

INTRODUCTION TO HIGH PERFORMANCE COMPUTING

PART 2
HPC @ IT4INNOVATIONS
ACCESSING AND USING IT4I CLUSTERS

Ondřej Vysocký, Jakub Beránek Milan Jaroš

Based on materials of Branislav Jansík, IT4Innovations

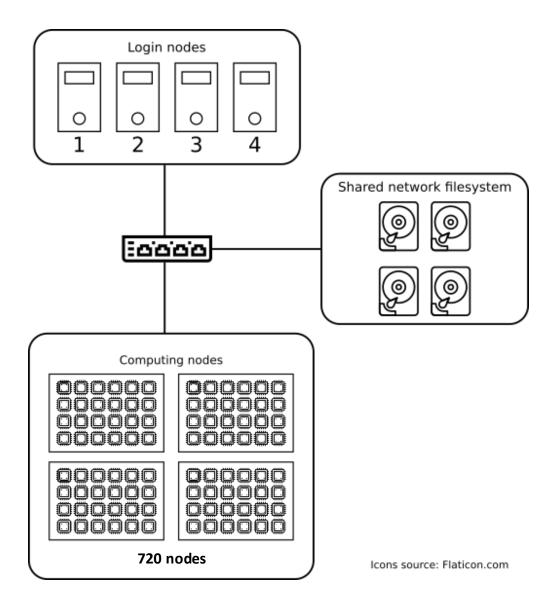
USING IT41 CLUSTERS

- Access the cluster
- ↑ Transfer data to the shared filesystem
- Prepare your program and its dependencies
- * Run your program on the cluster

We will use Karolina, but the approach is identical for other IT4I clusters

(i) You can find more complete information in our <u>documentation</u>.

OPERATING SYSTEM


- IT4I clusters are Linux-based systems (Rocky linux)
 - Basic Linux command line knowledge is required

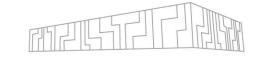
Command	Description	
ls	List files in a directory	
cd <directory></directory>	Change current directory	
cat <file></file>	Display contents of a file	
mkdir <name></name>	Create a directory	
rm <path></path>	Delete a file or a directory	

- You can find basic Linux command line reference e.g. <u>here</u>.
- Some <u>virtualization support</u> is provided (QEMU, Windows)

KAROLINA CLUSTER

- Login nodes
 - Prepare programs
 - Submit jobs
- Compute nodes
 - Execute jobs
- Shared filesystem
 - Code
 - Job inputs and outputs
 - Shared between login and compute nodes

ACCESSING THE CLUSTER



To use Karolina, you must first connect to one of its login nodes

```
# set permissions tor ssh key (execute before the first login)
[home:~]$ chmod 600 <path-to-ssh-key>
# connect to a login node
[home:~]$ ssh -i <path-to-ssh-key> <username>@karolina.it4i.cz
# you are connected now
[username@login1.karolina ~]$
```

- You can use login nodes to
 - Inspect and manage data on the shared filesystem
 - Compile your programs and their dependencies
 - Manage computations on the cluster
- DO NOT execute long-running computations on the login nodes ×
- Login nodes are round-robin, you can select a specific node (login1.karolina.it4i.cz)

GUI ACCESS

If you prefer to use a GUI client, you have two options

- X forwarding
 - Open individual X windows on your PC
 - \$ ssh -X karolina.it4i.cz
- VNC
 - Full GUI environment on the cluster
 - Select a VNC port P (here we use 55)
 - Must be unique per login node
 - 2. Connect to a login node with SSH tunneling on port 5900 + P
 - \$ ssh -L5955:localhost:5955 karolina.it4i.cz
 - 3. Run vncpasswd
 - 4. Run vncserver:55
 - 5. Connect to VNC on port :55 on your local machine
 - \$ vncviewer localhost:5955
- Open On Demand
- (i) More information can be found here.

RUNNING YOUR PROGRAM ON THE CLUSTER

- 1. Move your computation inputs to the shared filesystem
- 2. Build and prepare your application
- 3. Describe your computation and put it into a queue
 - Select computational project and cluster
 - Estimate the duration of your computation

TRANSFERRING DATA TO SHARED FILESYSTEM

- Karolina uses a <u>network filesystem</u> shared by all compute and login nodes
 - You can write a file on a login node and then read/overwrite it from a compute node
- Connect to a login node and download data from the internet (git, wget, ...)
- Transfer data from your local computer using SCP

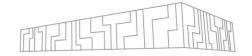
```
# copy a local file to the cluster
[home:~]$ scp -i <path-to-ssh-key> <local-file> <username>@karolina.it4i.cz:<target-file>
```

Mount the shared filesystem on your local computer

```
# install sshfs
[home:~ ]$ sudo apt install sshfs
# mount the external filesystem
[home:~ ]$ sudo mkdir /mnt/karolina
[home:~ ]$ sudo sshfs -i <path-to-ssh-key> <username>@karolina.it4i.cz</u>: /mnt/karolina
# change directory to the mounted directory
[home:~ ]$ cd /mnt/karolina/
```


WHERE TO PUT DATA?

