                                                                                          <u>U,1ZI</u>
                                                                                                                     <u>U,188</u>
    DGX SuperPOD H100, Infiniband NDR400
```

Corporation

States

H100

Accelerators in HPC ORNL Summit Supercomputer

Summit: DOE/SC/Oak Ridge National Laboratory

No.1 from Jun 2018 until Nov 2019

Number of Nodes	4,608 = 27 648 GPUs
Performance	200 PF Peak, 148 Linpack (FP64) 3.3 ExaOps (FP16)
Node performance	42 TF
Memory per Node	512 GB DDR4 + 96 GB HBM2
NV memory per Node	1600 GB
Total System Memory	>10 PB DDR4 + HBM2 + Non-volatile
System Interconnect	Dual Rail Infiniband EDR (25 GB/s)
Interconnect Topology	Non-blocking Fat Tree
Processors	2x IBM POWER9 6x NVIDIA Volta
File System	250 PB, 2.5 TB/s, GPFSTM
Power Consumption	13 MW

- Coherent memory across entire node
- NVLink v2 fully interconnects three GPUs and one CPU on each side node
- PCIe Gen4 connects NVMe and NIC
- Single shared NIC with dual EDR ports

Accelerators in HPC **ORNL** Frontier Supercomputer

System

- 1.7 EF Peak DP FLOPS
- 74 compute racks
- 29 MW Power Consumption
- 9,408 nodes = 37 632 GPUs
- 9.2 PB memory (4.6 PB HBM, 4.6 PB DDR4)
- Cray Slingshot network with dragonfly topology
- 37 PB Node Local Storage
- 716 PB Center-wide storage
- 360 m² foot print
- COAK RIDGE LEADERSHIP

AMD node

- 1 AMD "Trento" CPU
- 4 AMD MI250X GPUs
- 512 GiB DDR4 memory on CPU
- 512 GiB HBM2e total per node (128 GiB HBM per GPU)
- Coherent memory across the node
- 4 TB NVM
- GPUs & CPU fully connected with AMD Infinity Fabric
- 4 Cassini NICs, 100 GB/s network BW

Compute blade

2 AMD nodes

Accelerators in HPC **ALCF** Aurora Supercomputer

- Nodes: 10,624 (Racks: 166)
 - CPUs: 21,248
 - GPUs: 63,744
- Peak FP Performance \geq 2 Exaflops DP
- Memory •
 - 10.9PB of DDR @ 5.95 PB/s
 - 1.36PB of CPU HBM @ 30.5 PB/s
 - 8.16PB of GPU HBM @ 208.9 PB/s
- Network: HPE Slingshot 11
 - Dragonfly topology
- Storage:
 - 230PB DAOS Capacity
 - 31 TB/s DAOS Bandwidth

6x GPUs - Intel Max GPU

- 2x CPUs Intel Xeon Max CPU
- 768 GB GPU HBM Memory
- 19.66 TB/s Peak GPU HBM BW
- 128 GB CPU HBM Memory
 - 2.87 TB/s Peak CPU HBM BW
- 1024 GB CPU DDR5 Memory 0.56 TB/s Peak CPU DDR5 BW
- \geq 130 TF Peak Node DP FLOPS
- 200 GB/s Max Fabric Injection

Accelerators in HPC

Device	Fabrica- tion process [nm]	Clock freq. [GHz]	No. of cores	Peak floating point performance SP/DP [TFLOPs]	Peak power consumpti on [W]	Perf. Per Watt SP/DP [GFLOPs/W]	Theoretical Memory Bandwidth [GB/s]	Memory type
Intel Xeon [®] 6 - 6980P (Granite Rapids)	5	2.0	128	16,3/8,2	500	32,7/16,3	614 844	DDR5 MRDIMM
AMD EPYC™ 9654	5	2.4	96	14,7/7,4	360	40,9/20,5	461	DDR5
AMD EPYC™ 7763	7	2.45	64	5,1/2,5	280	26/13	190	DDR4
Nvidia H100 Nvidia H200	4N	1.83	16896 (132 SMs)	67/34	700	95,7/48,5	3350 4800	НВМЗ
NVidia A100	7	1.41	6912 (108 SMs)	19,5/9,7	400	49/24	2039	HBM2e
AMD MI300A	5	2.1 GPU 3.7 CPU	14592 (228 CUs) 24 CPU cores	122/61,3	760	161/80	5300	HBM3
AMD MI300X	5	2.1	19,456 (304 CUs)	163/81,7	750	217/109	5300	HBM3
AMD MI250X	6	1.7	14080 (220 CUs)	47,9/47,9	560	86/86	3277	HBM2e
Intel (PVC) Max GPU	7	1.6	16384 (1024 Eus)	52,4/52,4	600	87/87	3210	HBM2e
Intel Xeon Phi KNL	14	1.3	64	5,3/2,7	215	25/12	400 102	MCDRAM DDR4

Accelerators in HPC Heterogeneous Computing

Main Features

- Coprocessor to the CPU
- PCIe based interconnection
- Separate GPU memory
- Provide high bandwidth access to local data
- Slow access to the CPU memory

Hardware Accelerators - Speeding up the Slow Part of the Code

- Enable higher performance through fine-grained parallelism
- Offer higher computational density than CPUs.
- Accelerators present heterogeneity!

PC

Accelerators in HPC

Accelerators

- tailored for compute-intensive, highly data parallel computation
- many parallel execution units
- have significantly faster and more advanced memory interfaces
- more transistors is devoted to data processing
- less transistors for data caching and flow control

Very Efficient For

- Fast Parallel Floating Point Processing
- High Computation per Memory Access

Not As Efficient For

- Branching-Intensive Operations
- Random Access,
- Memory-Intensive Operations

<u>CPUs</u> Powerful ALU

- reduced operat
- reduced operation latency
 Large caches
- convert long latency memory accesses to short latency cache accesses
 Sophisticated control with branch prediction for reduced branch latency

<u>GPUs</u>

Small caches to boost memory throughput Simple control with no branch prediction Energy efficient ALUs

 many, long latency but heavily pipelined for high throughput
 Require massive number of threads to

tolerate latencies

Accelerators in HPC

Accelerators

- tailored for compute-intensive, highly data parallel computation
- many parallel execution units
- have significantly faster and more advanced memory interfaces
- more transistors is devoted to data processing
- less transistors for data caching and flow control

Very Efficient For

- Fast Parallel Floating Point Processing
- High Computation per Memory Access

Not As Efficient For

- Branching-Intensive Operations
- Random Access,
- Memory-Intensive Operations

GPU are throughput devices

- CPU cores are optimized to minimize latency between operations.
- GPUs aim to minimize latency between operations by scheduling multiple warps (thread bundles).

Accelerators in HPC: Current trends Unified memory address space

Accelerators in HPC: Current trends Unified memory address space – hardware coherency

Accelerators in HPC: Current trends Unified memory address space

 $GPU \rightarrow Peer CPU$

Source: NVIDIA Grace Hopper Superchip, https://www.boston.co.uk/blog/2023/07/10/nvidia-grace-hopper-superchip.aspx

Accelerators in HPC: Current trends AMD APU

Example code and data movement/synchronization for (a) CPU-only, (b) CPU and a discrete/external GPU with separate memory spaces, and (c) APU with a unified memory.

GPU Architecture

Accelerators in HPC Evolution of Graphics Processors

Till 90s

• VGA controllers used to accelerate some display functions

Mid 90s to mid 00s

- Fixed-function graphic accelerators for the OpenGL and DirectX APIs
 - Some GP-GPU capabilities on top of the interface
- 3D graphic: triangle setup & rasterization, texture mapping & shading Modern GPUs
- Programmable multiprocessors (optimized for data-parallel ops)
 - OpenGL/DirectX and general purpose language
- Some fixed function hardware (texture, raster, ops,)

Accelerators in HPC Non-unified GPU Architecture GeForce 7800 GTX

Accelerators in HPC Why Unify Shader Processors?

Accelerators in HPC Unified Architecture G80 - Graphics Mode

The future of GPUs is programmable processing architecture built around the processor.

Accelerators in HPC Why Unify Shader Processors?

Accelerators in HPC Why Unify Shader Processors?

Workload Perf = 11

Accelerators in HPC Unified Architecture G80 - Graphics Mode

The future of GPUs is programmable processing architecture built around the processor.

Accelerators in HPC Unified Architecture G80 - Compute Mode

- processors execute computing threads
- new operating mode HW interface for computing or accelerator

Evolution of NVIDIA GPU Accelerators in HPC

	"Fermi"	"Fermi"	"Kepler"	"Kepler"	"Maxwell"	"Pascal"	"Volta"	"Turing"	"Ampere
Tesla GPU	GF100	GF104	GK104	GK110	GM200	GP100	GV100	TU104	GA100
Compute Capability	2.0	2.1	3.0	3.5	5.3	6.0	7.0	7.0	8.0
Streaming Multiprocessors (SMs)	16	16	8	15	24	56	84	72	128
FP32 CUDA Cores / SM	32	32	192	192	128	64	64	64	64
FP32 CUDA Cores	512	512	1,536	2,880	3, <mark>0</mark> 72	3,584	5,376	4,608	8,192
FP64 Units	2	4	512	960	96	1,792	2,688	626	4,096
Tensor Core Units							672	576	512
Threads / Warp	32	32	32	32	32	32	32	32	32
Max Warps / SM	48	48	64	64	64	64	64	64	64
Max Threads / SM	1,536	1,536	2,048	2,048	2,048	2,048	2,048	2,048	2,048
Max Thread Blocks / SM			16	16	32	32		32	32
32-bit Registers / SM	32,768	32,768	65,536	65,536	65,536	65,536	65,536	65,536	65,536
Max Registers / Thread			63	255	255	255	255	255	255
Max Threads / Thread Block	1,024	1,024	1,024	1,024	1,024	1,024	1,024	1,024	1,024
Shared Memory Size Configs	16 KB	16 KB	16 KB	16 KB	96 KB	64 KB	Config	Config	Config
	48 KB	48 KB	32 KB	32 KB			Up To	Up To	Up To
			48 KB	48 KB			96 KB	96 KB	164 KB

Performance

Fast local memory

https://www.nextplatform.com/2020/05/28/diving-deep-into-the-nvidia-ampere-gpu-architecture/

- Based on Ampere architecture GA102 chip designed for 3D graphics rather than scientific computing
 - GA102 GPU also features 168 FP64 units (two per SM),
 - FP64 TFLOP rate is 1/64th the TFLOP rate of FP32 operations.
 - the small number of FP64 hardware units are included to ensure any programs with FP64 code operate correctly

GA102 Full GPU with 84 SMs

- Based on Ampere architecture GA102 chip designed for 3D graphics rather than scientific computing
 - GA102 GPU also features 168 FP64 units (two per SM),
 - FP64 TFLOP rate is 1/64th the TFLOP rate of FP32 operations.
 - the small number of FP64 hardware units are included to ensure any programs with FP64 code operate correctly

SPECIFICATIONS

GPU architecture	NVIDIA Ampere architecture
GPU memory	48 GB GDDR6 with ECC
Memory bandwidth	696 GB/s
Interconnect interface	NVIDIA® NVLink® 112.5 GB/s (bidirectional)³ PCIe Gen4: 64GB/s
NVIDIA Ampere architecture- based CUDA Cores	10,752
NVIDIA second-generation RT Cores	84
NVIDIA third-generation Tensor Cores	336
Peak FP32 TFLOPS (non-Tensor)	37.4
Peak FP16 Tensor TFLOPS with FP16 Accumulate	149.7 299.4*
Peak TF32 Tensor TFLOPS	74.8 149.6*
RT Core performance TFLOPS	73.1
Peak BF16 Tensor TFLOPS with FP32 Accumulate	149.7 299.4*
Peak INT8 Tensor TOPS Peak INT 4 Tensor TOPS	299.3 598.6* 598.7 1,197.4*

https://www.nvidia.com/content/PDF/nvidia-amperega-102-gpu-architecture-whitepaper-v2.pdf

GA102 Streaming Multiprocessor (SM)

- includes four SM processing blocks (also called partitions)
 - 32 FP32 operations per clock, or
 - 16 FP32 and 16 INT32 operations per clock
- In compute mode, the GA102 SM will support the following configurations:
 - 128 KB L1 + 0 KB Shared Memory
 - 120 KB L1 + 8 KB Shared Memory
 - 112 KB L1 + 16 KB Shared Memory
 - 96 KB L1 + 32 KB Shared Memory
 - 64 KB L1 + 64 KB Shared Memory
 - 28 KB L1 + 100 KB Shared Memory

Tensor Cores

- specialized execution units designed specifically for performing the tensor / matrix operations that are the core compute function used in Deep Learning
- accelerate the matrix-matrix multiplication

GPU Architecture	NVIDIA Ampere
Tensor Cores per SM	4
FP16 FMA operations per Tensor Core	Dense: 128 Sparse: 256
Total FP16 FMA operations per SM	Dense: 512 Sparse: 1024

Ampere architecture tensor core

- Based on Ampere architecture GA100 chip designed for scientific computing
- The NVIDIA A100 GPU implementation of the GA100 GPU includes the following units:
 - 108 Streaming Multiprocessors (SMs)
 - 6912 FP32 CUDA Cores per GPU
 - 64 FP32 CUDA Cores per SM
 - 432 Third-generation Tensor Cores per GPU
 - 4 Third-generation Tensor Cores
 per SM
 - 5 HBM2 stacks,
 - 10x 512-bit Memory Controllers

GA100 Full GPU with 128 SMs

- Based on Ampere architecture GA100
 chip designed for scientific computing
- The NVIDIA A100 GPU implementation of the GA100 GPU includes the following units:
 - 108 Streaming Multiprocessors (SMs)
 - 6912 FP32 CUDA Cores per GPU
