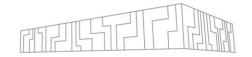
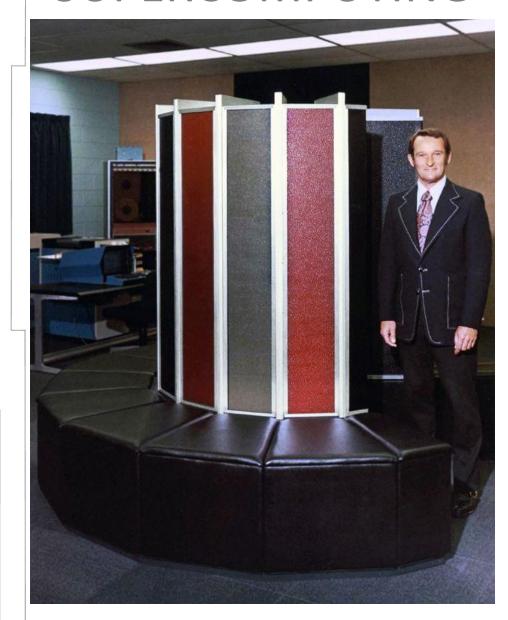


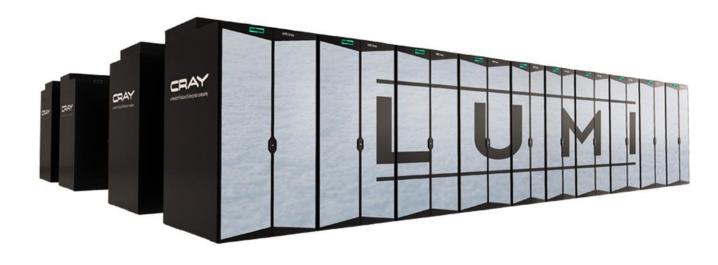
INTRODUCTION TO HPC

Ondřej Vysocký, Filip Vaverka IT4Innovations

24. 6. 2025





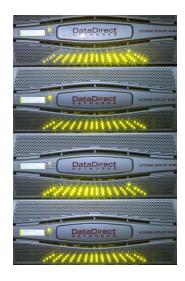


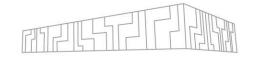
INTRODUCTION

SUPERCOMPUTING

WHAT IS A SUPERCOMPUTER?

Data storage



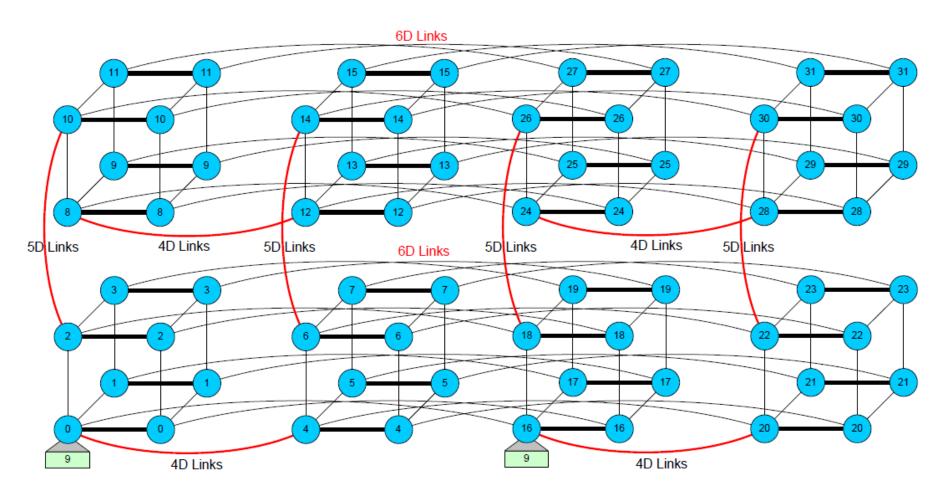

Compute nodes

Interconnect

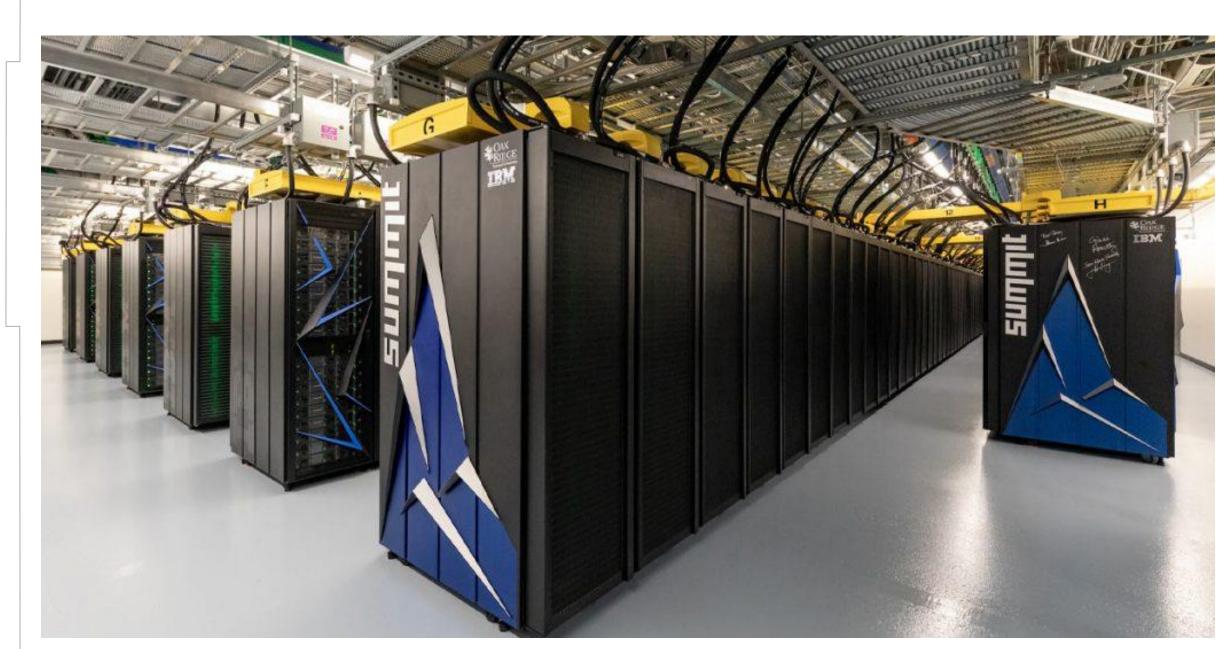


WHAT IS NOT A SUPERCOMPUTER?

WHAT IS NOT A SUPERCOMPUTER?

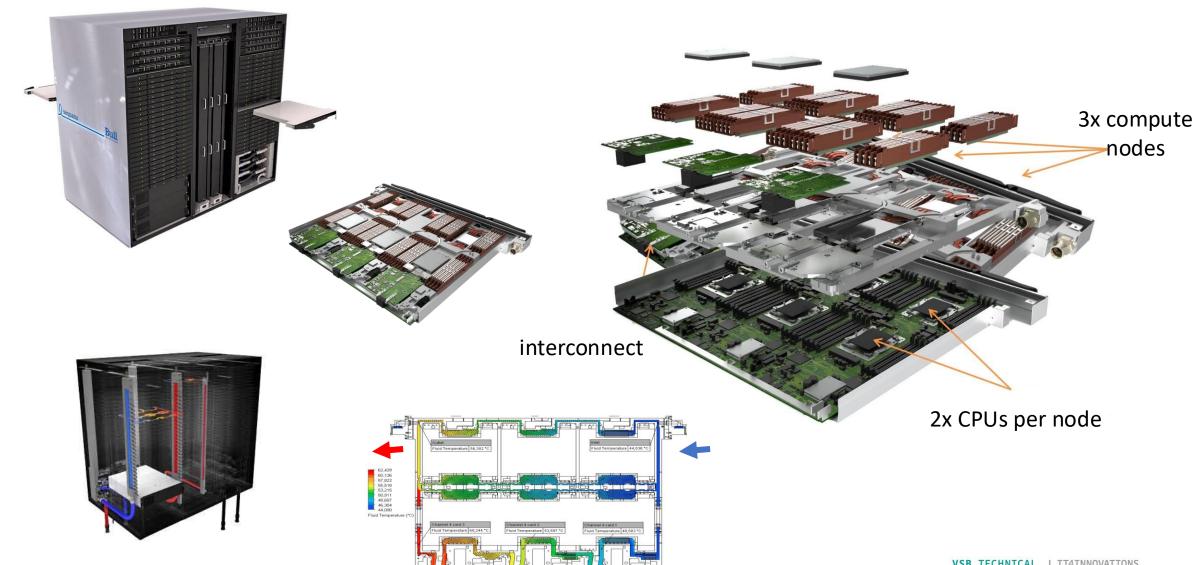


EXAMPLE OF A NETWORK?



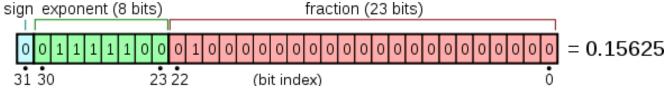
InfiniBand FDR56 / 7D Enhanced hypercube



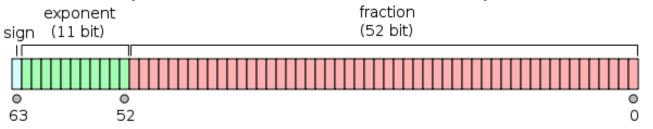

DATA CENTER

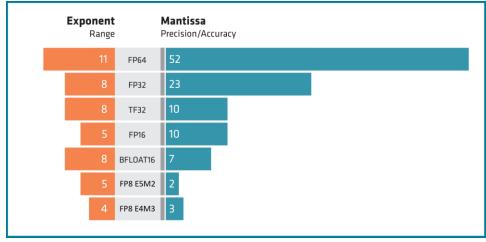
CABINET

FLOATING POINT COMPUTING



Floating point number representation


$$25,167 = 0,25167 \cdot 10^{2} =$$


$$= (-1)^{0} \cdot (2 \cdot 10^{-1} + 5 \cdot 10^{-2} + 1 \cdot 10^{-3} + 6 \cdot 10^{-4} + 7 \cdot 10^{-5}) \cdot 10^{2}$$