- HOME workspace (NFS)
 - Located at ~ (your home directory)
 - Limited size, rather slow, backed up
 - Use for config files, build artifacts, source code repositories, small project data
- PROJECT workspace (NFS)
 - Very large (~15 PiB), rather slow (40 GiB/s)
 - Shared between clusters
 - Divided into three parts (/mnt/proj1, /mnt/proj2, /mnt/proj3)
 - Each project has its own directory (deleted after project ends)
 - Find your project location with \$ it4i-get-project-dir <project-id>
 - Central storage for all project data, use for important/large project data
- SCRATCH workspace (Lustre)
 - Located at /scratch/work/project/<project-id>
 - Large, fast, no backups
 - Use for reading job inputs and writing job results
 - Main project storage, access given to all project members


i More information about storage at Karolina can be found here
Storage details vary significantly among the clusters, check documentation for your cluster

WHERE TO PUT DATA?

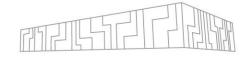
- TEMP workspace
 - Located at /scratch/temp
 - Temporary I/O intensive operations, data removed after 90 days
- RAMDISK workspace
 - Located at /ramdisk/\$SLURM_JOB_ID
 - RAM disk (filesystem backed by memory), for I/O intensive operations
 - Available only during a job
- CESNET
 - archiving large amounts of data, more information <u>here</u>

MORE STORAGE INFORMATION

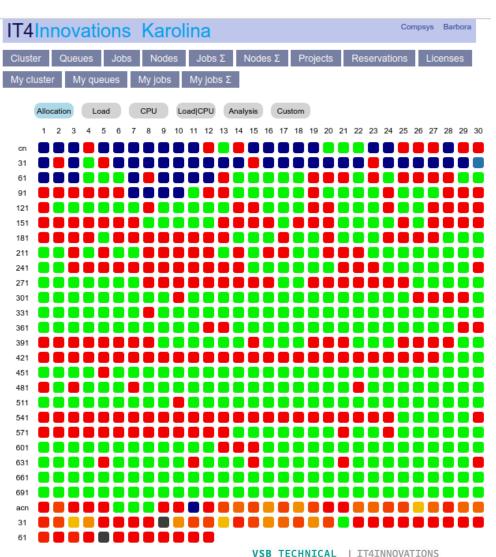
- Filesystems of individual clusters are not directly shared
 - Clusters are connected via network, e.g. you can \$ ssh barbora from Karolina
- Watch storage limits
 - \$ it4i-disk-usage -g
 - https://scs.it4i.cz -> Agendas -> User

Quota Status

Cluster	File System	Space used	Space limit	Entries	Entries limit	Last Update
Anselm	/scratch	0 Bytes	93.13 TB	0	10 Million	2020-12-04 13:55
Anselm	/home	2.828 GB	238.4 GB	51.1 Thousand	500 Thousand	2020-12-04 13:55
Barbora	/home	7.221 GB	23.84 GB	44.1 Thousand	500 Thousand	2020-12-04 14:50
Barbora	/scratch	477.6 GB	9.313 TB	413 Thousand	10 Million	2020-12-04 14:50
Salomon	/home	153.7 GB	238.4 GB	456 Thousand	500 Thousand	2020-12-04 14:50
Salomon	/scratch/temp	0 Bytes	N/A	0	N/A	2020-12-02 07:40
Salomon	/scratch/work	237.8 GB	N/A	55.6 Thousand	N/A	2020-12-02 07:40
Salomon	/scratch	238 GB	93.13 TB	55.6 Thousand	10 Million	2020-12-04 14:50


- Storage lifecycle
 - HOME deleted after 1 year without any active project
 - SCRATCH data of a project deleted some time after the project ends

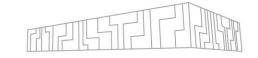
COMPILING/PREPARING DEPENDENCIES



- You must compile your program and its dependencies for your target cluster
- This will be described following day


SELECTING PROJECT AND CLUSTER

- Choose the correct computational project for your experiment
- Check how much node-hours are left in the project
 - \$ it4ifree
 - https://scs.it4i.cz/
- Check the status of clusters
 - https://extranet.it4i.cz/rsweb/karolina



QUEUING SYSTEM

- Each IT4I cluster is shared by many users
- To perform a computation (a job), you must go through a queue
 - We use a queuing system called Slurm
- There are several queues with different properties
 - qcpu_exp (quick experiments, does not charge for use, up to 1 hour jobs)
 - qcpu (common computations, up to 2 days jobs)
 - qcpu_long (long-running computations, up to 6 day jobs)
 - qgpu (dedicated hardware, e.g. NVIDIA GPUs)
 - You can find the complete queue list <u>here</u>
- To access most queues you will need to specify a computational <u>project</u> that you are a part of
 - Computational resources that you spend are deducted from the used project
 - Cost of a computation: Time x Node count
 - After all resources run out, you can still use the qcpu_free queue up to 120% of the original resources