 - 64 FP32 CUDA Cores per SM
 - 432 Third-generation Tensor Cores per GPU
 - 4 Third-generation Tensor Cores
 per SM
 - 5 HBM2 stacks,
 - 10x 512-bit Memory Controllers

https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidiaampere-architecture-whitepaper.pdf

NVIDIA A100 TENSOR CORE GPU SPECIFICATIONS (SXM4 AND PCIE FORM FACTORS)

	A100 40GB PCle	A100 80GB PCle	A100 40GB SXM	A100 80GB SXM		
FP64		9.7 TF	LOPS			
FP64 Tensor Core	19.5 TFLOPS					
FP32		19.5 TI	FLOPS			
Tensor Float 32 (TF32)		156 TFLOPS	312 TFL0PS*			
BFLOAT16 Tensor Core	312 TFLOPS 624 TFLOPS*					
FP16 Tensor Core	312 TFLOPS 624 TFLOPS*					
INT8 Tensor Core	624 TOPS 1248 TOPS*					
GPU Memory	40GB HBM2	80GB HBM2e	40GB HBM2	80GB HBM2e		
GPU Memory Bandwidth	1,555GB/s	1,935GB/s	1,555GB/s	2,039GB/s		
Max Thermal Design Power (TDP)	250W	300W	400W	400W		
Multi-Instance GPU	Up to 7 MIGs @ 5GB	Up to 7 MIGs @ 10GB	Up to 7 MIGs @ 5GB	Up to 7 MIGs @ 10GB		
Form Factor	PC	Cle	SXM			
Interconnect	NVIDIA® NVI for 2 GPUs: PCIe Gen	Link® Bridge 600GB/s ** 4: 64GB/s	NVLink: PCle Gen	600GB/s 4: 64GB/s		

With sparsity

** SXM4 GPUs via HGX A100 server boards; PCIe GPUs via NVLink Bridge for up to two GPUs
Accelerators in HPC NVIDIA A100 Architecture

GA100 Streaming Multiprocessor (SM)

- includes four SM processing blocks (also called partitions)
 - 16 FP32 operations per clock,
 - 16 INT32 operations per clock, and
 - 8 FP64 operations per clock,
- FP64 Tensor Core operations running 2x faster DFMA operations
- 192 KB of combined shared memory and L1 data cache

https://images.nvidia.com/aem-dam/en-zz/Solutions/datacenter/nvidia-ampere-architecture-whitepaper.pdf

								1	L1 Instru	ICTIC	on Cac	ne									
	_		L0 In	struc	tion C	ache				٦٢				L0 In	struc	tion G	ache				
Warp Scheduler (32 thread/clk)												Warp Scheduler (32 thread/clk)									
Dispatch Unit (32 thread/clk)													Di	spatch	ı Unit	(32 th	read/	:lk)			
Register File (16,384 x 32-bit)													Reg	ister	File (16,38	4 x 32	2-bit)			
INT32	INT32	FP32	FP32	FP	64						INT32	INT32	FP32	FP32	FF	°64					
INT32	INT32	FP32	FP32	FP	64						INT32	INT32	FP32	FP32	FF	P64					
INT32	INT32	FP32	FP32	FP	64						INT32	INT32	FP32	FP32	FF	P64					
INT32	INT 32	FP32	FP32	FP	64	ТБ	NSO	PC	OPE		INT32	INT32	FP32	FP32	FF	P64	T				
INT32	INT32	FP32	FP32	FP	64		TENSOR CORE				INT32	INT32	FP32	FP32	FF	°64	TENSOR CORE				
INT32	INT32	FP32	FP32	FP	64						INT32	INT32	FP32	FP32	FP	P64					
INT32	INT32	FP32	FP32	FP	64						INT32	INT32	FP32	FP32	FF	P64					
INT32	INT32	FP32	FP32	FP	64						INT32	INT32	FP32	FP32	FF	964					
LD/ ST	LD/ ST	LD/ ST	LD/ ST	LD/ ST	LD/ ST	LD/ ST	LD/ ST		SFU		LD/ ST	LD/ ST	LD/ ST	LD/ ST	LD/ ST	LD/ ST	LD/ ST	LD/ ST	SFL		
		War	p Sch	edule	r (32 t (32 th	hread	/cik)						Wa	rp Sch	edule	r (32 th	hread read/	/cik)			
		Reg	ister	File ('	16,38	4 x 32	-bit)			Register File (16,384 x 32-bit)											
INT32	INT32	FP32	FP32	FP	64						INT32	INT32	FP32	FP32	FF	P64	1	10			
INT32	INT32	FP32	FP32	FP	64						INT32	INT32	FP32	FP32	FF	°64					
INT32	INT32	FP32	FP32	FP	64						INT32	INT32	FP32	FP32	FF	P64					
INT32	INT32	FP32	FP32	FP	64	те	NSO	RC	ORE		INT32	INT32	FP32	FP32	FF	P64	т	NSO	e coe		
INT32	INT32	FP32	FP32	FP	64				ONL		INT32	INT32	FP32	FP32	FF	P64		-1150	N CON		
INT32	INT32	FP32	FP32	FP	64						INT32	INT32	FP32	FP32	FP64						
INT32	INT32	FP32	FP32	FP	64						INT32	INT32	FP32	FP32	FF	P64					
INT32	INT32	FP32	FP32	FP	64	L					INT32	INT32	FP32	FP32	FF	P64			f		
LD/ ST	LD/ ST	LD/ ST	LD/ ST	LD/ ST	LD/ ST	ST	LD/ ST		SFU		LD/ ST	LD/ ST	LD/ ST	LD/ ST	LD/ ST	LD/ ST	LD/ ST	LD/ ST	SFL		
192KB L1 Data Cache / Shared Memory									Data Ca	che	: / Sha	emory	r								

General Architecture of GPU Accelerated Compute Node

Evolution of GPU Accelerated nodes

- 1:1 ratio between processors and accelerators
- GPUs used to have relatively small amount of memory

Evolution of GPU Accelerated nodes

- Dominant architecture in todays systems: 1:2 ratio between processors and accelerators.
- A100 GPUs now have 40 or 80GB of memory 160 320 GB of GPU memory in total

Evolution of GPU Accelerated nodes

- Fat GPU nodes contain 8 GPUs: **1:4 ratio between processors and accelerators**.
- 40 or 80 GB per GPU --> 320 or 640 GB of GPU memory in total which can be shared among GPUs

Karolina GPU Accelerated nodes

- Karolina GPU nodes contain 8 GPUs: 1:4 ratio between processors and accelerators.
- 40 GB per GPU --> 320 GB of GPU memory in total which can be shared among GPUs

Compute node evaluation of the Karolina GPU Accelerated nodes

\$ nvidia-smi topo -m

	GPU0	GPU1	GPU2	GPU3	GPU4	GPU5	GPU6	GPU7	mlx5_0	mlx5_1	mlx5_2	mlx5_3	CPU Affinity	NUMA Affinity
GPU0	Х	NV12	SYS	РХВ	SYS	SYS	48-63	3						
GPU1	NV12	Х	NV12	NV12	NV12	NV12	NV12	NV12	SYS	РХВ	SYS	SYS	48-63	3
GPU2	NV12	NV12	Х	NV12	NV12	NV12	NV12	NV12	PXB	SYS	SYS	SYS	16-31	1
GPU3	NV12	NV12	NV12	Х	NV12	NV12	NV12	NV12	РХВ	SYS	SYS	SYS	16-31	1
GPU4	NV12	NV12	NV12	NV12	Х	NV12	NV12	NV12	SYS	SYS	SYS	РХВ	112-127	7
GPU5	NV12	NV12	NV12	NV12	NV12	Х	NV12	NV12	SYS	SYS	SYS	РХВ	112-127	Z
GPU6	NV12	NV12	NV12	NV12	NV12	NV12	Х	NV12	SYS	SYS	РХВ	SYS	80-95	5
GPU7	NV12	Х	SYS	SYS	РХВ	SYS	80-95	5						
mlx5_0	SYS	SYS	PXB	PXB	SYS	SYS	SYS	SYS	Х	SYS	SYS	SYS		
mlx5_1	PXB	PXB	SYS	Х	SYS	SYS								
mlx5_2	SYS	SYS	SYS	SYS	SYS	SYS	PXB	РХВ	SYS	SYS	Х	SYS		
mlx5_3	SYS	SYS	SYS	SYS	PXB	PXB	SYS	SYS	SYS	SYS	SYS	Х		

Legend:

X = Self

SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)

NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node

PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)

PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)

PIX = Connection traversing at most a single PCIe bridge

NV# = Connection traversing a bonded set of # NVLinks

Note:

CPU: 2 x AMD Zen 3 EPYC[™] 7763, 2.45 GHz and GPU: 8x NVIDIA A100 SXM4 GPUs

Compute node evaluation of the Karolina GPU Accelerated nodes

\$ nvidia-smi topo -m

GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 mlx5 1 mlx5 0 mlx5 2 PXB SYS SYS GPU0 Х NV12 NV12 NV12 NV12 NV12 NV12 NV12 GPU1 NV12 NV12 NV12 NV12 NV12 NV12 PXB SYS NV12 X SYS GPU2 NV12 NV12 X NV12 NV12 NV12 NV12 NV12 PXB SYS SYS GPU3 NV12 NV12 NV12 NV12 SYS NV12 NV12 NV12 X PXB SYS SYS GPU4 NV12 NV12 NV12 NV12 X NV12 NV12 NV12 SYS SYS GPU5 NV12 NV12 NV12 NV12 X NV12 NV12 SYS SYS SYS NV12 SYS PXB GPU6 NV12 NV12 NV12 NV12 NV12 X SYS GPU7 NV12 NV12 NV12 NV12 NV12 NV12 X SYS PXB SYS mlx5 0 SYS SYS PXB PXB SYS SYS SYS SYS Х SYS SYS SYS mlx5 1 PXB PXB SYS SYS SYS SYS SYS SYS SYS Х SYS SYS mlx5 2 SYS SYS SYS SYS SYS PXB PXB SYS Х SYS SYS SYS PXB SYS SYS SYS SYS SYS mlx5 3 SYS PXB

Legend:

X = Self

SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/

NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA nod

PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)

PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)

PIX = Connection traversing at most a single PCIe bridge

NV# = Connection traversing a bonded set of # NVLinks

Note:

CPU: 2 x AMD Zen 3 EPYC[™] 7763, 2.45 GHz and GPU: 8x NVIDIA A100 SXM4 GPUs

Karolina GPU Accelerated nodes NVLink GPU to GPU interconnect

Unidirectional Bandwidth [GB/s]

GPU	0	1	2	3	4	-5	6	7
0	1180	244	255	251	255	255	249	255
1	251	1202	256	245	256	256	252	257
2	248	256	1195	255	252	255	255	248
3	252	257	257	1198	253	255	255	249
4	244	255	256	249	1173	254	249	253
5	251	256	255	251	256	1198	255	252
6	256	251	255	255	253	254	1195	248
7	257	256	248	255	257	251	255	1206

1) 8x NVIDIA A100 (320GB)
 2) 6x NVIDIA NVSwitches
 3) 4x Mellanox ConnectX-6 (200 Gb/s)
 4) Dual 64-Core AMD CPUs and 1 TB System Memory

Karolina GPU Accelerated nodes -Partial node allocation

- Karolina GPU nodes contain 8 GPUs: **1:4 ratio between processors and accelerators**.
- 40 GB per GPU --> 320 GB of GPU memory in total which can be shared among GPUs

Karolina GPU Accelerated nodes -Partial node allocation

- Karolina GPU nodes contain 8 GPUs: **1:4 ratio between processors and accelerators**.
- 40 GB per GPU --> 320 GB of GPU memory in total which can be shared among GPUs

Hands on: Connecting to Karolina cluster and installation of VS Code

- IT4Innovations Documentation: <u>https://docs.it4i.cz/</u>
- What OS do you use? (Linux, Windows, MacOS)
- Accessing the Clusters
 - <u>https://docs.it4i.cz/general/shell-and-data-access/</u>
 - Generate SSH key pairs (id_rsa, id_rsa.pub):
 - ssh-keygen (preferred): https://docs.it4i.cz/general/accessing-the-clusters/shell-access-and-data-transfer/ssh-keys/

• IT4I Account

- Training Login Credentials
- https://extranet.it4i.cz/ssp/?action=changesshkey
- <u>https://youtu.be/zM1EPE3qw-8</u>

- SSH configuration
 - Windows: c:\Users\jarXXX\.ssh\
 - Linux: /home/jarXXX/.ssh/
 - MacOS: /Users/jarXXX/.ssh/
- .ssh/*
 - authorized_keys
 - config —
 - id_rsa
 - id_rsa.pub
 - known_hosts

host karolina
HostName karolina.it4i.cz
IdentityFile ~/.ssh/id_rsa
User dd-XX-XX-XX

<u>Linux</u>: sudo apt install openssh-client cd ~/.ssh ssh-keygen

Windows: cd %USERPROFILE%/.ssh

- Print SSH public key
 - Windows: *cd c:\Users\jarXXX\.ssh* notepad id rsa training.pub
 - Linux/MacOS: cd /home/jarXXX/.ssh/ cat id_rsa_training.pub

• IT4I Account

- Training Login Credentials
- https://extranet.it4i.cz/ssp/?action=changesshkey •
- https://youtu.be/zM1EPE3qw-8 ٠

⑦		公							
Self service password Self Service password reset	>_ S	SH Key							
Change your SSH Key Service is not intended for e-INFRA CZ users! Use e-INFRA CZ user profile instead.									
• Enter your password and your public SSH key. Do not enter your private SSH key! After Send action, please, wait a moment (~5min) for the public key to be propagated to all clusters.									
Login	4	dd-XX-XX-XX							
Password		••••••							
Public SSH Key	>_	SSIL-IS8 AAAAB3NzaC1yc2EAAAADAQABAAABAQC7CoAB6hO4uBJcxvDXr0sjYPDuyguY4GdfJbJjfqlFtKCUi6p6+u mQSvAkTWB+mOIZSVZ/yVRBp9RGtixXWJ44zF32luDZGV4YhjJDjrn9BJHLS27hRAaGiXbacIN5oGjyRLEp CGnwk5aJOc5JCFVBpc/cGLSY3v08pUz+TgZR /8xlssGBTlqy4JKypekBfJS4tFZJh6kuX1EIBJ9WO3dTYs5ULiJxJ4Rf /3Qyvjb56P5nR5t9iLidPJLzwtcjLbTeDixgreLxV5kYqgFqaVfDumAbP7Xn1w1G5Uf9hWgFp+R94gNfSZe2xm7 MCZXIRG8X4rsWT1C6WNzRb/ItdK9							
DAattig	0	Captcha							
	S 8	Send							

- VSCode
 - <u>https://code.visualstudio.com/download</u>
 - Download Visual Studio Code

Free and built on open source. Integrated Git, debugging and extensions.

• Extensions

 <u>https://marketplace.visualstudio.com/items?</u> <u>itemName=ms-vscode-remote.remote-ssh</u>

 Remote - SSH
 Preview

 Microsoft ♥ | ▲ 12.832.868 installs | ★★★★ (138) | Free

Open any folder on a remote machine using SSH and take advantage of VS Code's full feature set.

<u>F</u> ile <u>E</u> dit	<u>S</u> election <u>V</u> iew <u>G</u> o <u>R</u> un	Terminal Help config - Visual Studio C	Code				
	ONS: MARKETPLACE		ior	n 🗏 Running Extensio	ns 🗉		$\langle \rangle \rangle$
ssh	Remote - SSH Open any folder on a remo <u>te</u>	New WSL Window New WSL Window using Distro Open Folder in WSL Cotting Started with WSL	Remote-WSL	3	- Minates		
	 Microsoft SSH FS File system, terminal and task Kelvin Schoofs Remote - SSH: Editing Cont Edit SSH configuration files Microsoft 	Connect to Host Connect Current window to Host Open SSH Configuration File Getting Started with SSH Open Folder in Container Clone Repository in Container Volume	Remote-SSH Remote-Containers	3			
	Remote X11 (SSH) Enables X11 forwarding with Joel Spadin	\$79K ★ 5 the Remote - SSH extension.		Eile Edit	Selection View Go Run Terminal Help	config - Visual Studio Code Select configured SSH host or enter user@host	I □ □ 08 -