- -25,167 = [0, 2, 2, 5, 1, 6, 7]
- Single precision, 4B = 32bits, fp32

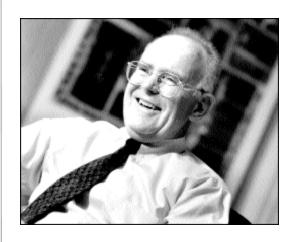
Double precision, 8B = 64bits, fp64

AMD ROCm FP Formats

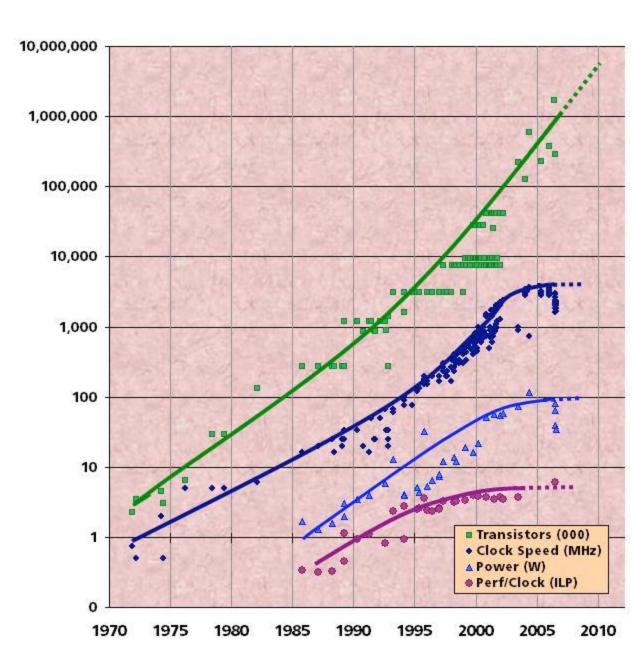
PEAK PERFORMANCE

- FLOP = Floating point operation
- Computer performance = number of floating-point operations per second FLOPS (Flop/s)st
- Intel® Xeon® Platinum 8280M Processor

 number of compute nodes 	1000	1000
number of CPUs	2	2
frequency	2.7 GHz	2.7
number of cores	28	28
have FMA instruction	yes	2
have 2 FMA units	yes	2
SIMD width	512 bit = 8 double precision	8
		1 929 000 Cflop/s

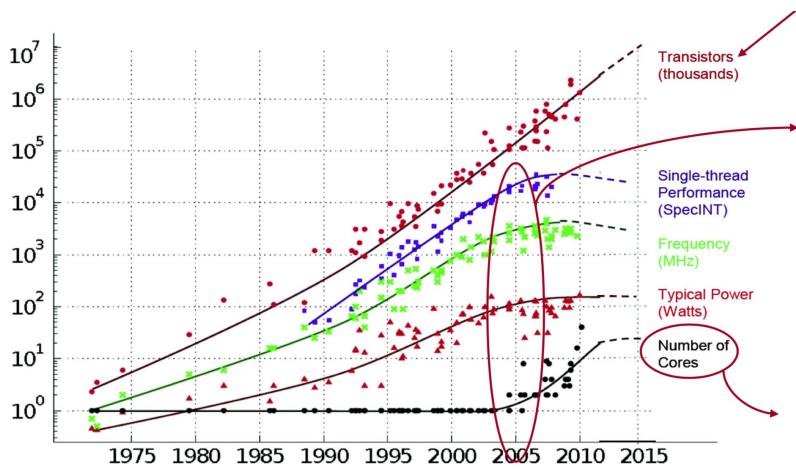

4 838 000 Gflop/s

4 838 Tflop/s


4.8 Pflop/s

MOORE'S LAW

- Chip density is continuing increase ~2x every 2 years
- Clock speed is not
- Number of processor cores has to double instead
- Parallelism must be exposed to and managed by software

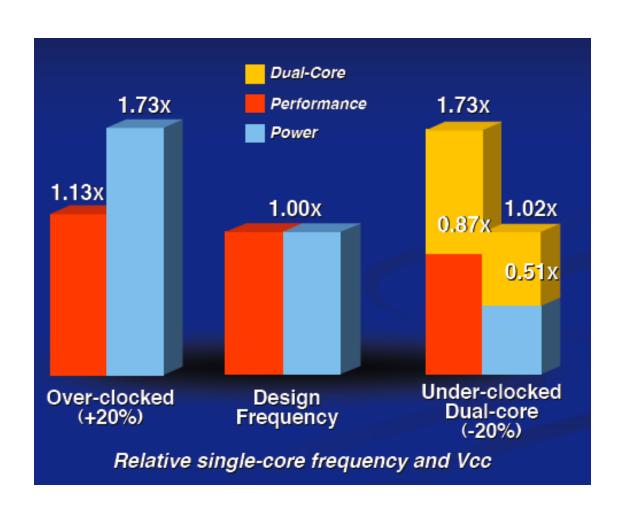


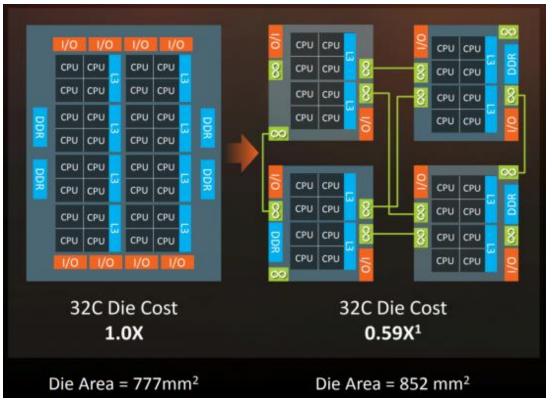
Slide source: Jack Dongarra

MOORE'S LAW

Transistor count doubles every 18 months, Moore's Law

The Power Wall

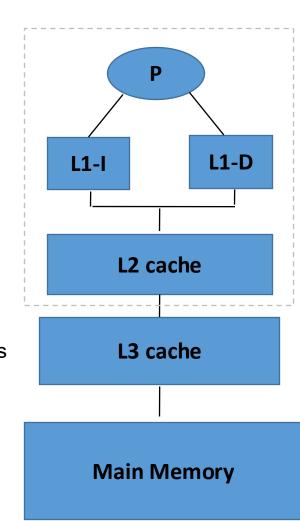

- Power dissipation of single-core processors becomes prohibitive
- The "Free Performance Lunch" of frequency scaling is over!


Performance can only grow through node-level parallelism!

Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten Dotted line extrapolations by C. Moore

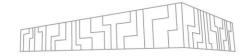
MODERN CPU DESIGN

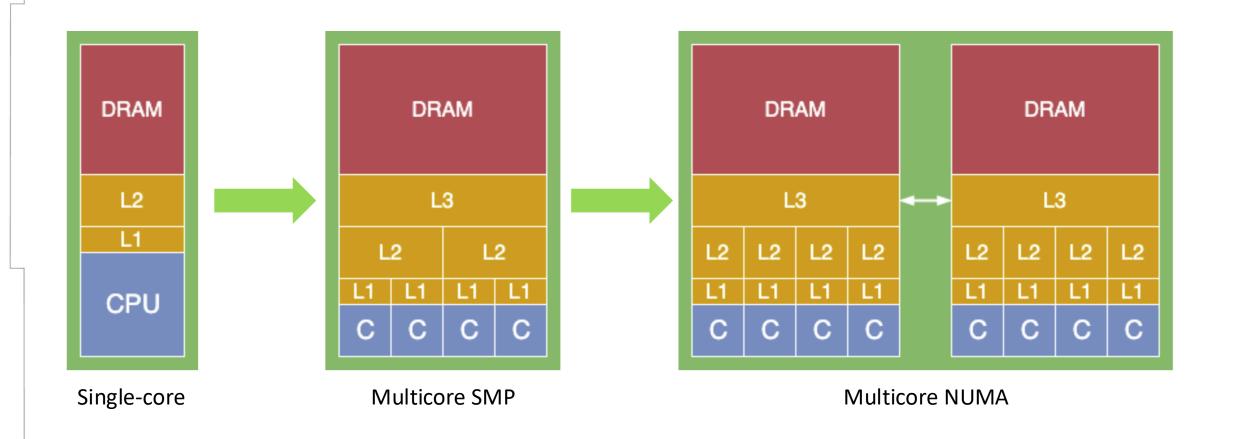
TYPICAL MEMORY HIERARCHY



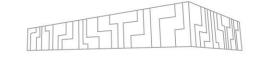
16-64 KB, 1-4 cycles

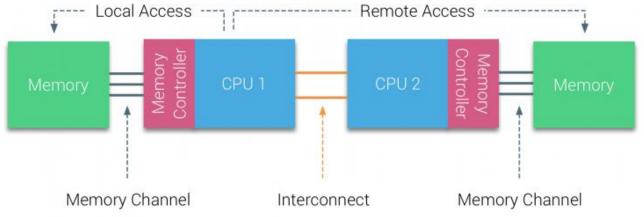
512KB-8MB, 6-15 cycles


4MB-32MB, 30-50 cycles

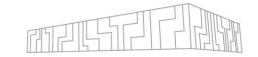

>1GB, >300 cycles

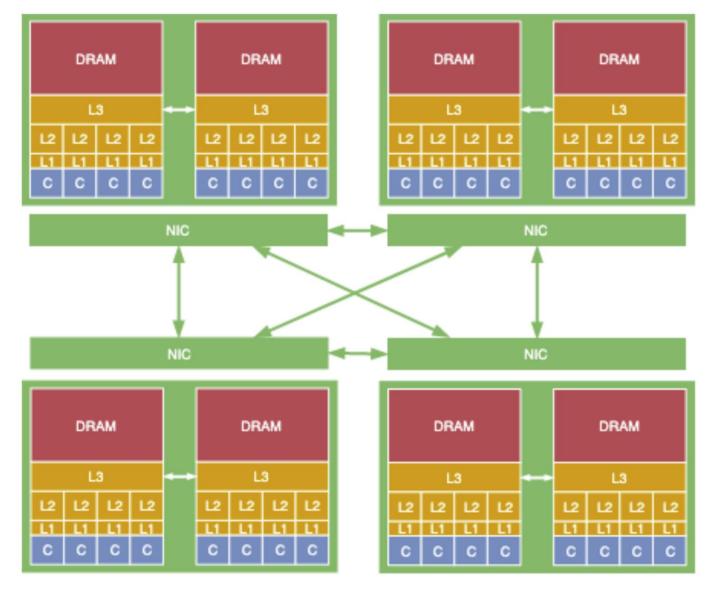
- Access time to main memory is 100's of clock cycles
- Use a small but fast storage near processor
- Works due to locality


