Limitations of tensor-network approaches for optimization and sampling: A comparison to quantum and classical Ising machines

Anna Maria Dziubyna^{1,2} <u>Tomasz Śmierzchalski</u>³
Bartłomiej Gardas³ Marek M. Rams¹ Masoud Mohseni⁴

¹ Jagiellonian University, Institute of Theoretical Physics

² Jagiellonian University, Doctoral School of Exact and Natural Sciences

³Institute of Theoretical and Applied Informatics, Polish Academy of Sciences

⁴Emergent Machine Intelligence, Hewlett Packard Labs, California, USA

→ Table of Contents

Brief Introduction to Tensor Networks

The Problem

Tensor-Network Approach

Results

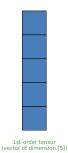
Brief Introduction to Tensor Networks

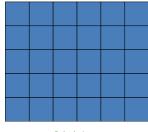
Definition

Tensor is defined as a set of numbers labeled by N indices, where N is called the **order*** of the tensor.

Definition

Tensor is defined as a set of numbers labeled by N indices, where N is called the **order*** of the tensor.





→Tensor Contraction

Definition

An **index contraction** is the sum over all the possible values of the repeated indices of a set of tensors.

Tensor Contraction

Definition

An **index contraction** is the sum over all the possible values of the repeated indices of a set of tensors.

Example - matrix multiplication

$$C_{ik} = \sum_{j=1}^{D} A_{ij} B_{jk}$$

Tensor Contraction

Definition

An **index contraction** is the sum over all the possible values of the repeated indices of a set of tensors.

Example - matrix multiplication

$$C_{ik} = \sum_{j=1}^{D} A_{ij} B_{jk}$$

More complicated example

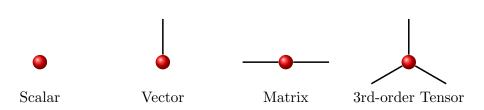
$$E = \sum_{i,j,k,l,m,n=1}^{D} A_{ijk} B_{ilm} C_{jln} D_{kmn}$$

→Terminology

$$D_{ijk} = \sum_{l=1}^{D_1} \sum_{m=1}^{D_2} \sum_{n=1}^{D_3} A_{ljm} B_{iln} C_{nmk}.$$

- Indices that are not contracted are called open indices
- Contracted indices are called bond or ancillary indices
- \blacktriangleright Number of possible values D_i is referred to as bond dimension

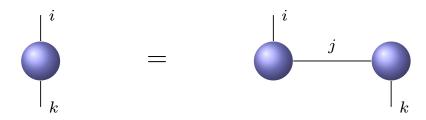
*Graphical Notation



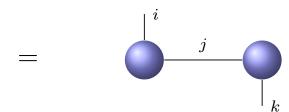
Shape

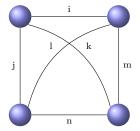
In general, the shape of tensors and the direction of lines carry no special significance.

→Graphical Notation - Examples



→Graphical Notation - Examples





→Tensor Network

Definition

A **Tensor Network** (TN) is a set of tensors where some, or all, of its indices are contracted according to some pattern.

→Tensor Network

Definition

A **Tensor Network** (TN) is a set of tensors where some, or all, of its indices are contracted according to some pattern.

► The total number of operations depends heavily on the order in which indices in the TN are contracted.

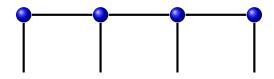
→Tensor Network

Definition

A **Tensor Network** (TN) is a set of tensors where some, or all, of its indices are contracted according to some pattern.

- ► The total number of operations depends heavily on the order in which indices in the TN are contracted.
- ► TN can be used to break complex systems (wave functions, partition functions, etc.) into smaller, more manageable pieces

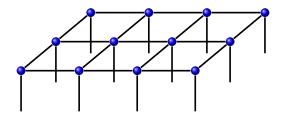
→Matrix Product States (MPS)



Notes

- ▶ Basis for many powerful methods to simulate 1d quantum many-body systems (DMRG, TEBD, etc.).
- MPS can represent any quantum state of the many-body Hilbert space just by increasing sufficiently the value of the bond dimension (D).