	SSH Client SSH Client and Database mai Weijan Chen	Ф 43К ★ 4.5 nager for MySQL/MariaDB, Postgr Install		Service Servic	Remote - SSH Open any folder on a remote Configure SSH Hosts	JSL 5	ng
	Terminal SSH Terminal SSH sailhenz SSH Tools	© 29K ★ 1 Install © 7K ★ 5			Microsoft SSH FS File system, terminal and task provider using SSH Kelvin Schoofs Remote - SSH: Editing Configuration Files	<pre></pre>	training
√ ∕ ≱ ⊗∘∆	XPLOT Tools for vscode;SSH,F XPLOT	TP,Remote Install	Ln 6, Col 10 Spaces: 8 UTF-8	LE SSH C	Edit SSH configuration files Microsoft Remote X11 (SSH) Enables X11 forwarding with the Remote - SSH exte	10 User milanjaros ⊕ 11 Φ 79K ★ 5 ension.	9
-					Joel Spadin SSH Client SSH Client and Database manager for MySQL/Maria Weijan Chen	rostall Ф 43К ★ 4.5 aDB, Postgr Install	
				8	Terminal SSH Terminal SSH sailhenz SSH Tools		
				÷ ⇒ ⇒ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞	XPLOT Tools for vscode;SSH,FTP,Remote XPLOT	Install Ln 6, Col 10 Spaces	:8 UTF-8 LF SSH Config Formatting: ✓ 중 요

≺ .	ile <u>E</u> dit	<u>S</u> election	<u>V</u> iew	<u>G</u> o	<u>T</u> erminal	<u>H</u> elp	Untitle	d-1 - Visual Stu	dio Code		Œ		08 — 1	o x			\sim	\mathbf{X}		$\overline{)}$	\sim	$\langle \rangle \rangle$	\smallsetminus	\searrow	$\langle \rangle$
ل م چ	<i>≣ Untit</i> 1	led-1 × Select Start t	a Lan	Select Linux Windo macO	t the platform ows IS	n of the remo	te host "ka	rolina.it4i.cz"																	
8												✓ Elle	Edit Selection	on <u>V</u> iew <u>G</u> NED repository loo	o <u>R</u> un Open Folo cally.	፲erminal <u>H</u> e	elp	Visual S	tudio Code	PORTS ···		Dash - milanj	aros + ~		×
¢ ор	ening Remo	te 🛞 0	∆o %a	0					(i) Settin	ng up SSH Host Ln 1, C	t karolina.it4i.cz: (- Col 1 Spaces: 4	وتا ناب بلان بلان بلان بلان بلان بلان بلان	To learn more al our docs.	C bout how to u	lone Repos	itory source contro	I in VS Co	de read	[milanj	aros@login2.ka	arolina ~]\$				
												≫ SSH: k	arolina.it4i.cz 😣)0∆0 №00)									Ŕ	۵ ل

Hands on Visual Studio Code (via Open OnDemand)

- OOD: <u>https://docs.it4i.cz/general/accessing-the-clusters/graphical-user-interface/ood/</u>
- VPN IT4I
 - <u>https://docs.it4i.cz/general/accessing-the-clusters/vpn-access/</u>
 - Windows: Download the FortiClient app from the official page or the Windows Store.
 - Mac: Download the FortiClient VPN app from the <u>Apple Store</u>.
 - Linux: Download the <u>FortiClient</u> or <u>OpenFortiVPN</u> app.

Windows:

Linux:

root@fedora:~# dnf install openfortivpn

Ubuntu:

Fedora:

root@ubuntu:~# apt install openfortivpn

Debian:

root@debian:~# apt install openfortivpn

\$cat ~/it4i-vpn-config
host = reconnect.it4i.cz
port = 443
username = USER
set-dns = 1
pppd-use-peerdns = 0

\$sudo openfortivpn -c ~/it4i-vpn-config

VS Code (via OOD) https://ood-karolina.it4i.cz/

TorchStud

A MATLAB

	👻 👹 training / cuda_examples - GitL 🗙 📔 🗶 My li	nteractive Sessions - KARC × -61 run_1_device_query.sh - cuda_c × +
de Server	← → ♂ (ts ood-karolina.it4i.cz/mode/ac	n33.karolina.it4i.cz/38083/?folder=/home/milanjaros/cuda_examples
Code Server This age will know have Scole server using Code Server on the Earliev duster. Neglet 443-24-86 Pattoin Agen 4 Notes 1 1 1 1	EXPLORE	<pre>\$ rum_1_device_query_th × tasks > benchmarks > 8 rum_1_device_query_th 1 #1/bin/bash 2 # source code taken from cuda samples, see \$(CUD 4 s nl - q purge 6 nl CUDA 7 c cd 1_device_query 9 10 make 11 12/deviceQuery.x 13</pre>
Orys	O READMEnd F nut_teeing exercisit connolation_tof nut_teeing exercisit connolation_tof nut_teeing exercisit nut_teeing exercisit nut_teeing exercisit nut_teeing extra exercisitit nut_teeing extra exercisititities nut_teeing extra exercisitititities nut_teeing extra exercisititities nut_teeing extra exercisititities nut_teeing extra exercisititities nut_teeing extra exercisitititities nut_teeing extra exercisitititities nut_teeing extra exercisitititititities	

× 😨 milaniaros@login3-

- 0

\$ ± 0

Hands-on exercises git repository

- <u>https://code.it4i.cz/training/cuda_examples</u>
- Clone the repository on Karolina
 - git clone https://code.it4i.cz/training/cuda_examples.git
- Open the repository folder in VS Code (Open Folder)
- Tasks assignments and starting codes for the exercises
- Solution finished solutions

Access Karolina GPU nodes

- 8 GPUs and 128 CPU cores per node, 72 nodes
- Possible to allocate only 1 GPU and 16 cores = 1/8 of the node
- salloc -A DD-24-88 -p qgpu --gpus 1 --nodes 1 --time 2:00:00
 - Request 1 GPU on 1 node for 2 hours
- salloc -A DD-24-88 -p qgpu
 - Default: **1** GPU, **1** node, 24h time limit
- salloc -A DD-24-88 -p qgpu --gpus 4 --time 2:00:00
 - Request 4 GPUs for 2 hours. You might get the GPUs scattered across 1-4 nodes
- salloc -A DD-24-88 -p qgpu --gpus 4 --nodes 1 --time 2:00:00
 - Request 4 GPUs on 1 node for 2 hours
- salloc -A DD-24-88 -p qgpu --gpus 16 --nodes 2 --time 2:00:00
 - Request 16 GPUs on 2 nodes for 2 hours. You will get 2 full nodes.
- No way to enforce to get 4 "neighboring" GPUs on the node
- qgpu_exp higher priority, but max 8 GPUs for 1 hour
- salloc -> sbatch/job.sh to submit batch jobs

-A, --account -p, --partition -N, --nodes -t, --time -G, --gpus

https://docs.it4i.cz/general/karolina-slurm/#using-gpu-queues

Access Karolina GPU node

- No need to hope for a free node
- We have a reservation prepared
- Wednesday, 2024-10-09
- salloc --account=DD-24-88 --reservation=dd-24-88_2024-10-09T08:00:00_2024-10-09T17:30:00_7_qgpu --nodes 1 --gpus 2 --cpus-per-gpu 16
- Thursday, 2024-10-10
- salloc --account=DD-24-88 --reservation=dd-24-88_2024-10-10T09:00:00_2024-10-10T14:30:00 7 qgpu --nodes 1 --gpus 2 --cpus-per-gpu 16

- Load the CUDA module to setup the environment
 - module load CUDA

Hands on: Benchmark Hardware Properties

Hands on Benchmark Hardware Properties

- cd /home/dd-XX-XX-XX/cuda_examples/tasks/benchmarks
- Run the following benchmarks and complete the TODO values on the following 2 slides
- · Retrieve information about the available GPUs, find global memory capacity
 - ./run_1_device_query.sh
- Measure CPU memory (RAM) bandwidth
 - ./run_2_memory_bw_cpu.sh
- Measure GPU memory bandwidth, compare it with CPU memory bandwidth
 - ./run_3_memory_bw_gpu.sh
- Measure CPU-GPU data transfer bandwidth
 - ./run_4_copy_bw_cpu_gpu.sh
- Measure GPU-GPU data transfer bandwidth, compare with CPU-GPU data transfer bandwidth
 - ./run_5_copy_bw_gpu_gpu.sh

Hands on Benchmark Hardware Properties

TODO2: Measure CPU memory bandwidth: _____ GB/s

Hands on Benchmark Hardware Properties

Hands on – solution, output **Benchmark Hardware Properties**

				-	
\$./run_5_cor	py_bw_gpu_gpu.sh				
•••					
# OSU MPI-CUI	DA Bandwidth Test				
# Send Buffer	r on DEVICE (D) and P	Receiv	e Buffer on DEVICE		
(D)					
# Size	Bandwidth (MB/S)				
1024	221.03	1	F		
2048	440.67		\$./run_4_copy_bw_c	pu_gpu.sh	
4096	863.83				
8192	1/14.29		Host to Device Band	width, 1 Devic	ce(s)
10304	3539.78		PINNED Memory Tran	sfers	
32/08	/118.31		Transfer Size (B	ytes) <u> </u>	Bandwidth(GB/s)
121072	14101.32		3200000	2	24.5
262144	20030.01				
202144	94376 06		Device to Host Band	dwidth, 1 Devi	ice(s)
1049576	121602 12		PINNED Memory Tran	sfers	
2007152	170700 51		Transfer Size (B	ytes) H	Bandwidth(GB/s)
1191301	218991 18		32000000	2	25.9
8388608	2/3920 /8	ı			
16777216	258973 37				
33554432	269537 56	ċ /	mun 3 moments but only a		
67108864	274921 10	· · · /	run_5_memory_bw_gpu.s	511	
134217728	278010 86	Func	tion MBytes/sec M	lin (sec) Ma	v Average
268435456	279650.07	Conv			
200100100		Mul	1374268 159 (00079 0.00078
		Add	1384314 665 0	00116 0	00120 0.00118
		Tria	d 1388344.358 ().00116 0.	00120 0.00117
		Dot.	1288563.379 (0.00083 0.	00088 0.00085
		200	1200000.079		
s /run 2 mor	ory by cou sh				
• ./Iun_2_men	lory_bw_cpu.sh				
Function H	Be <u>st Rate MB/</u> s Avg 1	time	Min time Max t	cime	
:vqoJ	81048.9 0.19	7680	0.197412 0.197	7956	
Scale:	54754.0 0.292	2969	0.292216 0.293	3471	
Add:	61358.3 0.39	1617	0.391145 0.392	2164	
Triad:	61553.2 0.390	0135	0.389907 0.390)916	
Solution Vali	idates: avg error les	ss tha	n 1.000000e-13 on all	L three arrays	;

\$./run 1 device query.sh

Detected 2 CUDA Capable device(s)

Device 0: "NVIDIA A100-SXM4-40GB"	
CUDA Driver Version / Runtime Version	12.4 / 12.4
CUDA Capability Major/Minor version number:	8.0
Total amount of global memory:	40326 MBytes 42285268992 bytes)
(108) Multiprocessors, (064) CUDA Cores/MP:	6912 CUDA Cores
GPU Max Clock rate:	1290 MHz (1.29 GHz)
Memory Clock rate:	1215 Mhz
Memory Bus Width:	5120-bit
L2 Cache Size:	41943040 bytes
Maximum Texture Dimension Size (x,v,z)	1D = (131072), 2D = (131072, 65536),
3D=(16384, 16384, 16384)	
Maximum Lavered 1D Texture Size, (num) lavers	1D=(32768), 2048 layers
Maximum Lavered 2D Texture Size, (num) lavers	2D=(32768, 32768), 2048 lavers
Total amount of constant memory:	65536 bytes
Total amount of shared memory per block:	49152 bytes
Total shared memory per multiprocessor:	167936 bytes
Total number of registers available per block:	65536
Warp size:	32
Maximum number of threads per multiprocessor:	2048
Maximum number of threads per block:	1024
Max dimension size of a thread block (x.v.z):	(1024, 1024, 64)
Max dimension size of a grid size (x, y, z) :	(2147483647, 65535, 65535)
Maximum memory pitch:	2147483647 bytes
Texture alignment:	512 bytes
Concurrent conv and kernel execution:	Yes with 3 convencine(s)
Bun time limit on kernels:	No
Integrated GPU sharing Host Memory:	No
Support host page-locked memory mapping.	Yes
Alignment requirement for Surfaces.	Ves
Device has ECC support.	Frahled
Device mas nee support.	Vos
Device supports Managed Momeru:	Vos
Device supports Compute Preemption.	Ves
Supports Cooporative Kernel Launch.	Vos
Supports Cooperative Kernel Launch.	IES Voc
Device DCL Demain ID / Due ID / legation ID.	
Compute Mede	0 / 78 / 0
Compute Mode:	and Cat Danias () with denies
< Default (multiple nost threads can use ::	cudaSetDevice() with device
simultaneously) >	
Device 1: "NVIDIA A100-SXM4-40GB"	
···	TA A100 CVM4 40CD (CDU1) - V
> Peer access from NVIDIA A100-SXM4-40GB (GPUU) -> NVII	DIA A100-SXM4-40GB (GPU1) : 16S DIA A100-SXM4-40GB (GPU0) : Yes
> Peer access from NVIDIA A100-SXM4-40GB (GPU0) -> NVII > Peer access from NVIDIA A100-SXM4-40GB (GPU1) -> NVII	DIA A100-SXM4-40GB (GPU1) : Yes DIA A100-SXM4-40GB (GPU0) : Yes

CUDA Programming

Ways to Accelerate Applications

Libraries

- ease of use:
 - enables GPU acceleration without any GPU programming
- drop-in:
 - follow standard APIs
 - minimal code changes
- quality:
 - high-quality implementations

Ways to Accelerate Applications

Compiler Directives

- ease of use
 - compiler takes care of details of parallelism management and data movement
- portable
 - code is generic, not specific to any type of hardware
- Example: OpenACC
 - Compiler directives for C, C++, and FORTRAN

103

Ways to Accelerate Applications

Programming Languages

- Performance: best control of parallelism and data movement
- Flexible: the computation does not need to fit into a limited set of library patterns or directives
- Complex: programmer often needs to express more details

GPU Programming Languages

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: <u>https://www.nvidia.com/en-us/training/teaching-kits/</u>

CUDA programming Data Parallelism

Vector addition example