HPC BUILDING BLOCKS: CPU

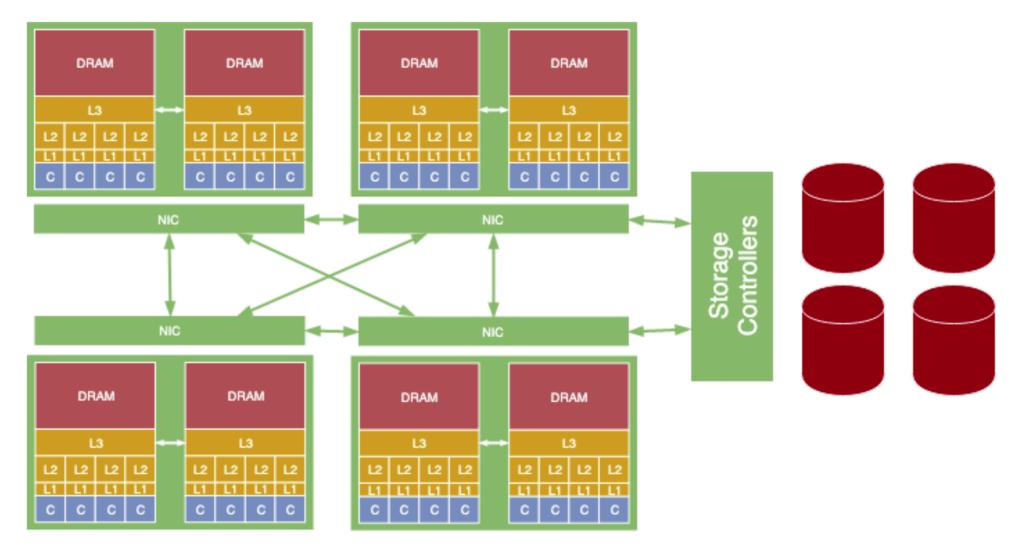

SMP: Symmetric Multi-processor NUMA: Non-Uniform Memory Access

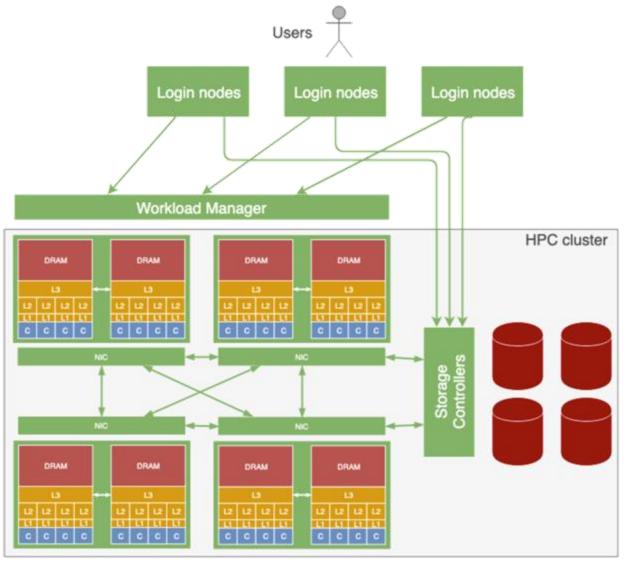
NUMA & CC-NUMA



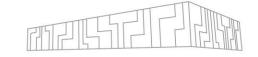

- NUMA Non-Uniform Memory Access
- Aims at surpassing the scalability limits of the UMA architecture due to memory bandwidth bottleneck
- Memory physically shared, but access to different portions of the memory may require significantly different times
 - local memory access is the fastest, access across link is slower
- Caches used to level access times
 - technically difficult to maintain cache consistency
- Cache coherency (CC) accomplished at the hardware level (expensive)

 if one processor updates a location in shared memory, all the other processors learn about the update


HPC BUILDING BLOCKS: NETWORK



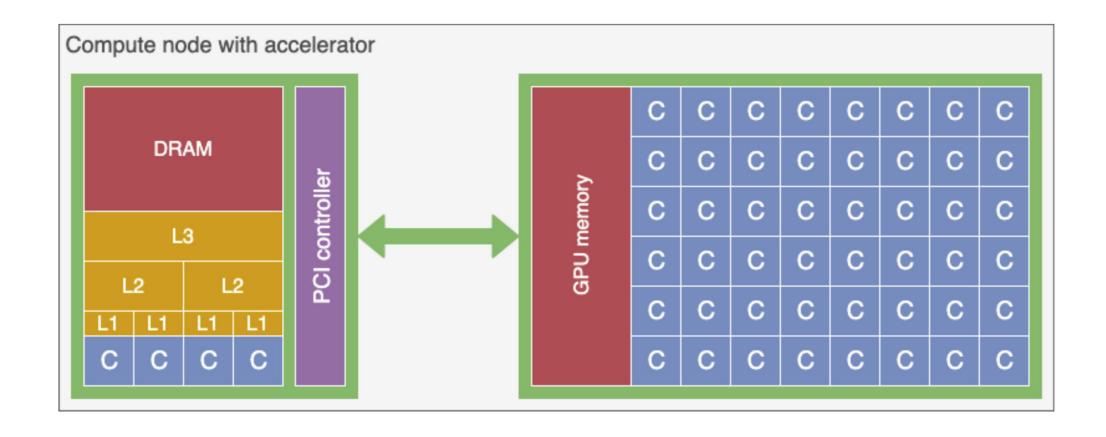
HPC BUILDING BLOCKS: STORAGE



HPC BUILDING BLOCKS: LOGIN+SCHEDULER

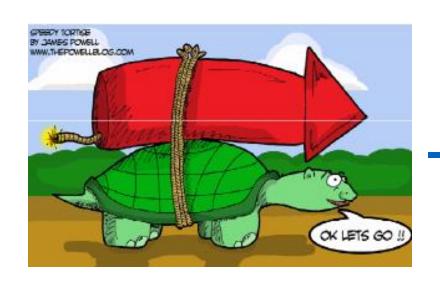
BEYOND MULTICORE

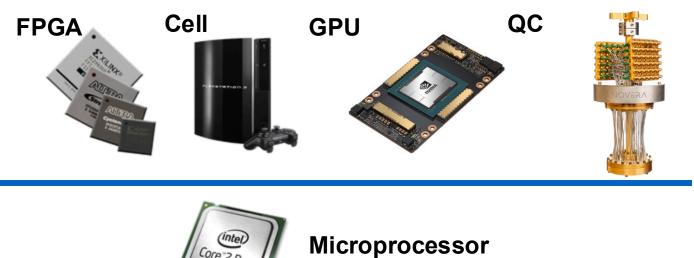
Multicores have limitations


- Fat cores (branch prediction, out-of-order execution, large caches)
 - Optimized for latency and multiprocessing
- Still high frequencies
- Still high-power consumption
- Strong memory consistency guarantees
- But programming is easy; matches better our brain's serial way of thinking

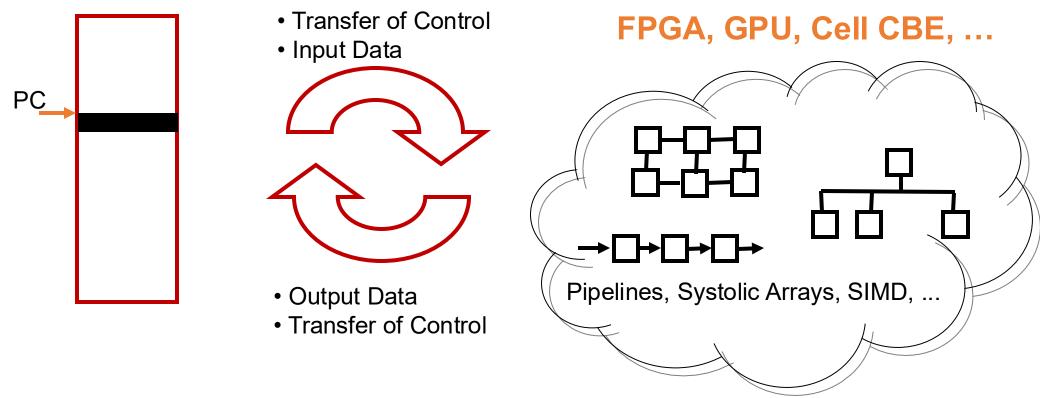
Accelerators are taking the opposite direction

- Low frequencies, thus lower power consumption
- Die area dedicated to processing units rather than control or caches
- Suitable for very specific workloads; not for general-purpose tasks
- Programming not so straightforward; we must think "parallel" now


HPC BUILDING BLOCKS: ACCELERATOR

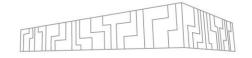


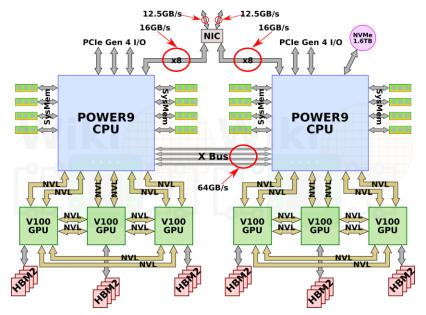
HETEROGENOUS COMPUTING

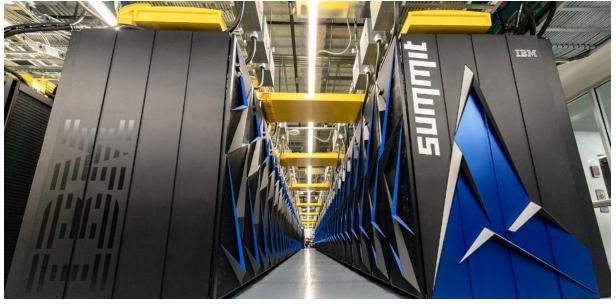


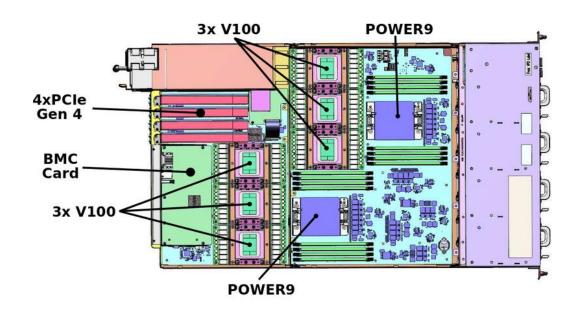
Hardware Accelerators - Speeding up the Slow Part of the Code

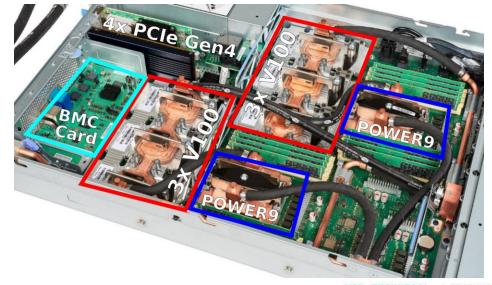
- Enable higher performance through fine-grained parallelism
- Offer higher computational density than CPUs
- Accelerators present heterogeneity!