→Projected Entangled Pair States (PEPS)



Notes

- ▶ Natural generalization of MPS to higher spatial dimensions.
- ▶ In general, contracting PEPS exactly is #P-hard

→Futher Reading

- Orús, R. (2014). A practical introduction to tensor networks: Matrix product states and projected entangled pair states. *Annals of physics*, 349, 117-158.
- ▶ Ran, S. J., Tirrito, E., Peng, C., Chen, X., Tagliacozzo, L., Su, G., & Lewenstein, M. (2020). *Tensor network contractions: methods and applications to quantum many-body systems*. Springer Nature.
- https://tensornetwork.org/
- https://www.tensors.net/

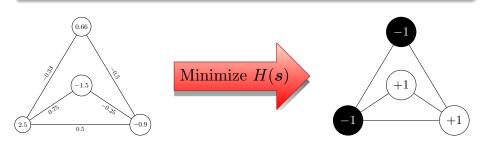
The Problem

→The Optimization Problem

Finding The Ground State of The (classical) Ising Model

$$\min_{\underline{s}_N \in \{-1,1\}^N} H(\underline{s}_N) = \sum_{(i,j) \in E(G)} J_{ij} s_i s_j + \sum_{i=1}^N h_i s_i \tag{1}$$

where $\underline{s}_n=(s_1,\ldots,s_n)$, $s_i=\pm 1$, $J_{ij},h_i\in\mathbb{R}$ and G=(E,V) is a simple graph.



→Why it is Interesting?

→Why it is Interesting?

1. Finding the ground state (minimal energy) of the Ising model with an arbitrary connectivity graph is a **NP-hard** problem.

Hardness of the Ising model

The only way to be guaranteed the correct answer is to check each possible spin configuration (i.e., brute force), that is 2^N possibilities!

→Why it is Interesting?

1. Finding the ground state (minimal energy) of the Ising model with an arbitrary connectivity graph is a **NP-hard** problem.

Hardness of the Ising model

The only way to be guaranteed the correct answer is to check each possible spin configuration (i.e., brute force), that is 2^N possibilities!

2. There are many classical and quantum heuristic algorithms for solving this problem, including purpose-built machines, such as **Quantum Annealers** (QA).

→Quantum Annealers

Quantum Annealers are machines that physically implement the quantum annealing algorithm.

→ Quantum Annealers

Quantum Annealers are machines that physically implement the quantum annealing algorithm.

Quantum Annealing

$$\mathcal{H} = \underbrace{A(s) \left(\sum_{i=1}^{N} \sigma_i^x \right)}_{\text{Initial Hamiltonian}} + \underbrace{B(s) \left(\sum_{i=1}^{N} h_i \sigma_i^z + \sum_{(i,j) \in E(G)} J_{ij} \sigma_i^z \sigma_j^z \right)}_{\text{Final Hamiltonian}}, \tag{2}$$

where $s=\frac{t}{\tau}$ is normalized time, τ is total annealing time, $A(0)\gg B(0)$ and $A(1)\approx 0$, $A(1)\ll B(1)$, and σ^x,σ^z are Pauli matrices

*Quantum Annealers

Quantum Annealers are machines that physically implement the quantum annealing algorithm.

Quantum Annealing

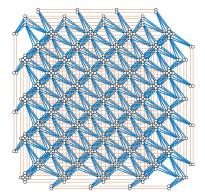
$$\mathcal{H} = \underbrace{A(s) \left(\sum_{i=1}^{N} \sigma_i^x \right)}_{\text{Initial Hamiltonian}} + \underbrace{B(s) \left(\sum_{i=1}^{N} h_i \sigma_i^z + \sum_{(i,j) \in E(G)} J_{ij} \sigma_i^z \sigma_j^z \right)}_{\text{Final Hamiltonian}}, \tag{2}$$

where $s=\frac{t}{\tau}$ is normalized time, τ is total annealing time, $A(0)\gg B(0)$ and $A(1)\approx 0$, $A(1)\ll B(1)$, and σ^x,σ^z are Pauli matrices

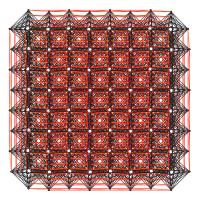
Important

Nonzero values of h_i and J_{ij} are limited to those available in the working graph!

→Quantum Annealers' Quantum Processing Units (QPUs)



Pegasus topology aprox. 5.5k qubits and 40k couplers

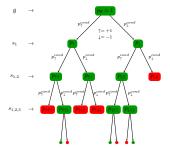


Zephyr topology aprox. 7.4k qubits and 70k couplers

. dea

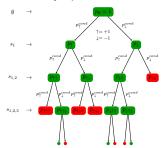
dea

- Branch and Bound search in the probability space



→Idea

- lowest energy state ← most probable state
- Branch and Bound search in the probability space



Problem Calculating marginal probabilities requires sampling from the Boltzmann distribution

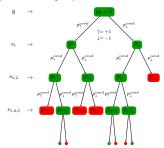
$$p(\underline{s}_N) = \frac{e^{-\beta H(\underline{s}_N)}}{Z}$$

where Z is a partition function

$$Z = \sum_{\underline{s}_N} e^{-\beta H(\underline{s}_N)}$$

••Idea

- lowest energy state ← most probable state
- Branch and Bound search in the probability space