```
A + B = C
// Compute vector sum C = A + B
void vecAdd(float *h_A, float *h_B, float *h_C, int n)
                                                                                                A[N-1]
                                                      Vector A
                                                                                  A[2]
                                                                 A[0]
                                                                         A[1]
  int i;
  for (i = 0; i < n; i++)
                                                                  ÷
                                                                          ÷
                                                                                                  h C[i] = h A[i] + h B[i];
                                                                                                B[N-1]
                                                                                  B[2]
                                                                                         . . .
                                                      Vector B
                                                                 B[0]
                                                                          B[1]
int main()
                                                                                                 Memory allocation for h A, h B, and h C
                                                                                  C[2]
    read h_A and h_B from file for N elements
                                                      Vector C
                                                                 C[0]
                                                                         C[1]
                                                                                                C[N-1]
 vecAdd(h A, h B, h C, N);
```

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: <u>https://www.nvidia.com/en-us/training/teaching-kits/</u>

105

CUDA programming Heterogenous Program

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: <u>https://www.nvidia.com/en-us/training/teaching-kits/</u> 106
CUDA programming Partial Overview of CUDA Memories

Device code (kernel) can:

- R/W per-thread registers
- R/W all-shared global memory

Host code can

 Transfer data to/from per grid global memory

CUDA programming Partial Overview of CUDA Memories

cudaMalloc()

- Allocates an object in the device global memory
- Two parameters
 - Address of a pointer to the allocated object
 - Size of allocated object in terms of bytes

cudaFree()

- Frees object from device global memory
- One parameter
 - Pointer to freed object

108

CUDA programming Partial Overview of CUDA Memories

cudaMemcpy()

- memory data transfer
- Requires four parameters
 - Pointer to destination
 - Pointer to source
 - Number of bytes copied
 - Type/Direction of transfer
- Transfer to device is synchronous with respect to the host

109

CPU

Memory Allocation in Host memory & Initialization of Values