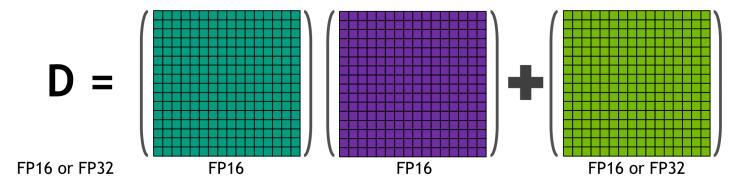

ACCELERATED EXECUTION MODEL



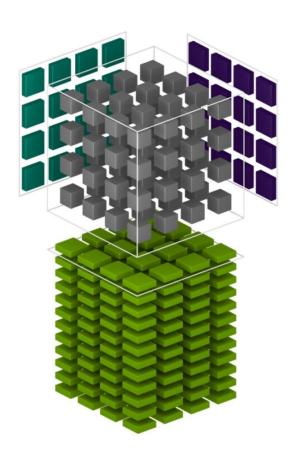



- Fine grain computations with the accelerators, others with the MP
- Interaction between accelerator and MP can be blocking or asynchronous
- This scenario is replicated across the whole system and standard HPC parallel programming paradigms used for interactions

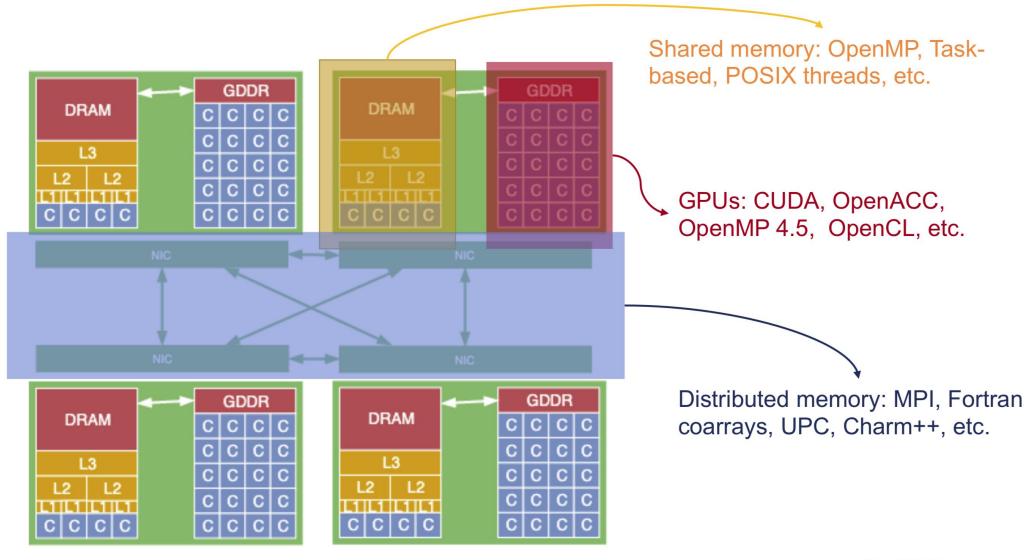

SUMMIT SUPERCOMPUTER (2018)


TENSOR CORES

CUDA TENSOR CORE PROGRAMMING


16x16x16 Warp Matrix Multiply and Accumulate (WMMA)

wmma::mma_sync(Dmat, Amat, Bmat, Cmat);

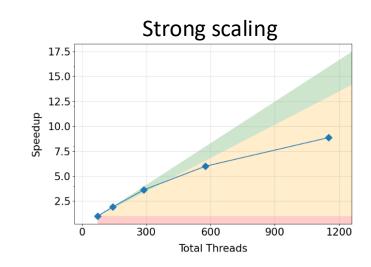


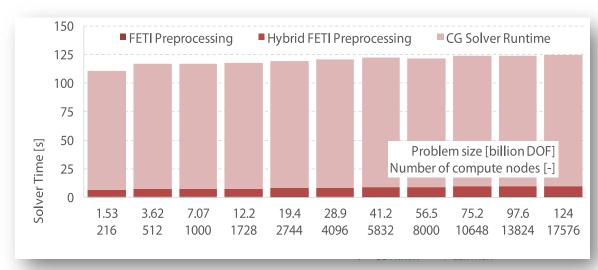
SOFTWARE

HOW TO WRITE HPC CODE?

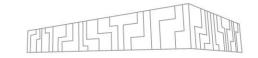
PARALLEL COMPUTING

PARALLEL ALGORITHM SCALABILITY

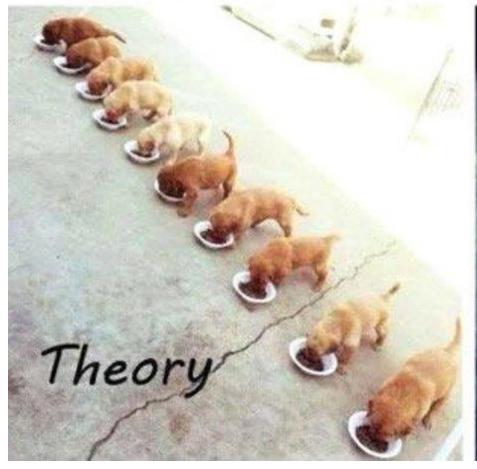


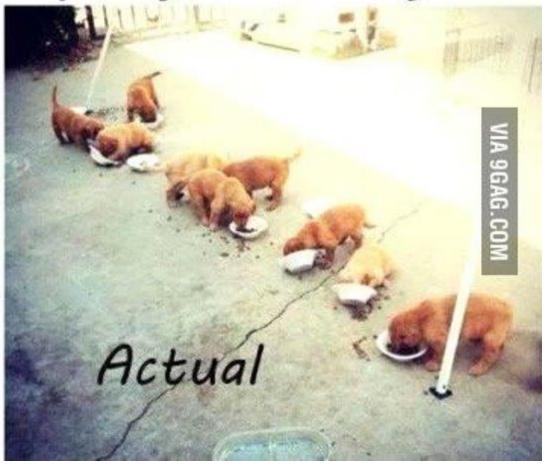

Strong scaling

- Solve a problem using twice more resources
- | Expected performance get result in half of time = linear scaling
- Superlinear scaling
- Strong scalability has a limitation!

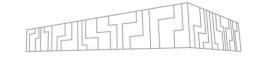

Weak scaling

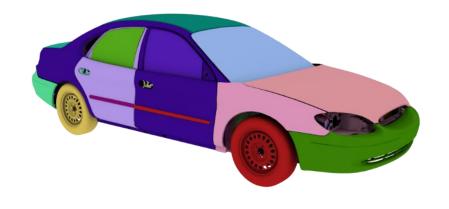
- | Solving a twice larger problem using twice more resources
- Expected performance get result in constant time

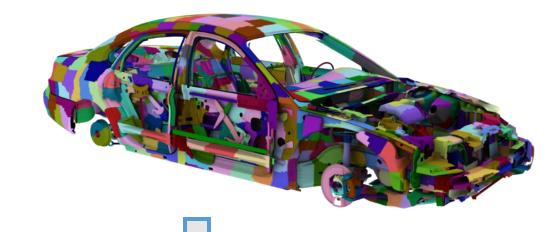


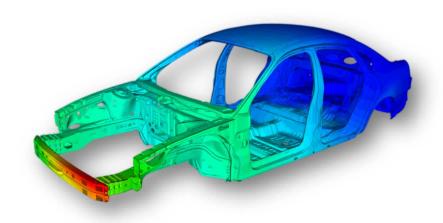


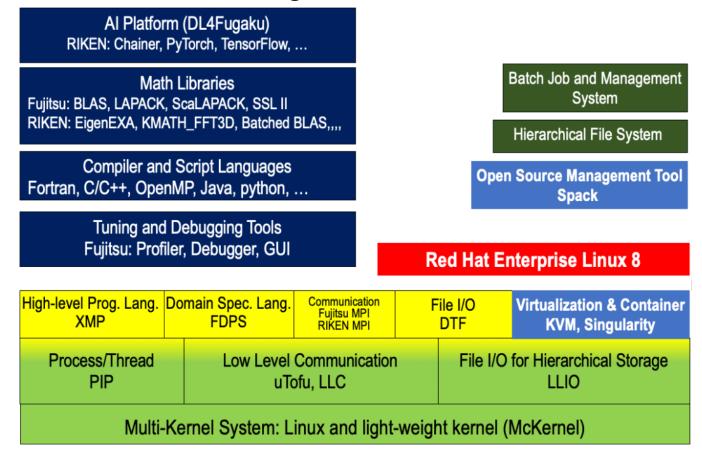
PARALLEL COMPUTING




Multithreaded programming




PARALLEL COMPUTING

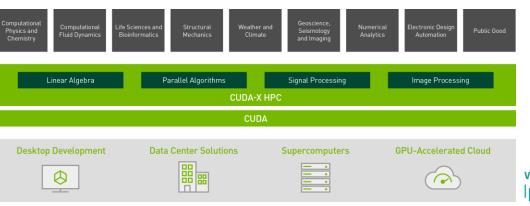


PRE-INSTALLED SOFTWARE

- Environment Module System
 - Modification of the environment paths
 - Software in several versions

Fugaku software stack

VENDOR'S SOFTWARE STACK

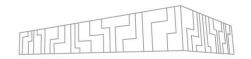


- Intel oneAPI
- AMD ROCm
- CUDA-X HPC & Al software stack

TRENDS

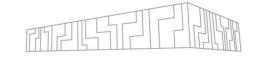
Path to exascale

- List of the most powerful supercomputers
- Updated 2x a year ISC (June) and SC (November)
- From 1993 High Performance Linpack (HPL) benchmark
- From 2017 also High-Performance Conjugate Gradient (HPCG) Benchmark
- From 2013 Green500 list
- From 2019 HPL-AI not a list yet mixed-precision algorithms