USING SLURM

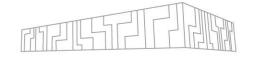
- You can submit jobs on the cluster in two modes
 - Batch mode (default): you specify a script which is executed once you get to the front of a queue
 - Interactive mode: your terminal will be connected to the first computing node in the job via SSH
- Submission is performed using the salloc command
- You have to give **salloc** some basic parameters to define a job:
 - Number of computing nodes used in the job: -N 4
 - Maximum running time (called <u>walltime</u>): -t 2:30:00
 - Queue (partition): -p qcpu_exp
 - Project (if required by the queue): -A OPEN-0-0
 - (Bash) script that will be executed (for batch mode)
- You can have multiple jobs in the queue at once (both waiting and executing)
- Be careful with walltime to avoid wasting project resources!

SUBMITTING A JOB USING SLURM

- 1. Prepare a bash script that will run your computation
- 2. Submit a job using the <u>salloc</u> command and note the <u>Job ID</u> that it outputs

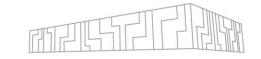
```
[user@login4.karolina ~]$ salloc -p qcpu_exp -A DD-24-88 -t 1:00:00 -N 1
salloc: Granted job allocation 1143891
```

3. Use squeue to query queue status to see the expected start time and computation status


```
[user@login4.karolina ~]$ squeue -u $USER

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

1143891 qcpu_exp interact user R 0:10 1 cn139
```


- Use the job ID to identify individual jobs
- You can also put the submission options directly into the script

EXAMPLE SLURM SCRIPT


```
#!/usr/bin/bash
#SBATCH --job-name MyJobName
#SBATCH --account PROJECT-ID
#SBATCH --partition qcpu
#SBATCH --nodes 4
#SBATCH --ntasks-per-node 128
#SBATCH --time 12:00:00
ml purge
ml OpenMPI/4.1.4-GCC-11.3.0
srun hostname | sort | uniq -c
```

JOB EXECUTION

- Once the job gets to the front of the queue
 - 1. Slurm will allocate the specified number of nodes
 - 2. The specified script will be executed
 - On the first allocated node
 - In submit directory
 - 3. Once your script finishes, the job will also end
 - 4. stdout and stderr of your script will be written to a file on the shared filesystem
 - slurm-\$JOB_ID.out
 - They will be stored in the directory where you submit the job
 - You can override name with -o and -e
- Useful environment variables available during a job
 - SLURM_SUBMIT_DIR directory from where you submitted the job
 - SLURM_JOB_NODELIST list of compute nodes
 - SLURM_JOB_ID job ID of the current job

MONITORING JOB STATUS

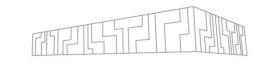
- Once your job starts running, you can observe its status in several ways
- \$ squeue --me
 - Displays status of my queues, elapsed time, allocated computing nodes
 - You can connect to the individual computing nodes via SSH to inspect them

```
[mec059@login2.karolina 01 hello]$ sbatch run.slurm
Submitted batch job 1143932
[mec059@login2.karolina 01_hello]$ squeue --me
            JOBID PARTITION
                                                            NODES NODELIST(REASON)
                                NAME
                                         USER ST
          1143920 qcpu exp zphpc01
                                       mec059 CD
                                                                 1 cn553
                                                       0:03
                                                                1 (NonZeroExitCode)
          1143922 qcpu exp zphpc01
                                      mec059 F
                                                       0:04
          1143932 qcpu exp zphpc01 mec059 R
                                                       0:04
                                                                1 cn147
[mec059@login2.karolina 01 hello]$ ssh cn147
[mec059@login2.karolina 01 hello]$ htop
```

- When something goes wrong you can delete jobs (both running and enqueued)
 - \$ scancel <job-id>

MORE SLURM INFORMATION

- Jobs are prioritized based on several <u>properties</u>
 - Selected queue
 - Amount of recent computation in a project
 - Hint: if you want to get ahead in the queue, specify a small(er) walltime
- Slurm has a lot of configuration and options
 - Job arrays
 - Many jobs with the same script, but different inputs
 - Advanced node configuration/placement
 - Enable/disable Turbo boost, kernel modules, ...
 - Select nodes by CPU type, network switch, network topology location
 - You can find more <u>here</u>


ASKING FOR HELP

If you have trouble with

- Connecting to login nodes
- Building code or dependencies
- Submitting a jobs

Then

- 1. Consult the <u>documentation</u>
- 2. If that does not help, create a <u>ticket</u>

VSB TECHNICAL | IT4INNOVATIONS
|||| UNIVERSITY | NATIONAL SUPERCOMPUTING CENTER

IT4Innovations National Supercomputing Center VSB – Technical University of Ostrava Studentská 6231/1B 708 00 Ostrava-Poruba, Czech Republic www.it4i.cz