```
int main(){
```

```
float *h_A, *h_B, *h_C;
```

```
int n = 10000000 // size of an array
int size = n * sizeof(float);
```

```
h_A = (float*)malloc(size);
h_B = (float*)malloc(size);
h_C = (float*)malloc(size);
```

```
// Initialize array
for(int i = 0; i < array_size; i++){
h_A[i] = 1.0f;
h B[i] = 2.0f;}</pre>
```

vecAdd(h_A, h_B, h_C, n);

```
// Deallocate host memory
free(h_A); free(h_A); free(h_C);
```


memory

memory

```
void vecAdd(float *h_A, float *h_B, float *h_C,
int n)
{
    int size = n * sizeof(float);
    float *d_A, *d_B, *d_C;
    cudaMalloc((void **) &d_A, size);
    cudaMalloc((void **) &d_B, size);
    cudaMalloc((void **) &d_C, size);
```

cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice); cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: <u>https://www.nvidia.com/en-us/training/teaching-kits/</u> 113

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: <u>https://www.nvidia.com/en-us/training/teaching-kits/</u> 114

- Single memory address space accessible from all CPUs/GPUs in a single server
 - maintain single copy of data
- On-demand page migration hardware/software handles automatically the data migration between the host and the device maintaining consistency between them

Device code (kernel) can:

- R/W per-thread registers
- R/W all-shared global memory
- R/W managed memory (Unified Memory)

Host code can

- Transfer data to/from per grid global memory
- R/W managed memory Unified Memory)

In modern GPUs:

- there are specialized hardware units managing page faulting
- data is migrated on demand, meaning that data gets copied only on page fault
- possibility to oversubscribe memory, enabling larger arrays than the device memory size

Can be optimized

- cudaMemAdvise(),
- cudaMemPrefetchAsync(),
- cudaMemcpyAsync()

cudaMallocManaged(void** ptr, size_t size)

- Allocates an object in the Unified Memory address space.
- Two parameters, with an optional third parameter.
 - Address of a pointer to the allocated object
 - Size of the allocated object in terms of bytes
 - [Optional] Flag indicating if memory can be accessed from any device or stream

cudaFree()

- Frees object from unified memory.
- One parameter
 - Pointer to freed object

CPU

Memory Allocation in Host memory & Initialization of Values

```
int main() {
```

```
float *h_A, *h_B, *h_C;
```

```
int n = 10000000 // size of an array
int size = n * sizeof(float);
```

```
h_A = (float*)malloc(size);
h_B = (float*)malloc(size);
h_C = (float*)malloc(size);
```

```
// Initialize array
for(int i = 0; i < array_size; i++){
h_A[i] = 1.0f;
h B[i] = 2.0f;}</pre>
```

 $vecAdd(h_A, h_B, h_C, n);$

```
// Deallocate host memory
free(h_A); free(h_B); free(h_C);
```

```
int main() {
```

```
float *h A, *h B, *h C;
```

```
int n = 10000000 // size of an array
int size = n * sizeof(float);
```

```
h_A = (float*)malloc(size);
h_B = (float*)malloc(size);
h_C = (float*)malloc(size);
```

```
// Initialize array
for(int i = 0; i < array_size; i++) {
    h_A[i] = 1.0f;
    h_B[i] = 2.0f; }</pre>
```

```
vecAdd(h_A, h_B, h_C, n);
```

```
// Deallocate host memory
free(h_A); free(h_A); free(h_C);
```

```
int main(){
```

```
float *A, *B, *C;
```

int n = 10000000 // size of an array
int size = n * sizeof(float);

cudaMallocManaged(&A, size); cudaMallocManaged(&B, size); cudaMallocManaged(&C, size);

```
// Initialize array
for(int i = 0; i < array_size; i++){
A[i] = 1.0f;
B[i] = 2.0f;}</pre>
```

vecAdd(A, B, C, n);

```
// Deallocate host memory
cudaFree(A); cudaFree(B); cudaFree(C);
```

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: <u>https://www.nvidia.com/en-us/training/teaching-kits/</u> 119

```
void vecAdd(float *h_A, float *h_B, float *h_C,
int n)
{
    int size = n * sizeof(float);
    float *d_A, *d_B, *d_C;
    cudaMalloc((void **) &d_A, size);
    cudaMalloc((void **) &d_B, size);
    cudaMalloc((void **) &d_C, size);
```

cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice); cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);

// Kernel run

```
cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);
cudaFree(d_A);
cudaFree(d_B);
cudaFree(d_C);
```

C, void vecAdd(float *A, float *B, float *C, int n)

```
// Kernel run
```

CUDA programming CUDA Execution Model

Heterogeneous host (CPU) + device (GPU) application C program

- Serial parts in host C code
- Parallel parts in device SPMD kernel code

CUDA programming Device Code / Kernel

Device code or kernel

__global___ defines a kernel function

Host code - kernel execution

• say_hello<<< 2, 4 >>>()

Grid dimension = # of blocks

Block dimension = # of threads per block

Each thread uses indices to decide what data to work on

- **blockldx.x** block index in x direction
- threadIdx.x thread index in x direction
- **blockDim.x** block size (# of threads per block) in x dir.

Kernel Code

Lunch break

Hands-On Hello world in CUDA

Hands-On Hello world in CUDA

- · Start simple with a classic hello world
- tasks/hello_world/hello_world.cu
- Print info in each thread
 - Thread index, number of threads in block (=block size)
 - Block index, number of blocks (=grid size)
 - Global index of thread, total number of threads (need to calculate first)
- Compile using
 - nvcc hello_world.cu -o hello_world.x
- And run with
 - ./hello_world.x

Sample output (might be in different order):

Launching the kernel with 2 blocks, each with 4 threads Kernel was launched, waiting for its completion Hello from thread 0/4, block 0/2, my global index is 0/8 Hello from thread 1/4, block 0/2, my global index is 1/8 Hello from thread 2/4, block 0/2, my global index is 2/8 Hello from thread 3/4, block 0/2, my global index is 3/8 Hello from thread 0/4, block 1/2, my global index is 4/8 Hello from thread 1/4, block 1/2, my global index is 5/8 Hello from thread 2/4, block 1/2, my global index is 6/8 Hello from thread 3/4, block 1/2, my global index is 7/8 Kernel execution completed

CUDA Programming cont.

CUDA programming Arrays of Parallel Threads

A CUDA kernel is executed by a grid (array) of threads

- All threads in a grid run the same kernel code (Single Program Multiple Data)
- · Each thread has indexes that it uses to compute memory addresses and make control decisions

CUDA programming Thread Blocks

Divide thread array into multiple blocks

- Threads within a block cooperate via
 - shared memory,
 - atomic operations and
 - barrier synchronization
- Threads in different blocks do not interact

blockldx and threadldx

Each thread uses indices to decide what data to work on

133

- blockldx: 1D, 2D, or 3D
- threadIdx: 1D, 2D, or 3D

Device code or kernel

- compute vector sum C = A + B
- each thread performs one pair-wise addition