Problem Calculating marginal probabilities requires sampling from the Boltzmann distribution

$$p(\underline{s}_N) = \frac{e^{-\beta H(\underline{s}_N)}}{Z}$$

where Z is a partition function

$$Z = \sum_{s_N} e^{-\beta H(\underline{s}_N)}$$

Solution Use tensor networks to calculate Z

A heuristic tensor-network-based algorithm to reveal the low-energy spectra of Ising spin-glass systems with interaction graphs relevant to present-day quantum annealers

A heuristic tensor-network-based algorithm to reveal the low-energy spectra of Ising spin-glass systems with interaction graphs relevant to present-day quantum annealers

Three main parts:

 Transform the Ising problem into one more suitable for QPU graphs and TN

A heuristic tensor-network-based algorithm to reveal the low-energy spectra of Ising spin-glass systems with interaction graphs relevant to present-day quantum annealers

Three main parts:

- Transform the Ising problem into one more suitable for QPU graphs and TN
- 2. Perform the main sampling and search steps

A heuristic tensor-network-based algorithm to reveal the low-energy spectra of Ising spin-glass systems with interaction graphs relevant to present-day quantum annealers

Three main parts:

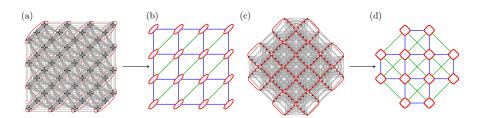
- Transform the Ising problem into one more suitable for QPU graphs and TN
- 2. Perform the main sampling and search steps
- 3. Perform efficient tensor calculations

Tensor-Network Approach

The Generalized Potts Hamiltonian

$$H(\underline{x}_{\bar{N}}) = \sum_{(m,n)\in E(\mathcal{F})} E_{x_m x_n} + \sum_{n=1}^{\bar{N}} E_{x_n}$$

where $\mathcal F$ is a square lattice with $\bar N$ nodes, x_n are configuration variables, E_{x_n} intranode energy matrix, $E_{x_mx_n}$ iternode coupling energy matrix.



Size of Potts Variables

- $ightharpoonup x_n$ takes up to 2^{24} values for Pegasus graph
- $ightharpoonup x_n$ takes up to 2^{16} values for Zephyr graph

Size of Potts Variables

- $ightharpoonup x_n$ takes up to 2^{24} values for Pegasus graph
- $ightharpoonup x_n$ takes up to 2^{16} values for Zephyr graph

Compresing variables

$$E_{x_m x_n} = \bar{E}_{\bar{x}_m \bar{x}_n},$$

where $ar{E}_{ar{x}_mar{x}_n}$ is compressed internode energy matrix

Size of Potts Variables

- $ightharpoonup x_n$ takes up to 2^{24} values for Pegasus graph
- $ightharpoonup x_n$ takes up to 2^{16} values for Zephyr graph

Compresing variables

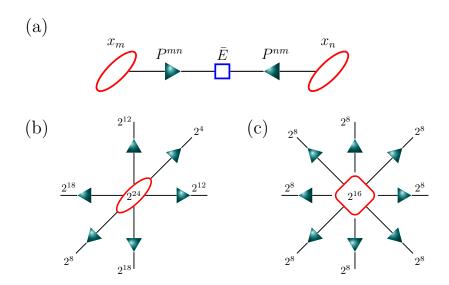
$$E_{x_m x_n} = \bar{E}_{\bar{x}_m \bar{x}_n},$$

where $\bar{E}_{\bar{x}_m \bar{x}_n}$ is compressed internode energy matrix

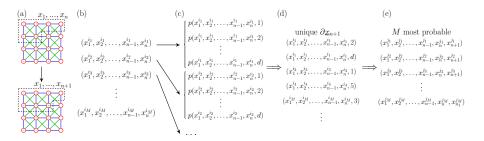
$$\bar{x}_m = P^{mn}(x_m),$$

where P^{mn} projecting d configurations in the $m{\rm th}$ node onto d^{mn} unique subconfigurations

→Projectors Ilustrated

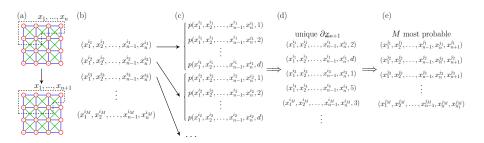


→Branch and Bound



$$p(\underline{x}_{\bar{N}}) = \frac{e^{-\beta H(\underline{x}_{\bar{N}})}}{Z} \quad p(\underline{x}_{n+1}) = p(\underline{x}_{n+1}|\underline{x}_n) \times p(\underline{x}_n)$$