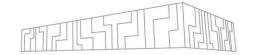
TOP500 LIST HPL + HPCG

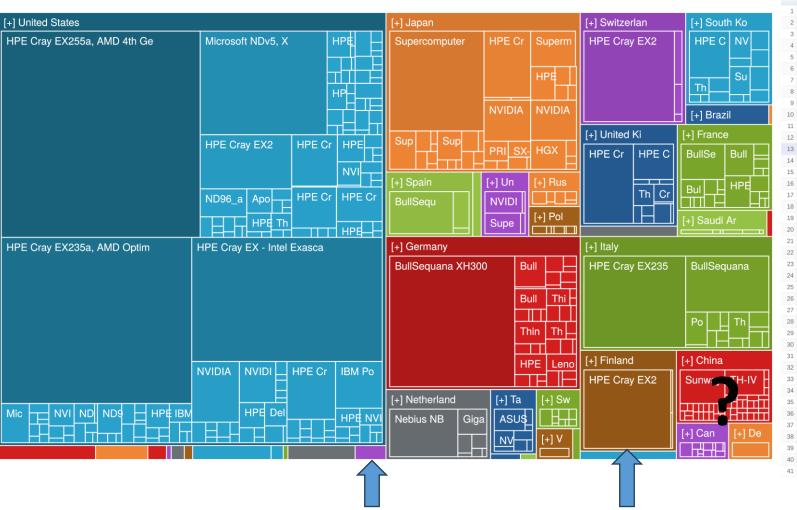
Rank	System	Cores	Rmax (PFlop/s)	Rpeak (PFlop/s)	Power (kW)
1	El Capitan - HPE Cray EX255a, AMD 4th Gen EPYC 24C 1.8GHz, AMD Instinct MI300A, Stingshot-11, TOSS, HPE D0E/NNSA/LLNL United States	11,039,616	1,742.00	2,746.38	29,581
2	Frontier - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 26Hz, AMD Instinct MI250X, Slingshot-11, HPE Cray OS, HPE D0E/SC/Oak Ridge National Laboratory United States	9,066,176	1,353.00	2,055.72	24,607
3	Aurora - HPE Cray EX - Intel Exascale Compute Blade, Xeon CPU Max 9470 52C 2.4GHz, Intel Data Center GPU Max, Slingshot-11, Intel D0E/SC/Argonne National Laboratory United States	9,264,128	1,012.00	1,980.01	38,698
4	JUPITER Booster - BullSequana XH3000, GH Superchip 72C 3GHz, NVIDIA GH200 Superchip, Quad-Rail NVIDIA InfiniBand NDR200, RedHat Enterprise Linux, EVIDEN EuroHPC/FZJ Germany	4,801,344	793.40	930.00	13,088
5	Eagle - Microsoft NDv5, Xeon Platinum 8480C 48C 2GHz, NVIDIA H100, NVIDIA Infiniband NDR, Microsoft Azure Microsoft Azure United States	2,073,600	561.20	846.84	
6	HPC6 - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Stingshot-11, RHEL 8.9, HPE Eni S.p.A. Italy	3,143,520	477.90	606.97	8,461
7	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,630,848	442.01	537.21	29,899
8	Alps - HPE Cray EX254n, NVIDIA Grace 72C 3.16Hz, NVIDIA GH200 Superchip, Slingshot-11, HPE Cray OS, HPE Swiss National Supercomputing Centre (CSCS) Switzerland	2,121,600	434.90	574.84	7,124
9	LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Stingshot-11, HPE EuroHPC/CSC Finland	2,752,704	379.70	531.51	7,107
10	Leonardo - BullSequana XH2000, Xeon Platinum 8358 32C 2.6GHz, NVIDIA A100 SXM4 64 GB, Quad-rait NVIDIA HDR100 Infiniband, EVIDEN EuroHPC/CINECA	1,824,768	241.20	306.31	7,494


arm

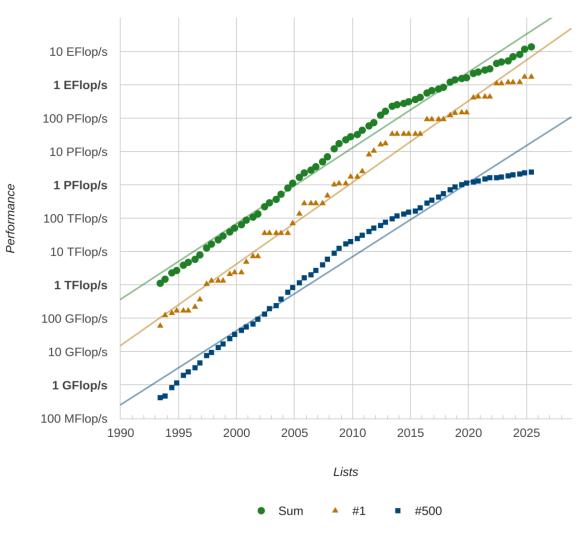
Ra	TOP500 ink Rank	System	Cores	Rmax (PFlop/s)	HPCG (TFlop/s)
1	1	El Capitan - HPE Cray EX255a, AMD 4th Gen EPYC 24C 1.8GHz, AMD Instinct MI300A, Slingshot-11, TOSS, HPE DOE/NNSA/LLNL United States	11,039,616	1,742.00	17406.90
2	7	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,630,848	442.01	16004.50
3		Frontier - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 26Hz, AMD Instinct MI250X, Slingshot-11, HPE Cray OS, HPE DOE/SC/Oak Ridge National Laboratory United States	9,066,176	1,353.00	14054.00
	3	Aurora - HPE Cray EX - Intel Exascale Compute Blade, Xeon CPU Max 9470 52C 2.4GHz, Intel Data Center GPU Max, Slingshot-11, Intel DOE/SC/Argonne National Laboratory United States	9,264,128	1,012.00	5612.60
/	9	LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE EuroHPC/CSC Finland	2,752,704	379.70	4586.95
6	8	Alps - HPE Cray EX254n, NVIDIA Grace 72C 3.1GHz, NVIDIA GH200 Superchip, Slingshot-11, HPE Cray OS, HPE Swiss National Supercomputing Centre (CSCS) Switzerland	2,121,600	434.90	3671.32
7	10	Leonardo - BullSequana XH2000, Xeon Platinum 8358 32C 2.6GHz, NVIDIA A100 SXM4 64 GB, Quad-rail NVIDIA HDR100 Infiniband, EVIDEN EuroHPC/CINECA Italy	1,824,768	241.20	3113.94
8	15	ABCI 3.0 - HPE Cray XD670, Xeon Platinum 8558 48C 2.1GHz, NVIDIA H200 SXM5 141 GB, Infiniband NDR200, Rocky Linux 9, HPE National Institute of Advanced Industrial Science and Technology (AIST) Japan	479,232	145.10	2445.67
9	25	Perlmutter - HPE Cray EX 235n, AMD EPYC 7763 64C 2.45GHz, NVIDIA A100 SXM4 40 GB, Stingshot-11, HPE D0E/SC/LBNL/NERSC United States	888,832	79.23	1905.00
10	20	Sierra - IBM Power System AC922, IBM POWER9 22C 3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM / NVIDIA / Mellanox DOE/NNSA/LLNL United States	1,572,480	94.64	1795.67

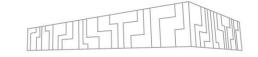




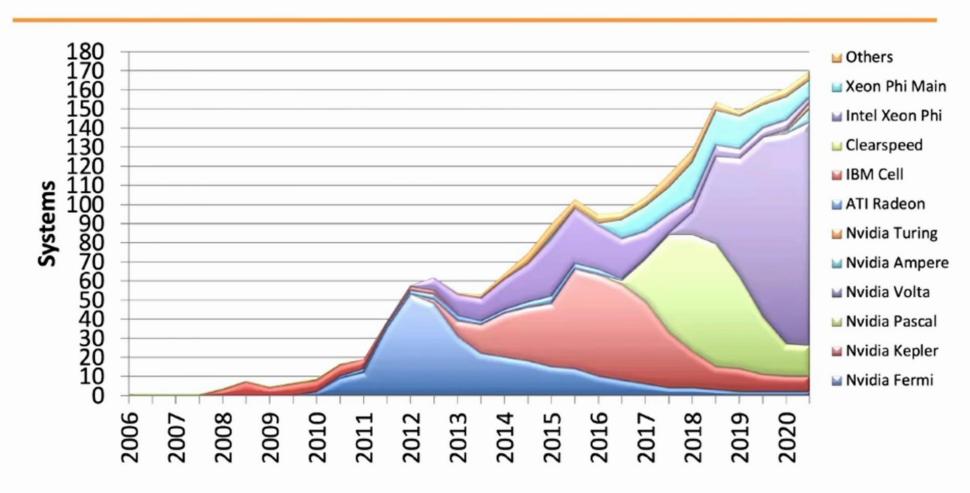


COUNTRIES





	Countries	Count	System Share (%)	Rmax (GFlops)	Rpeak (GFlops)	Cores
1	United States	175	35	6,698,604,970	10,642,950,168	58,129,200
2	China	47	9.4	281,269,604	471,807,345	18,920,568
3	Germany	41	8.2	1,185,266,660	1,519,298,880	8,943,756
4	Japan	39	7.8	1,229,009,840	1,631,301,398	12,787,024
5	France	25	5	327,543,500	508,630,042	4,676,480
6	Italy	17	3.4	874,883,920	1,128,393,618	7,730,480
7	South Korea	15	3	323,114,900	442,276,740	2,799,412
8	Canada	13	2.6	78,990,060	138,729,945	1,051,472
9	United Kingdom	13	2.6	394,527,564	540,015,334	3,152,784
10	Brazil	9	1.8	67,911,650	122,168,142	874,720
11	Norway	9	1.8	44,075,210	62,065,550	642,528
12	Sweden	9	1.8	69,449,910	98,505,836	491,648
13	Taiwan	8	1.6	116,600,520	170,134,420	753,216
14	Poland	7	1.4	63,412,670	101,087,440	401,120
15	Netherlands	7	1.4	291,308,450	489,421,170	1,403,296
16	Russia	6	1.2	71,457,000	98,725,620	721,488
17	Saudi Arabia	6	1.2	93,713,210	149,854,280	2,435,392
18	India	6	1.2	29,411,690	38,541,096	785,400
19	Singapore	5	1	38,287,830	62,498,340	315,424
20	Australia	4	0.8	55,227,310	73,106,095	496,032
21	United Arab Emirates	4	0.8	122,281,000	201,730,583	816,800
22	Switzerland	4	0.8	471,168,600	628,264,760	2,663,712
23	Czechia	3	0.6	17,991,180	21,784,990	360,192
24	Spain	3	0.6	221,872,600	306,102,991	1,542,016
25	Finland	3	0.6	391,388,310	546,192,585	3,116,992
26	Thailand	2	0.4	21,996,000	35,449,860	134,656
27	Ireland	2	0.4	6,697,330	13,160,450	152,320
28	Slovenia	2	0.4	6,918,000	10,047,000	156,480
29	Turkey	2	0.4	7,366,290	10,100,610	69,760
30	Bulgaria	2	0.4	7,044,870	9,154,160	164,224
31	Austria	2	0.4	34,566,078	57,517,978	199,200
32	Israel	1	0.2	41,500,000	52,679,020	74,880
33	Denmark	1	0.2	66,590,000	100,629,630	223,088
34	Iceland	1	0.2	10,530,000	17,015,380	36,208
35	Morocco	1	0.2	3,158,110	5,014,730	71,232
36	Luxembourg	1	0.2	10,520,000	15,288,000	99,200
37	Belgium	1	0.2	2,776,000	3,966,560	23,200
38	Portugal	1	0.2	3,955,500	5,013,500	78,336
39	Argentina	1	0.2	5,390,150	12,582,910	43,008
40	Hungary	1	0.2	3,105,000	4,508,490	27,776
41	Vietnam	1	0.2	46,650,000	67,443,000	142,240