```
__global___
void vecAddKernel(float* A, float* B, float* C, int n)
{
    int i = threadIdx.x + blockDim.x * blockIdx.x;
    if(i<n) C[i] = A[i] + B[i];
}</pre>
```

- _global___ defines a kernel function
- each "___" consists of two underscore characters
- kernel function must return void

Each thread uses indices to decide what data to work on

- blockldx.x block index in x direction
- threadIdx.x thread index in x direction
- blockDim.x block size (# of threads per block) in x dir.
- Note: 1D indexing uses .x only, 2D uses .x, .y and 3D uses .x, .y, .z

134

Host code

- Kernel execution host code that launches kernel
- GPU hardware creates a grid of threads
- · each thread executes the kernel function from previous slide

```
void vecAdd(float* h_A, float* h_B, float* h_C, int n)
{
    // d_A, d_B, d_C allocations and memory copies are done
    // x y z direction
    dim3 DimGrid (2, 1, 1); // number of blocks per grid to be launched
    dim3 DimBlock(4, 1, 1); // number of threads per block to be launched
    vecAddKernel<<<DimGrid,DimBlock>>>(d_A, d_B, d_C, n);
```

Host code

- Kernel execution host code that launches kernel
- GPU hardware creates a grid of threads
- · each thread executes the kernel function from previous slide

```
void vecAdd(float* h_A, float* h_B, float* h_C, int n)
{
    // d_A, d_B, d_C allocations and memory copies are done
    // launches 2 block in a grid and 4 threads per block
    vecAddKernel<<<2,4>>>>(d_A, d_B, d_C, n);}
```

Host code

- Executes ceil(n/256.0) blocks of 256 threads each
- the ceiling function makes sure that there are enough threads to cover all elements.

```
void vecAdd(float* h_A, float* h_B, float* h_C, int n)
{
    // d_A, d_B, d_C allocations and memory copies are done
    vecAddKernel<<<ceil(n/256.0),256>>>(d_A, d_B, d_C, n);
}
```

Host code

• This is an equivalent way to express the ceiling function.

```
void vecAdd(float* h_A, float* h_B, float* h_C, int n)
{
    // d_A, d_B, d_C allocations and memory copies are done
    dim3 DimGrid((n-1)/256 + 1, 1, 1);
    dim3 DimBlock(256, 1, 1);
    vecAddKernel<<<DimGrid,DimBlock>>>(d_A, d_B, d_C, n);
}
```

- Host: launches "extra" block to cover all elements – ensures that there is enough threads to process all elements
- Kernel: controls that thread does not read unallocated memory
- Host: DimBlock equals to
- Kernel: blockDim
- Kenel: threadIdx is in range <0, DimBlock)
- Kenel: blockldx is in range <0, DimGrid)

```
void vecAdd(float* h_A, float* h_B, float* h_C, int n)
{
    dim3 DimGrid(ceil(n/256.0), 1, 1);
    dim3 DimBlock(256, 1, 1);
    vecAddKernel<<<<DimGrid,DimBlock>>>(d_A, d_B, d_C, n);
}
```

```
_global___
```

```
void vecAddKernel(float* A, float* B, float* C, int n)
{
    int i = threadIdx.x + blockDim.x * blockIdx.x;
    if(i<n) C[i] = A[i] + B[i];</pre>
```

CUDA programming Vector Addition – with kernel exec.

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: <u>https://www.nvidia.com/en-us/training/teaching-kits/</u> 140

CUDA programming Kernel timing using events

Use CUDA **Events** for timing CUDA related execution time.

- Works as "markers" in execution queue
- Besides timing, they are crucial for GPU synchronization
- Important! In order to compute elapsed time correctly. Both events must "happen". That is, they need to reach the end of execution queue
- Can be ensured by waiting for the event to "happen" using cudaEventSynchronize() or synchronization with entire GPU by cudaDeviceSynchronize()

```
void vecAdd(float *h_A, float *h_B, float *h_C, int n)
{
```

float timeInMs; cudaEvent_t startEvent, endEvent;

cudaEventCreate(&startEvent); cudaEventCreate(&endEvent);

cudaEventRecord(startEvent);

vecAddKernel<<<ceil(n/256.0),256>>>
 (d_A, d_B, d_C, n);

cudaEventRecord(endEvent);

```
cudaDeviceSynchronize();
cudaEventElapsedTime
(&timeInMs, startEvent, endEvent);
```

cudaEventDestroy(endEvent); cudaEventDestroy(startEvent);

2x Hands-on Vector Addition

manual memcpy; managed memory

CUDA programming Error checking

• CUDA functions return error code (cudaError_t)

cudaError_t cudaMalloc (void** devPtr, size_t size);

- We should check it, so it won't be silently ignored
- Complicated to do error checking with every CUDA function call
- Create a macro (already provided in our examples)

```
#define CUDACHECK(err) do { cuda_check((err), __FILE_, _LINE_); } while(false)
inline void cuda_check(cudaError_t error_code, const char *file, int line)
{
    if (error_code != cudaSuccess)
    {
        fprintf(stderr, "CUDA Error %d: %s. In file '%s' on line %d\n", error_code, cudaGetErrorString(error_code), file, line);
        exit(error_code);
    }
}
```

• Wrap every function call in the macro and after kernel launch, also check for errors

CUDACHECK(cudaMalloc(...));

my_kernel<<< ... >>>(...);
CUDACHECK(cudaPeekAtLastError());

The result

- Free the allocated GPU memory
- Use the CUDACHECK() macro to do error checking

Hands-on: vector add with manual memory transfers

Sample output:

0.000 11

Input A:

- tasks/vector add classic/vector add classic.cu
- C = A + B
- Implement the vector add on GPU yourself
 - Vector already initialized on CPU
 - Allocate memory on GPU
 - Copy vectors to GPU
 - Implement and launch kernel
 - Copy result vector back to CPU
- 0.000 Input B: 0 0 0 0 10

.000	2.000	3.000	4.000	5.000	6.000	7.000	8.000	9.0
.000	20.000	30.000	40.000	50.000	60.000	70.000	80.000	90.0
.000 is CO	22.000 RRECT!	33.000	44.000	55.000	66.000	77.000	88.000	99.0

Hands-on: vector add with managed memory

- tasks/vector add managed
- C = A + B
- Implement the vector add on GPU again, but use managed memory
 - Copy your solution from the previous hands-on
 - Kernel and its launch stays the same
 - Only memory management changes
 - No host and device array, only single array in managed memory
 - Use cudaMallocManaged to allocate the arrays
 - No cudaMemcpy needed
 - cudaDeviceSynchronize required now

```
Input A:
        1.000
 0.000
              2.000
                      3.000
                              4.000
                                      5.000
                                              6.000
                                                             8.000
       10.000 20.000 30.000 40.000 50.000 60.000
                                                           80.000
                                                    70.000
Output C:
       11.000 22.000 33.000 44.000 55.000 66.000 77.000 88.000 99.000
The result is CORRECT!
```

Sample output:

9.000

90.000

Multi-GPU Programming

CUDA programming MultiGPU programing basics

CUDA programming MultiGPU programing basics

Multi-GPU system

- GPU's are numbered from 0 to n-1, where n is the number of GPU's.
- The CUDA driver always starts with a default active device.
- There are two broad types of Multi GPU communication:
 - Through the PCIE bus
 - Through NVLINK

153

\$ nvidia-smi topo -m

	GPU0	GPU1	GPU2	GPU3	GPU4	GPU5	GPU6	GPU7	mlx5_0	mlx5_1	mlx5_2	mlx5_3	CPU Affinity	NUMA Affinity
GPU0	х	NV12	sys –	PXB	sys –	sys –	48-63	3						
GPU1	NV12	х	NV12	NV12	NV12	NV12	NV12	NV12	SYS	PXB	SYS	SYS	48-63	3
GPU2	NV12	NV12	х	NV12	NV12	NV12	NV12	NV12	PXB	SYS	SYS	SYS	16-31	1
GPU3	NV12	NV12	NV12	x	NV12	NV12	NV12	NV12	PXB	SYS	SYS	SYS	16-31	1
GPU4	NV12	NV12	NV12	NV12	х	NV12	NV12	NV12	SYS	SYS	SYS	PXB	112-127	7
GPU5	NV12	NV12	NV12	NV12	NV12	x	NV12	NV12	SYS	SYS	SYS	PXB	112-127	7
GPU6	NV12	NV12	NV12	NV12	NV12	NV12	х	NV12	SYS	SYS	PXB	SYS	80-95	5
GPU7	NV12	х	SYS	SYS	PXB	SYS	80-95	5						
mlx5_0	SYS	SYS	PXB	PXB	SYS	SYS	SYS	SYS	х	SYS	SYS	SYS		
mlx5_1	PXB	PXB	SYS	х	SYS	SYS								
mlx5_2	SYS	SYS	SYS	SYS	SYS	SYS	PXB	PXB	SYS	SYS	х	SYS		
mlx5_3	SYS	SYS	SYS	SYS	PXB	PXB	SYS	SYS	SYS	SYS	SYS	х		

CUDA programming CUDA host API calls for Multi GPU's

cudaSetDevice()

- Set GPU device to use for device code execution on the active host thread.
- Requires one parameter:
 - · An int with the device id number
- This function doesn't affect other host threads, meaning that setting the device on one thread will not set the device in other host threads. Also doesn't affect previous async calls.

cudaGetDevice()

- Get GPU device being currently used by the active host thread
- Requires one parameter:
 - An int pointer to store the device id

cudaGetDeviceCount()

- Get the number of CUDA-capable devices in the system.
- Requires one parameter:
 - An int pointer to store the device count

CUDA programming CUDA host API calls for Multi GPU's

cudaSetDevice()

- Set GPU device to use for device code execution on the active host thread.
- Requires one parameter:
 - An int with the device id number
- This function doesn't affect other host threads, meaning that setting the device on one thread will not set the device in other host threads. Also doesn't affect previous async calls.

Memory allocation

To allocate or associate memory with a specific device using non-Managed CUDA-API calls, it's necessary to call cudaSetDevice() before doing the allocation call.

- cudaMalloc() allocates an object in the device global memory
- cudaHostAlloc(), cudaMallocHost() allocates pinned memory on the host

CUDA programming CUDA runtime calls affected by cudaSetDevice

- If cudaSetDevice() was called before a kernel launching call, the kernel will execute in the active device.
 - It's crucial that every non managed memory being used in the kernel resides in the active device, otherwise an error will occur.
- If cudaSetDevice() was called before a cudaStreamCreate(), then the stream will be associated with the active device.
- The synchronization functions: cudaDeviceSynchronize(), cudaStreamSynchronize() are also affected by cudaSetDevice(), synchronizing tasks only for the active device on the active host thread

CUDA programming Vector Addition – with kernel exec.

CUDA programming Multi-GPU Vector Addition – Part 1

void vecAdd(float *h A, float *h B, float *h C, int n)