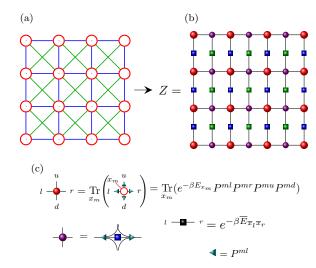
→Branch and Bound



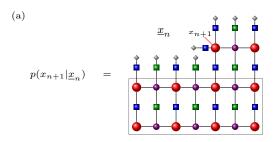
$$p(\underline{x}_{\bar{N}}) = \frac{e^{-\beta H(\underline{x}_{\bar{N}})}}{Z} \quad p(\underline{x}_{n+1}) = p(\underline{x}_{n+1}|\underline{x}_n) \times p(\underline{x}_n)$$

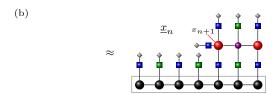
$$\partial \underline{x}_n = \{ P^{kl}(\underline{x}_k) : \langle k, l \rangle \in \mathcal{F}, k \leqslant n < l \} \quad p(\underline{x}_{n+1} | \underline{x}_n) = p(\underline{x}_{n+1} | \partial \underline{x}_n)$$

Tensor Network Construction



*Calculation of conditional probabilities





→Some Additional Optimizations

Rotations

→Some Additional Optimizations

- Rotations
- Sparse tensor structure

→Some Additional Optimizations

- Rotations
- Sparse tensor structure
- Loopy belief propagation

Results

→Benchmarking Setup I

Problem instances:

- No external magnetic fields ($h_i = 0$) and random coupling strengths from [-1, 1].
- ► Native instance for given QPU (class I)

→Benchmarking Setup I

Problem instances:

- No external magnetic fields ($h_i = 0$) and random coupling strengths from [-1, 1].
- ► Native instance for given QPU (class I)

Metrics:

Quality of solutions

$$d_E = \frac{(E - E_{\mathsf{best}})}{2|E_{\mathsf{best}}|}$$

- Diversity of solutions
 - ightharpoonup approximation ratio $d_E \leqslant a_r$
 - relative distance threshold $d(\underline{s}_N, \underline{s'}_N) \geqslant RN$

→Benchmarking Setup II

Solvers to compare

► D-Wave - commercially available quantum annealers

→Benchmarking Setup II

Solvers to compare

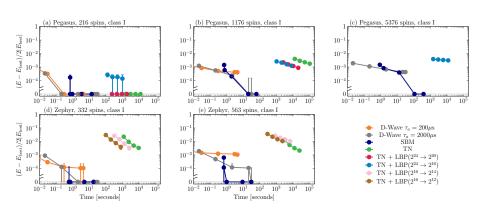
- D-Wave commercially available quantum annealers
- ▶ CPLEX industry-standard classical solver for combinatorial optimization

→Benchmarking Setup II

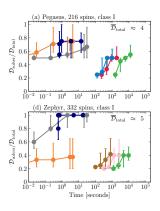
Solvers to compare

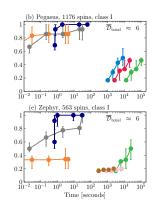
- D-Wave commercially available quantum annealers
- CPLEX industry-standard classical solver for combinatorial optimization
- Simulated Bifurcation Machine (SBM) state-of-the-art physics-inspired solver

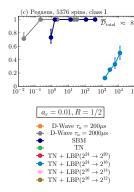
→Class I - Quality of Solutions



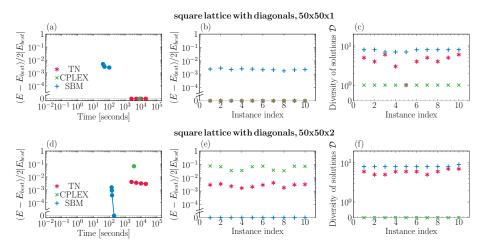
→Class I - Diversity of Solutions







→Square lattice with diagonals



→Conclusions

► Performance Trade-off

Conclusions

- ► Performance Trade-off
- ► Sampling Limitations

Conclusions

- Performance Trade-off
- Sampling Limitations
- Scalability and Stability Challenges

→References

- [1] Dziubyna, A. M., *et al.* "Limitations of tensor-network approaches for optimization and sampling: A comparison to quantum and classical Ising machines." *Physical Review Applied* 23.5 (2025).
- [2] Śmierzchalski T., et al., "SpinGlassPEPS.jl: Tensor-network package for Ising-like optimization on quasi-two-dimensional graphs" arXiv preprint arXiv:2502.02317 (2025).

→SpinGlassPEPS.jl Demo

Thank you for your attention!

Demo for SpinGlassPEPS.jl can be found here: https://github.com/tomsmierz/demo