Projected Performance Development

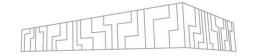
ACCELERATORS

TOP500 LIST HPL / HPL - MXP

Rank	Site	System	Cores	HPL Rmax [TFlop/s]	Rpeak [TFlop/s]	Power [kW]	Efficiency [GFlop/W]	HPL-MxP Rmax [TFlop/s]	HPL-MxP Speedup [-]
1	DOE/NNSA/LLNL United States	El Capitan - HPE Cray EX255a, AMD 4th Gen EPYC 24C 1.8GHz, AMD Instinct MI300A, Slingshot-11, TOSS HPE	11,039,616	1,742.00	2,746.38	29,581	58.89	16,700	9.6
2	DOE/SC/Oak Ridge National Laboratory United States	Frontier - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X , Slingshot-11, HPE Cray OS HPE	9,066,176	1,353.00	2,055.72	24,607	54.98	11,400	8.4
3	DOE/SC/Argonne National Laboratory United States	Aurora - HPE Cray EX - Intel Exascale Compute Blade, Xeon CPU Max 9470 52C 2.4GHz, Intel Data Center GPU Max, Slingshot-11 Intel	9,264,128	1,012.00	1,980.01	38,698	26.15	11,600	11.5
4	EuroHPC/FZJ Germany	JUPITER Booster - BullSequana XH3000, GH Superchip 72C 3GHz, NVIDIA GH200 Superchip, Quad-Rail NVIDIA InfiniBand NDR200, RedHat Enterprise Linux EVIDEN	4,801,344	793.40	930.00	13,088	60.59		
5	Microsoft Azure United States	Eagle - Microsoft NDv5, Xeon Platinum 8480C 48C 2GHz, NVIDIA H100, NVIDIA Infiniband NDR Microsoft Azure	2,073,600	561.20	846.84				
6	Eni S.p.A. Italy	HPC6 - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, RHEL 8.9 HPE	3,143,520	477.90	606.97	8,461	56.48		
7	RIKEN Center for Computational Science Japan	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D Fujitsu	7,630,848	442.01	537.21	29,899	14.78	2,000	4.5
8	Swiss National Supercomputing Centre (CSCS) Switzerland	Alps - HPE Cray EX254n, NVIDIA Grace 72C 3.1GHz, NVIDIA GH200 Superchip, Slingshot-11, HPE Cray OS HPE	2,121,600	434.90	574.84	7,124	61.05		
9	EuroHPC/CSC Finland	LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11 HPE	2,752,704	379.70	531.51	7,107	53.43	2,350	6.2
10	EuroHPC/CINECA Italy	Leonardo - BullSequana XH2000, Xeon Platinum 8358 32C 2.6GHz, NVIDIA A100 SXM4 64 GB, Quad-rail NVIDIA HDR100 Infiniband EVIDEN	1,824,768	241.20	306.31	7,494	32.19	1,800	7.6

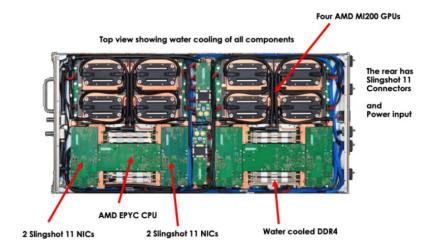

TOP500 LIST HPL / HPL - MXP

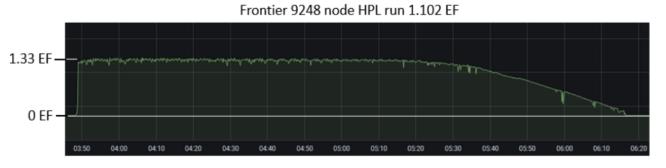
Rank	Site	System	Cores	HPL Rmax [TFlop/s]	Rpeak [TFlop/s]	Power [kW]	Efficiency [GFlop/W]	HPL-MxP Rmax [TFlop/s]	HPL-MxP Speedup [-]
1	DOE/NNSA/LLNL United States	El Capitan - HPE Cray EX255a, AMD 4th Gen EPYC 24C 1.8GHz, AMD Instinct MI300A, Slingshot-11, TOSS HPE	11,039,616	1,742.00	2,746.38	29,581	58.89	16,700	9.6
2	DOE/SC/Oak Ridge National Laboratory United States	Frontier - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X , Slingshot-11, HPE Cray OS HPE	9,066,176	1,353.00	2,055.72	24,607	54.98	11,400	8.4
3	DOE/SC/Argonne National Laboratory United States	Aurora - HPE Cray EX - Intel Exascale Compute Blade, Xeon CPU Max 9470 52C 2.4GHz, Intel Data Center GPU Max, Slingshot-11 Intel	9,264,128	1,012.00	1,980.01	38,698	26.15	11,600	11.5
4	EuroHPC/FZJ Germany	JUPITER Booster - BullSequana XH3000, GH Superchip 72C 3GHz, NVIDIA GH200 Superchip, Quad-Rail NVIDIA InfiniBand NDR200, RedHat Enterprise Linux EVIDEN	4,801,344	793.40	930.00	13,088	60.59		
5	Microsoft Azure United States	Eagle - Microsoft NDv5, Xeon Platinum 8480C 48C 2GHz, NVIDIA H100, NVIDIA Infiniband NDR Microsoft Azure	2,073,600	561.20	846.84				
6	Eni S.p.A. Italy	HPC6 - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, RHEL 8.9 HPE	3,143,520	477.90	606.97	8,461	56.48		
7	RIKEN Center for Computational Science Japan	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D Fujitsu	7,630,848	442.01	537.21	29,899	14.78	2,000	4.5
8	Swiss National Supercomputing Centre (CSCS) Switzerland	Alps - HPE Cray EX254n, NVIDIA Grace 72C 3.1GHz, NVIDIA GH200 Superchip, Slingshot-11, HPE Cray OS HPE	2,121,600	434.90	574.84	7,124	61.05		
9	EuroHPC/CSC Finland	LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11 HPE	2,752,704	379.70	531.51	7,107	53.43	2,350	6.2
10	EuroHPC/CINECA Italy	Leonardo - BullSequana XH2000, Xeon Platinum 8358 32C 2.6GHz, NVIDIA A100 SXM4 64 GB, Quad-rail NVIDIA HDR100 Infiniband EVIDEN	1,824,768	241.20	306.31	7,494	32.19	1,800	7.6


GREEN500

	Rank	TOP500 Rank	System	Cores	Rmax [PFlop/s]	Power [kW]	Energy Efficiency [GFlops/W]		
	1	259	JEDI - BullSequana XH3000, Grace Hopper Superchip 72C 3GHz, NVIDIA GH200 Superchip, Quad-Rail NVIDIA InfiniBand NDR200 , ParTec/EVIDEN, EuroHPC/FZJ Germany	19,584	4.50	67	72.733		
	2	148	ROMEO-2025 - BullSequana XH3000, Grace Hopper Superchip 72C 3GHz, NVIDIA GH200 Superchip, Quad-Rail NVIDIA InfiniBand NDR200, EVIDEN, ROMEO HPC Center France	47,328	9.86	160	70.912		
	3	484	Adastra 2 - HPE Cray EX255a, AMD 4th Gen EPYC 24C 1.8GHz, AMD Instinct MI300A, Slingshot-11, RHEL , HPE, GENCI-CINES France	16,128	2.53	37	69.098		
	4	183	Isambard-AI phase 1 - HPE Cray EX254n, NVIDIA Grace 72C 3.1GHz, NVIDIA GH200 Superchip, Slingshot-11 , HPE, University of Bristol United Kingdom	34,272	7.42	117	68.835		
$\langle 0 \rangle$	5	255	Otus (GPU only) - ThinkSystem SD665-N V3, AMD EPYC 9655 96C 2.6GHz, NVIDIA H100 SXM5 80GB, Infiniband NDR, Rocky Linux 9.4 , Lenovo, Universitaet Paderborn - PC2 Germany	19,440	4.66		68.177		
$\langle 0 \rangle$	6	66	Capella - Lenovo ThinkSystem SD665-N V3, AMD EPYC 9334 32C 2.7GHz, Nvidia H100 SXM5 94GB, Infiniband NDR200, AlmaLinux 9.4, MEGWARE, TU Dresden, ZIH Germany	85,248	24.06	445	68.053		
	7	304	SSC-24 Energy Module - HPE Cray XD670, Xeon Gold 6430 32C 2.1GHz, NVIDIA H100 SXM5 80GB, Infiniband NDR400, RHEL 9.2 , HPE, Samsung Electronics South Korea	11,200	3.82	69	67.251		
10	8	85	Helios GPU - HPE Cray EX254n, NVIDIA Grace 72C 3.1GHz, NVIDIA GH200 Superchip, Slingshot-11 , HPE, Cyfronet Poland	89,760	19.14	317	66.948		
0	9	399	AMD Ouranos - BullSequana XH3000, AMD 4th Gen EPYC 24C 1.8GHz, AMD Instinct MI300A, Infiniband NDR200, RedHat Enterprise Linux , EVIDEN, Atos France	16,632	2.99	48	66.464		
	10	412	Henri - ThinkSystem SR670 V2, Intel Xeon Platinum 8362 32C 2.8GHz, NVIDIA H100 80GB PCIe, Infiniband HDR , Lenovo, Flatiron Institute United States	8,288	2.88	44	65.396		