```
int n0 = n / 2;
int n1 = n - n0;
int size0 = n0 * sizeof(float);
int size1 = n1 * sizeof(float);
float *d_A0, *d_B0, *d_C0;
float *d_A1, *d_B1, *d_C1;
```

cudaSetDevice(0);

```
cudaMalloc((void **) &d_A0, size0);
cudaMalloc((void **) &d_B0, size0);
cudaMalloc((void **) &d_C0, size0);
cudaMemcpy(d_A0, &h_A[0], size0, cudaMemcpyHostToDevice);
cudaMemcpy(d B0, &h B[0], size0, cudaMemcpyHostToDevice);
```

cudaSetDevice(1);

```
cudaMalloc((void **) &d_A1, size1);
cudaMalloc((void **) &d_B1, size1);
cudaMalloc((void **) &d_C1, size1);
cudaMemcpy(d_A1, &h_A[n0], size1, cudaMemcpyHostToDevice);
cudaMemcpy(d B1, &h B[n0], size1, cudaMemcpyHostToDevice);
```

CUDA programming Multi-GPU Vector Addition – Part 2

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: <u>https://www.nvidia.com/en-us/training/teaching-kits/</u>

CUDA programming GPU selection

Environment variable controlling devices visibility

- Useful for selecting or restricting the set of available GPUs for specific application even without the access to the source code
- Execute export CUDA_VISIBLE_DEVICES=<comma separated list of GPU IDs> before running the app
- To list all available GPU IDs run nvidia-smi from command line
- Single GPU applications:

```
export CUDA VISIBLE DEVICES=0 ./app
```

• Multi GPU applications:

```
export CUDA_VISIBLE_DEVICES=0,1 ./app
```


Hands-on Multi-GPU Vector Addition

Hands-on: vector add, multi-GPU

- tasks/vector_add_multigpu
- Use multiple GPUs to perform the vector add operation
- 2 GPUs available today
- Start from the solution to the vector_add_managed hands-on
- Launch the kernel 2 times, once for each GPU
 - Calculate indexes where each GPU should start and end
 - Don't modify the kernel, just pass it different arguments
- Use cudaSetDevice() to set the currently used GPU device
- Try to write the code for any number of GPUs
 - Use cudaGetDeviceCount() to query the number of GPUs
 - Loop through every GPU on the system

Coffee break

Efficient Host-Device Data Transfer and CUDA Streams

CPU-GPU Data Transfer using DMA

CPU-GPU Data Transfer using DMA

- DMA (Direct Memory Access) hardware is used by cudaMemcpy() for better efficiency
 - CPU is not used and perform useful calculations
 - DMA is hardware unit used to transfer given number of bytes
 - between physical memory address space regions
 - uses system interconnect: in current systems PCI-Express

Virtual Memory Management

 Problem for DMA: not all variables and data structures are always located in the physical memory

Data Transfer and Virtual Memory

- DMA uses ONLY physical addresses
- when cudaMemcpy() copies an array, it is implemented as one or more DMA transfers

Solution: Pinned Memory

- pinned memory are virtual memory pages that are specially selected, and they cannot be paged out (removed from physical memory)
- pinned memory is allocated with a special system API function call

<u>CPU memory that serve as the source or destination of a DMA transfer must be</u> <u>allocated as pinned memory</u>

CPU-GPU Data Transfer using DMA

CUDA data transfer uses pinned memory.

- the DMA used by cudaMemcpy() requires that any source or destination in the host memory is allocated as pinned memory
- if a source or destination of a *cudaMemcpy()* in the host memory is not allocated in pinned memory, it needs to be first copied to a pinned memory – extra overhead
- cudaMemcpy() is faster if the host memory source or destination is allocated in pinned memory since no extra copy is needed

Using Pinned Memory in CUDA

- use the allocated pinned memory and its pointer the same way as those returned by malloc();
- the only difference is that the allocated memory cannot be paged by the OS
- the cudaMemcpy() function should be about 2X faster with pinned memory
- pinned memory is a limited resource
- over-subscription can have serious consequences

Allocate/Free Pinned Memory

cudaHostAlloc(), three parameters

- Address of pointer to the allocated memory
- Size of the allocated memory in bytes
- Option use cudaHostAllocDefault for now

cudaFreeHost(), one parameter

• Pointer to the memory to be freed

Pinned Memory

Example: Vector Addition Host Code

int main()

float *h_A, *h_B, *h_C;

••••

...

cudaHostAlloc((void **) &h_A, N* sizeof(float), cudaHostAllocDefault); cudaHostAlloc((void **) &h_B, N* sizeof(float), cudaHostAllocDefault); cudaHostAlloc((void **) &h_C, N* sizeof(float), cudaHostAllocDefault);

// cudaMemcpy() runs 2X faster

System can perform multiple CUDA operations simultaneously: Sequential execution

- multiple CUDA kernels on GPU
- one cudaMemcpyAsync from Host to Device
- one cudaMemcpyAsync from Device to Host
- computation on the CPU

CUDA Stream

• a sequence of operations that execute in issue-order on the GPU

Stream Semantics

- Two operations issued into the same stream will execute in issue-order. Operation B issued after Operation A will not begin to execute until Operation A has completed.
- Two operations issued into separate streams have no ordering prescribed by CUDA. Operation A issued into stream 1 may execute before, during, or after Operation B issued into stream 2.
- Operation: Usually, cudaMemcpyAsync or a kernel call. More generally, most CUDA API calls that take a stream parameter, as well as stream callbacks.

Concurrent execution

Default Stream (aka Stream '0')

- Stream used when no stream is specified
- Completely synchronous w.r.t. host and device
 - As if cudaDeviceSynchronize() inserted before and after every CUDA operation
- Exceptions asynchronous w.r.t.
 - hostKernel launches in the default stream
 - cudaMemcpy*Async
 - cudaMemset*Async
 - cudaMemcpy within the same device
 - H2D cudaMemcpy of 64kB or less

Requirements for Concurrency

Concurrent execution

CUDA Streams – How to use them?

Create/Destroy

- cudaStream_t stream;
- cudaStreamCreate(&stream);
- cudaStreamDestroy(stream);

Launch

- my_kernel<<<grid,block,0,stream>>>(...);
- cudaMemcypAsync(..., stream);

Synchronize

cudaStreamSynchronize(stream);

Basic Example 1: KERNEL CONCURRENCY

- assume foo only utilizes 50% of the GPU
- using user streams

cudaStream_t stream1, stream2;

```
cudaStreamCreate(&stream1);
cudaStreamCreate(&stream2);
```

```
foo<<<blocks,threads,0,stream1>>>();
foo<<<blocks,threads,0,stream2>>>();
```

cudaStreamDestroy(stream1); cudaStreamDestroy(stream2);

Basic Example 2: CONCURRENT MEMORY COPIES assume pinned memory Synchronous cudaMemcpy(...); foo<<<...>>>(); Asynchronous Same Stream cudaMemcpyAsync(...,stream1); foo<<<...,**stream1**>>>(); **Asynchronous Different Streams** cudaMemcpyAsync(...,stream1); foo<<<...,**stream2**>>>();

CPU-GPU Data Transfer using DMA

B3

A4

K3

B4

A3

K2

Serialized Data Transfer and Computation

 So far, the way we use cudaMemcpy serializes data transfer and GPU computation for VecAddKernel()

Ideal, Pipelined Timing

D to H engine

H to D engine

GPU processing

- Divide large vectors into segments
- Overlap transfer and compute of adjacent segments

A2

K1

B2

Let CUDA devices overlap transfers and kernels execution

CPU-GPU Data Transfer using DMA

Serialized Data Transfer and Computation

//non-streamed version

cudaMemcpy(d_a, h_a, size, cudaMemcpyHostToDevice); cudaMemcpy(d_b, h_b, size, cudaMemcpyHostToDevice); Kernel<<<b, t>>>(d_a, d_b, d_c, N); cudaMemcpy(h_c, d_c, size, cudaMemcpyDeviceToHost);

//streamed version

// c - number of pipeline phases // ns - total number of streams used // size - size of input arrays cudaStream_t stream[ns]; for (int i = 0; i < ns; ++i) cudaStreamCreate(&stream[i]);

Transfer

B

Transfer

Kernel

C = A + B

Transfer

Hands On: Asynchronous execution, streams, pipelining

Hands-on: asynchronous execution

- tasks/vector_add_stream
- Copy the solution of the vector add pinned task
 - E.g. cp ../../solution/vector_add_pinned/vector_add_pinned.cu
 - It just allocates the CPU array differently
- Modify the code such that GPU operations run asynchronously
 - Use cudaMemcpyAsync(...) for copy
 - Kernel is already asynchronous
- Create a cuda stream and use it to launch all the GPU operations
 - cudaStreamCreate(), cudaStreamDestroy()
 - Additional stream parameter in cudaMemcpyAsync() and in <<< >>>
- Increase the count and add some printf to observe the asychronicity

Hands-on: pipelining

- tasks/vector_add_overlap
- More efficient vector add overlap computation with memory transfer
- Copy the solution of the previous task utilizing streams
- Modify the kernel so that the computation takes longer
- Use the pipelining described before
 - Create an array of 4 streams
 - Split the vector into 20 sections (not really, just pointer arithmetic)
 - For each (i-th) section: copyin, compute, copyout in (i%4)-th stream
- Measure the time using e.g. cuda events (or std::chrono, or omp_get_wtime())
 - Measure only the copy+compute time, not malloc etc.
- Vary the number of sections and streams and observe the timing differences

if(idx < count)
{
 for(int r = 0; r < 200; r++)
 {
 c[idx] = a[idx] + b[idx];
 }
}</pre>

Project Explorer ×	Project 1 × report1.nsys-rep ×												
Project 1 report1.nsvs-rep					Ξ Θ	2x 🛆 2 warnings, 16 messages							
	98 - +200ms	+250ms	+300ms +350ms	+400ms +450ms	+500ms +550	ns +600ms							
	OS runtime libraries	f											
	CUDA API	vector_add		cudaDeviceSynchr	onize								
	Profiler overhead	Un Unkn											
	 ▼ ▼ [3622922] cuda-EvtHandlr → 		•										
	OS runtime libraries	poll	poll	poll	poll	poll							
	Profiler overhead												
	6 threads hidden $-+$ 0												
	CUDA HW (0000:0b:00.0 - NVIDIA . nemory		_		_								
) [All Streams] 7	Me Me vector ad	d(doub Me Me Me	Memory Me Memory	Me Memony Mem M	lemc Memc Me Me							
	▶ 25.6% Stream 15		Memcpy Mem	vector_add(double Me	Mem	1emc							
	▶ 25.0% Stream 13	Me Me vector_ado	d(doub Me	Me Memcpy	vector_add(dou	ıb Me							
	▶ 24.7% Stream 14	Mem Me	e <mark>m</mark> vector_add(double	Me	Me Memcpy	vector_add(double M							
	▶ 24.6% Stream 16		Me	Memcpy vector_ad	dd(double	Memc Me							
	Events View												
		Descri	vtion:										

Multi-Dimensional Grids

CUDA programming Multi-Dimensional Grid

Work distribution

- image will be addressed in 2D blocks of size
 - 16x16 threads
- some threads, highlighted in orange, will be idle

Control flow divergence

 not all threads in a Block will follow the same control flow path

1 block: 16×16 threads per block

62×76 picture

Work distribution

- image will be addressed in 2D blocks of size
 - 16x16 threads
- some threads, highlighted in orange, will be idle

Control flow divergence

- not all threads in a block will follow the same control flow path
- 4 different paths in this case

1 block: 16×16 threads per block

62×76 picture

Kernel