FRONTIER




- 74 HPE Cray EX cabinets, 9 408 nodes
- 1 AMD Milan "Trento" 7A53 Epyc CPU + 4 AMD Instinct MI250X GPUs
- 512GiB DDR4 + 512GiB HMB2e (128GiB per GPU) coherent memory

across node

HPE Slingshot-11 interconnect (200 Gbit/s)

1.102 exaflops of Linpack, 21.1 MW

USA ROADMAP

Pre-Exascale Systems

2012 2016 2018 2020

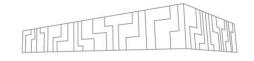
2021–2023

Future Exascale Systems

AMD CPU + AMD GPU

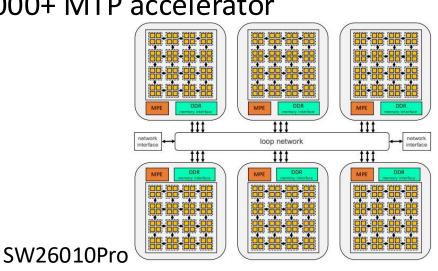
1 EFlops
2 EFlops

Intel CPU + Intel Xe

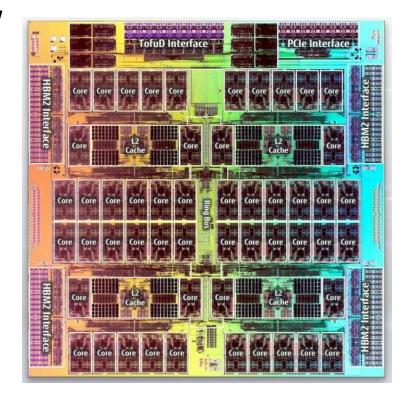


>2EFlops, ~40 MW AMD CPU + GPU

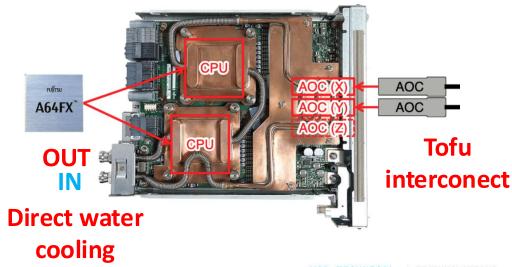
High variability of CPU and GPU vendors


SUPERCOMPUTER #1?!

El Capitan (USA) 06/2025 - 1.742 exaflops of Linpack, 29.6 MW


Meanwhile in China:

- Sunway Oceanlite (03/2021) 1.05 exaflops of Linpack, ~35MW
 - ShenWei post-Alpha CPU ISA, 512-bit IS
 - 96 cabinets, 98 304x SW39010 390-core CPU, 14nm
 - Not in the top500.org list
- Tianhe-3 (10/2021) 1.3 exaflops Linpack
 - 2x Phytium 2000+ FTP ARM CPU (16nm) + Matrix 2000+ MTP accelerator
 - Not in the top500.org list
- Shenzhen Phase 2 scheduled for 2025
 - 2 exaflops
 - Sugon's Hygon CPU delayed



FUGAKU SUPERCOMPUTER

- 158 976 nodes, node peak performance 3.4 TFLOP/s
- Fujitsu A64FX ARM v8.2-A, 48(+4) cores,
 SVE 512 bit instruction
- high bandwidth 3D stacked memory, 4x 8 GB HBM with 1 024 GB/s
- on-die Tofu-D network BW (~400Gbps)
- 29.9 MW

THE EUROHPC JOINT UNDERTAKING

- A legal and funding agency
- 35 member countries

- A co-founding programme to build a pan-European supercomputing infrastructure
 Installed medium-to-high range Supercomputers
 - Bulgaria (6PF, AMD+Nvidia), Czech Republic (15PF, AMD+Nvidia), Luxembourg (18PF, AMD+Nvidia), Portugal (10PF, A64FX, AMD+Nvidia), Slovenia (6.8PF, AMD+Nvidia)

High-range Pre-Exascale Supercomputers

- 150-200 Pflops
- Finland, Spain and Italy consorciums

Next generations of systems planned

EUROPEAN PRE-EXASCALE SYSTEMS

Storage Service

www.lumi-supercomputer.eu #lumisupercomputer #lumieurohpc

LUMI

LUMI is a Tier-o GPU-accelerated supercomputer that enables the convergence of high-performance computing, artificial intelligence, and high-performance data analytics.

- Supplementary CPU partition
- ~200,000 AMD EPYC CPU cores

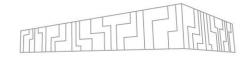
Possibility for combining different resources within a single run. HPE Slingshot technology.

30 PB encrypted object storage (Ceph) for storing, sharing and staging data

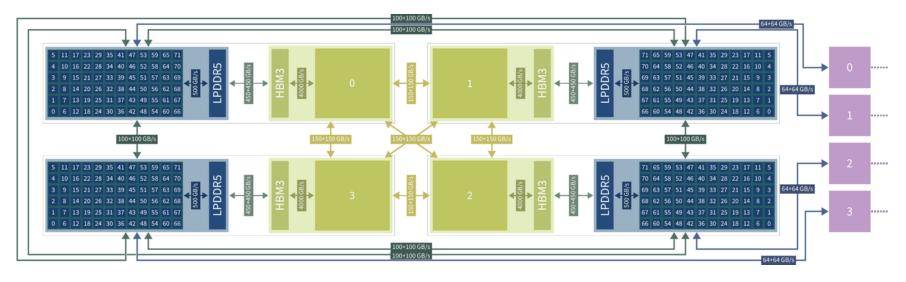
Tier-o GPU partition: over LUMI-G: 550 Pflop/s powered by GPU LUMI-D: Partition AMD Instinct GPUs LUMI-C: Data Analytics Partition Partition Interactive partition with 32 TB of memory and graphics LUMI-K: LUMI-F: GPUs for data analytics and Container High-speed Accelerated visualization Cloud interconnect Storage Service 7 PB Flash-based storage LUMI-Q: layer with extreme I/O LUMI-P: bandwidth of 2 TB/s and Lustre Emerging LUMI-O: Storage IOPS capability. Cray Object ClusterStor E1000.

- LUMI-C 2xAMD 7763 CPUs
 - 6.3 PFlops linpack
- LUMI-G AMD Trento + 4xAMD MI250X
 - 151.9 PFlops linpack

80 PB parallel file system



- H2 2022
- 240M €, 248 PFlops
- 3456 accelerated nodes
 2x Intel Xeon Ice Lake CPUs
 + 4 Nvidia A100 GPUs
- 1536 non-accelerated nodes2x Intel Xeon Sapphire Rapids


MareNostrum V

- H2 2023
- 223M €, 200 PFlops
- 2x Intel Sapphire Rapids + 4x Nvidia H100

JUPITER SUPERCOMPUTER



~6000 nodes of Nvidia Grace Hopper, 1 ExaFLOP/s

- >1300 nodes of SiPearl Rhea, 5 PetaFLOP/s
 - 2x Rhea1 (80 Arm Neoverse Zeus cores) + 2x 64 GB HBM2e + 512 GB DDR5
 - Similar approach to A64FX (ARM cores with wide SVE vector units)

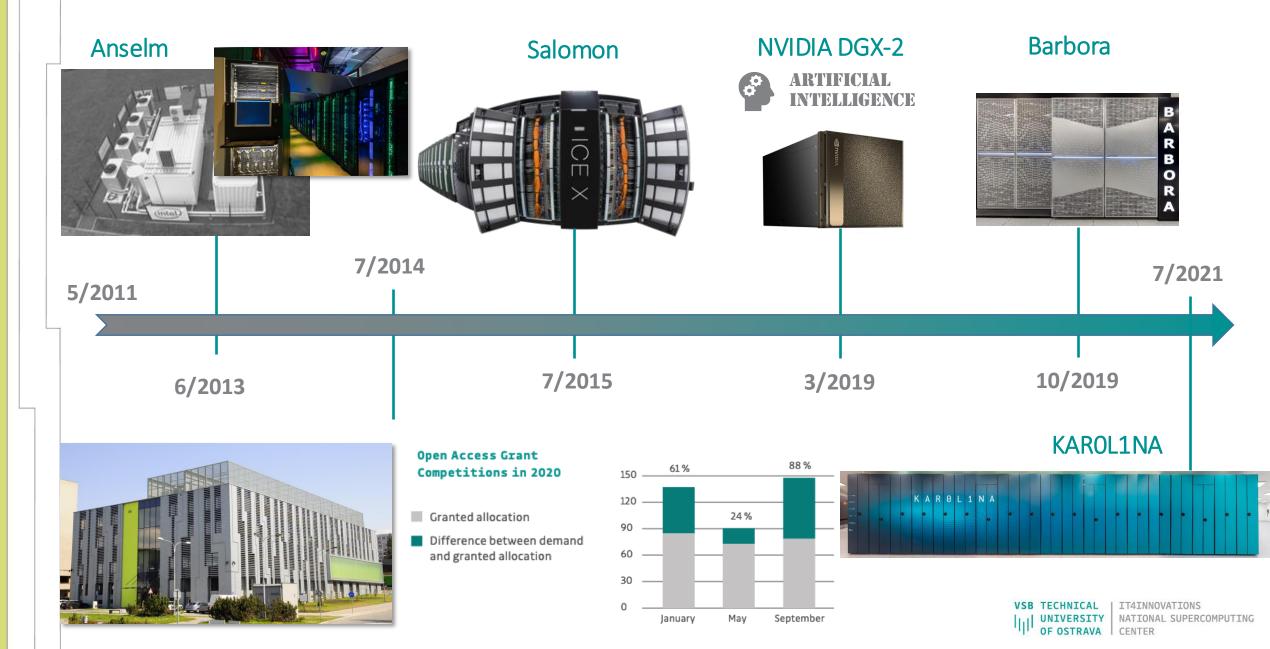
EUROPEAN PROCESSOR INITIATIVE (EPI)