```
__global__ void PictureKernel(float* d_Pin,
float* d_Pout,
int height,
int width)
```

```
// Calculate the row # of
// the d_Pin and d_Pout element
int Row = blockIdx.y*blockDim.y + threadIdx.y;
```

```
// Calculate the column # of
// the d_Pin and d_Pout element
int Col = blockIdx.x*blockDim.x + threadIdx.x;
```

```
// each thread computes one
// element of d_Pout if in range
if ((Row < height) && (Col < width)) {
   d_Pout[Row*width+Col] = 2.0*d_Pin[Row*width+Col];
}</pre>
```

Row-Major Layout in C/C++

Kernel

```
__global__ void PictureKernel(float* d_Pin,
float* d_Pout,
int height,
int width)
```

```
// Calculate the row # of
// the d_Pin and d_Pout element
int Row = blockIdx.y*blockDim.y + threadIdx.y;
```

```
// Calculate the column # of
// the d_Pin and d_Pout element
int Col = blockIdx.x*blockDim.x + threadIdx.x;
```

```
// each thread computes one
// element of d_Pout if in range
if ((Row < height) && (Col < width)) {
   d_Pout[Row*width+Col] = 2.0*d_Pin[Row*width+Col];
}</pre>
```

Host Code for Launching 2D kernel

- assume that the picture is m × n, (height × width)
- m pixels in y dimension and n pixels in x dimension
- input d_Pin has been allocated on and copied to device
- output d_Pout has been allocated on device

dim3 DimGrid((n-1)/16 + 1, (m-1)/16+1, 1);

dim3 DimBlock(16, 16, 1);

PictureKernel<<<DimGrid,DimBlock>>>(d_Pin, d_Pout, m, n);

CUDA programming Converting color image to grayscale

RGB color image RGB Kernel:

- 3 values per pix
 - r red
 - g green
 - b blue

Grayscale image

• only intesity

```
int col = threadIdx.x + blockIdx.x * blockDim.x;
int row = threadIdx.y + blockIdx.y * blockDim.y;
```

```
if (col < width && row < height) {
    // get 1D coordinate for the grayscale image
    int grayOffset = row*width + col;</pre>
```


grayPixel[I,J] = 0.21*r + 0.71*g + 0.07*b

Host code for launching the kernel is the same as in previou s slide.

CUDA programming Converting color image to grayscale

RGB color image RGB Kernel:

- 3 values per pix
 - r red
 - g green
 - b blue

Grayscale image

• only intesity

grayPixel[I,J] = 0.21*r + 0.71*g + 0.07*b

// we have 3 channels corresponding to RGB

```
if (col < width && row < height) {
    // get 1D coordinate for the grayscale image
    int grayOffset = row*width + col;
    // one can think of the RGB image having
    // CHANNEL times columns than the gray scale image
    int rgbOffset = grayOffset*CHANNELS;
    unsigned char r = rgbImage[rgbOffset + 0]; // red value for pix
    unsigned char g = rgbImage[rgbOffset + 1]; // green value for pix
    unsigned char b = rgbImage[rgbOffset + 2]; // blue value for pix</pre>
```

Host code for launching the kernel is the same as in previou s slide.

CUDA programming Converting color image to grayscale

RGB color image RGB Kernel:

- 3 values per pix
 - r red
 - g green
 - b blue

Grayscale image

• only intesity

grayPixel[I,J] = 0.21*r + 0.71*g + 0.07*b

// we have 3 channels corresponding to RGB

```
if (col < width && row < height) {
    // get 1D coordinate for the grayscale image
    int grayOffset = row*width + col;
    // one can think of the RGB image having
    // CHANNEL times columns than the gray scale image
    int rgbOffset = grayOffset*CHANNELS;
    unsigned char r = rgbImage[rgbOffset + 0]; // red value for pix
    unsigned char g = rgbImage[rgbOffset + 1]; // green value for pix
    unsigned char b = rgbImage[rgbOffset + 2]; // blue value for pix
    // perform the rescaling and store it
    // We multiply by floating point constants
    grayImage[grayOffset] = (unsigned char)(0.21f*r + 0.71f*g + 0.07f*b);
}</pre>
```

Host code for launching the kernel is the same as in previou s slide.

CUDA programming Image Blur

Blur Filter

- calculates average value inside the mask
 - BLUR_SIZE value

1 block: 16×16 threads per block

BlurPixel[I,J] = Average value of all pixel in a mask

Hands-on Image Blur

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

); }

2551

Hands-on Image Blur

Hands-on: image blur

- tasks/image_blur
- Complete the TODO tasks

blur size=2

- Allocate <u>managed</u> memory for original (input) and blurred (output) image
 - height*width, unsigned char
- Implement and launch the kernel
 - Use 2D blocks and grid, and the dim3 type
- Here, blur_size should be a kernel parameter instead of a global macro
- There is no actual image
 - Just a pattern that is easy to check for correctness

Correct output:

Everything seems OK

Thread Execution

Thread Execution

Transparent scaling of GPU kernels

- Kernel execution is broken in Grid of Blocks
 - blocks can be executed in any order relative to others
 - hardware is free to assign blocks to any Streaming Multiprocessor (SM) at any time
 - a kernel scales to any number of parallel processors
- this property ensures correct execution on GPUs with
 - different number of Streaming Multiprocessors (different performance, different model of GPU accelerators (A100, A40, ...)
 - different GPU architectures (Pascal, Volta, Ampere, ...)

NVIDIA Jetson AGX Xavier

 ARM based embedded single board computer with on-chip GPU
 GPU with 8 SMs

NVIDIA V100

- HPC accelerator
- GPU with 80 SMs

208

Thread Execution

- blocks are assigned to Streaming Multiprocessors (SM)
 - up to 32 blocks can be assigned to one SM as resources allow
 - Ampere generation SM can take up to 2048 threads
 - could be 256 (threads/block) * 8 blocks
 - or 512 (threads/block) * 4 blocks, etc.
- SM maintains thread/block idx #s
- SM manages/schedules thread execution

Warps as Scheduling Units

- each Block is divided and executed as 32-thread Warps
 - an implementation decision, not part of the CUDA programming model
- warps are scheduling units in SM
- threads in a warp execute in SIMD fashion
- future GPUs may have different number of threads in each warp
 - for instance, AMD GPUs have warp size 64 threads

Thread Execution cont.

- SM implements zero-overhead warp scheduling
 - Warps whose next instruction has its operands ready for consumption are eligible for execution
 - Eligible Warps are selected for execution based on a prioritized scheduling policy
 - All threads in a warp execute the same instruction when selected

Warps in Multi-dimensional Thread Blocks

- The thread blocks are first linearized into 1D in row major order
- In x-dimension first, y-dimension next, and z-dimension last

- Linearized thread blocks are partitioned in warps
 - · Thread indices within a warp are consecutive and increasing
 - Warp 0 starts with Thread 0

• DO NOT rely on any ordering within or between warps

If there are any dependencies between threads, you must <u>syncthreads()</u> to get correct results (more later)

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: <u>https://www.nvidia.com/en-us/training/teaching-kits/</u>

SIMD Execution Among Threads in a Warp

- All threads in a warp must execute the same instruction at any point in time
- This works efficiently if all threads follow the same control flow path
 - All if-then-else statements make the same decision
 - All loops iterate the same number of times

Example of a SIMD code:

```
__global___
void vecAddKernel(float* A, float* B, float* C, int n)
{
    int i = threadIdx.x + blockDim.x * blockIdx.x;
    C[i] = A[i] + B[i];
}
```


SMs are SIMD Processors

Control Divergence

- control divergence occurs when threads in a warp take different control flow paths by making different control decisions
 - some take the then-path and others take the else-path of an if-statement
 - some threads take different number of loop iterations than others
- The execution of threads taking different paths are serialized in current GPUs
 - the control paths taken by the threads in a warp are traversed one at a time until there is no more
 - during the execution of each path, all threads taking that path will be executed in parallel

if(foo(threadIdx.x))

do_A();

else

}

do_B();

213

Control Divergence

The number of different paths can be large when considering nested control flow statements.

Control Divergence

The number of different paths can be large when considering nested control flow statements.

The control diverges is problem only among threads within a warp.

The control divergence among warps is perfectly fine as long as all threads within a warp execute the same instruction.

Divergence can arise when branch or loop condition is a function of thread indices

```
__global__
void vecAddKernel(float* A, float* B, float* C, int n)
{
    int i = threadIdx.x + blockDim.x * blockIdx.x;
    if(i<n) C[i] = A[i] + B[i];
}</pre>
```


End of Day 1