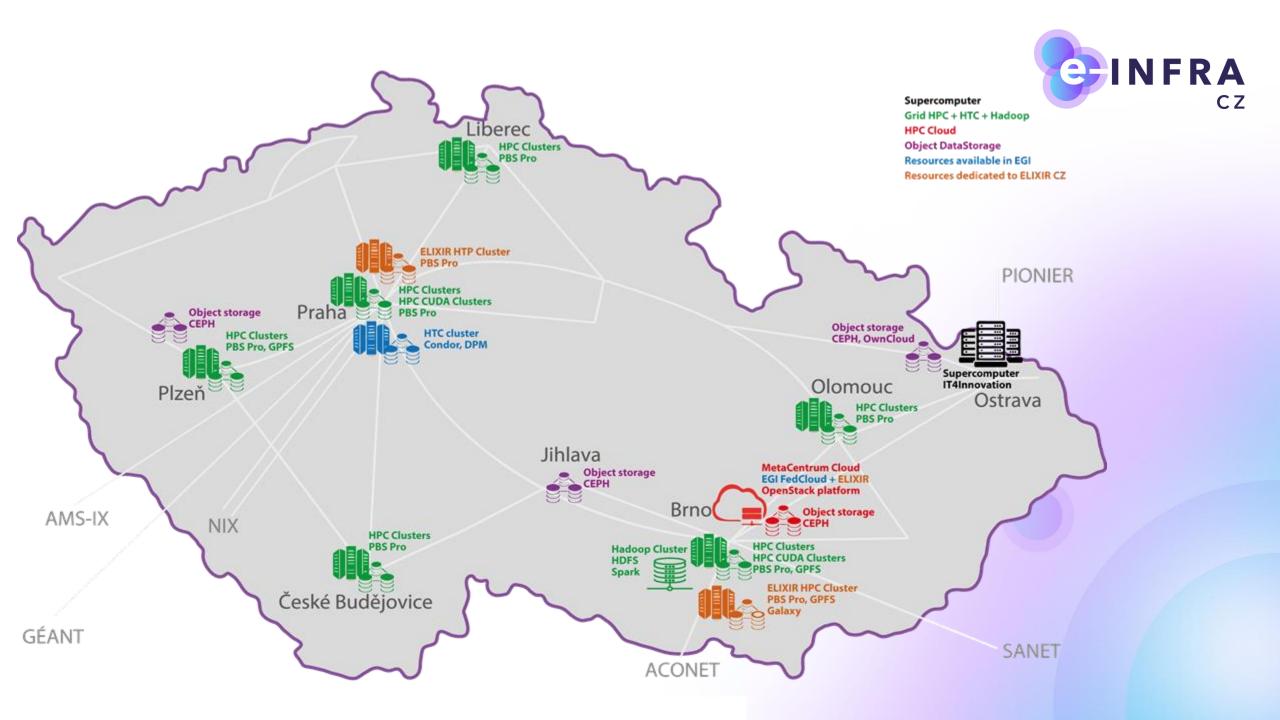
European Processor Initiative

Europe invests into development of a new processor

- Security
- Competitiveness

Design a roadmap of future European low power processors


- common platform
- general purpose processor
- accelerator
- automotive



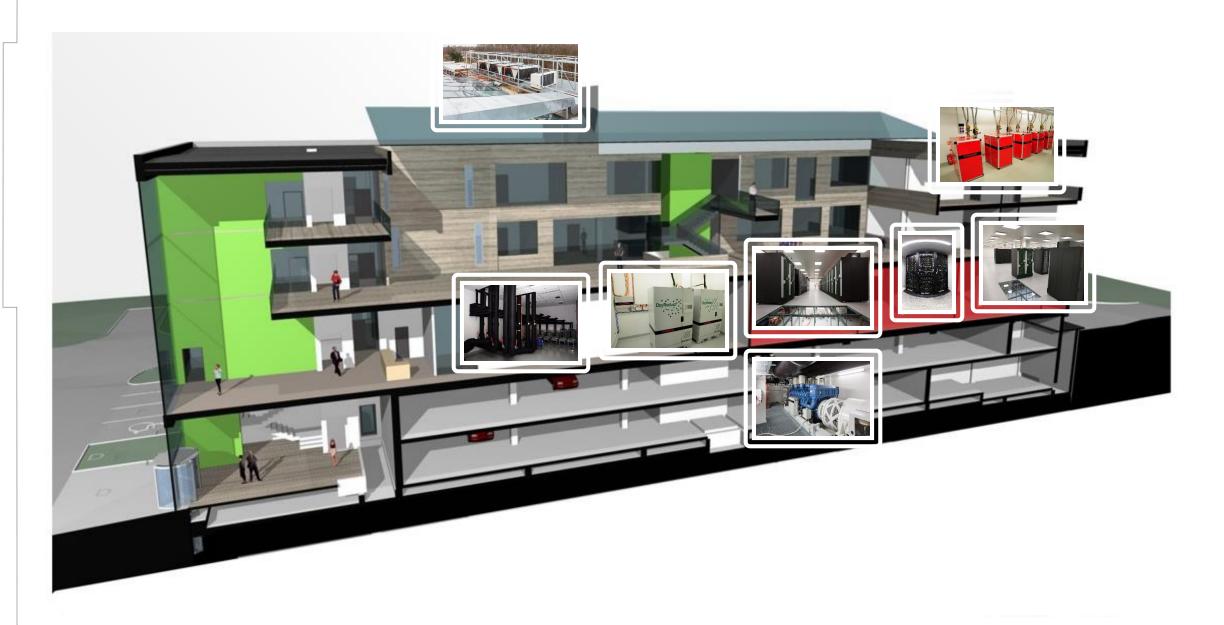
v2.0 eFPGA integration

HISTORY OF THE IT4INNOVATIONS

IT4I – A MODERN DATA CENTER

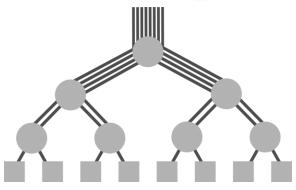
OxyReduct fire prevention

Dynamic rotating UPS 2x2,5MVA


Cold and Hot water cooling

SUPPLEMENTARY INFRASTRUCTURE

KAROLINA SUPERCOMPUTER


- 720x compute nodes, universal partition
 - 2x AMD EPYC 7H12 (Rome) @2.6GHz, turbo 3.3GHz, 64 jader
 - 256GB RAM
- 72x compute nodes, accelerated partition
 - 2x AMD EPYC 7763 (Milan) @2.45GHz, turbo 3.5GHz, 64 jader
 - 8x Nvidia A100, 40GB HBM2
 - 1024GB RAM
- 1x fat node, 32x24 cores (Intel Xeon 8268), 24TB RAM
- 36x cloud partition, 2x24 cores (7h12), 256GB RAM
- Network non-blocking fat tree, 100Gb/s

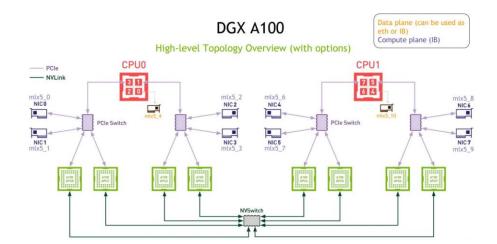
KAROLINA SUPERCOMPUTER

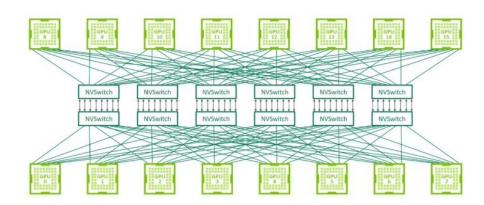
- 720x compute nodes, universal partition
 - 3833 TFLOPS Peak performance
- 72x compute nodes, accelerated partition
 - 8645 TFLOPS Peak performance

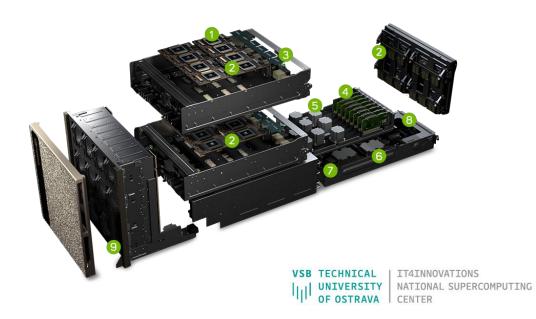
BARBORA SUPERCOMPUTER

- 189x non-accelerated nodes
 - 2x Intel Xeon Gold 6240 CPU (Cascade Lake) @2.6GHz, 18 cores
- 8x accelerated nodes
 - 2x Intel Skylake Gold 6126 (Skylake) @2.6GHz, 12 cores
 - 4x Nvidia V100-SMX2
- Infiniband HDR, 200Gb/s link
- Fat tree topology
- 840 TFlops peak performance

NVIDIA DGX PLATFORM




DGX-2


- 16x NVIDIA Tesla V100
- 2x Intel Xeon Platinum
- NVSwitch 2.4 TB/s of bisection bandwidth

DGX-A100

- Almost the same as one Karolina node
- 8× NVIDIA A100 SXM4
- 2x AMD EPYC 7742

IT41 IN THE TOP500.ORG

Salomon ranking

J
Rank
460
423
375
282
214
139
88
79
68
56
48
40

40 Salomon - SGI ICE X, Xeon E5-2680v3 12C 2.5GHz, Infiniband FDR, Intel Xeon Phi 7120P, HPE IT4Innovations National Supercomputing Center, VSB-Technical University of Ostrava Czechia

76,896 1,457.73 2,011.64 4,806 CPU

71 Karolina, GPU partition - Apollo 6500, AMD EPYC 7763 64C 2.45GHz, NVIDIA A100 SXM4 40 GB, Infiniband HDR200, HPE IT4Innovations National Supercomputing Center, VSB-Technical University of Ostrava Czechia

71,424

311

9.08

6.75

IT41 IN THE TOP500.ORG

Karolina GPU ranking

List	Rank
06/2025	195
11/2024	165
06/2024	135
11/2023	112
06/2023	95
11/2022	85
06/2022	79
11/2021	71

Salomon - SGI ICE X, Xeon E5-2680v3 12C 2.5GHz,
Infiniband FDR, Intel Xeon Phi 7120P, HPE
IT4Innovations National Supercomputing Center, VSBTechnical University of Ostrava
Czechia

76,896 1,457.73 2,011.64 4,806

CPU
COres

[Triop/s]

Rightary Power
[KW]

71,424

71 Karolina, GPU partition - Apollo 6500, AMD EPYC 7763 64C 2.45GHz, NVIDIA A100 SXM4 40 GB, Infiniband HDR200, HPE IT4Innovations National Supercomputing Center, VSB-Technical University of Ostrava

Czechia

[PFlop/s

6.75

IPFlop/sj /kW

311

9.08

Ondřej Vysocký, Filip Vaverka
Ondrej.vysocky@vsb.cz, filip.vaverka@vsb.cz

IT4Innovations National Supercomputing Center VSB – Technical University of Ostrava Studentská 6231/1B 708 00 Ostrava-Poruba, Czech Republic www.it4i.cz

