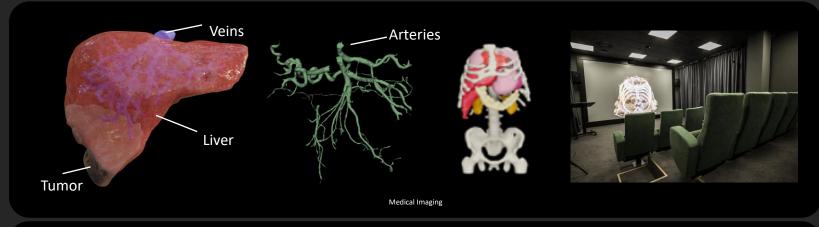
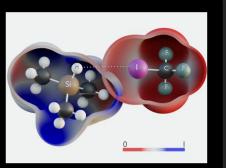


Anamoly detection. Reference Image: https://doi.org/10.48550/arXiv.2106.08265





Generating data from a virtual environment and object detection

Volumetric rendering of evolving cell nuclei

Scientific vizualizations of Hydrogen Bonding

DEEP LEARNING APPROACHES FOR **SCANNING ELECTRON** MICROSCOPE IMAGE **ANALYSIS OF SLURRY COATINGS**

Khyati Sethia Researcher **INFRA Lab**

VSB TECHNICAL UNIVERSITY OF OSTRAVA

IT4INNOVATIONS NATIONAL SUPERCOMPUTING CENTER

Motivation and Context

Deep Learning Approaches for Scanning Electron Microscope Image Analysis of Slurry Coatings

NOVEL APPROACH TO CORROSION PROTECTION IN HIGH-TEMPERATURE ENVIRONMENTS

Figure: Possible application in CSP plants.

WHAT ARE SLURRIES?

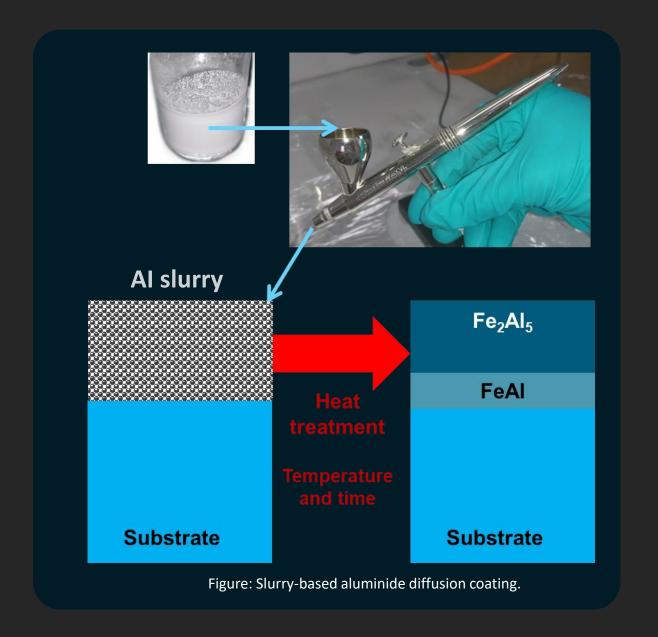
Aluminide diffusion coatings, formed by depositing aluminum slurry on steel followed by heat treatment, create protective Fe₂Al₅ and FeAl layers.

Technological areas

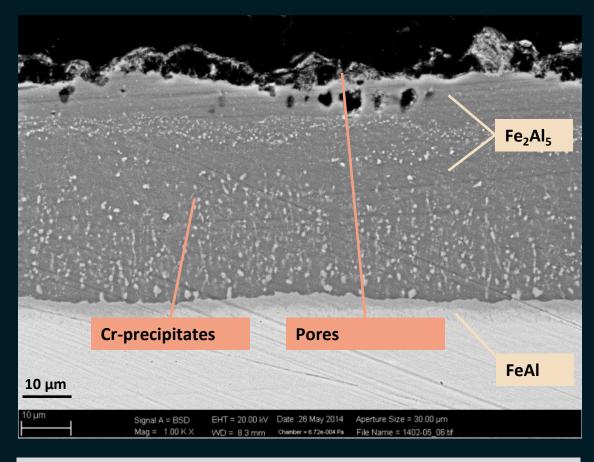
- Combustion of alternative fuels, such as hydrogen and ammonia.
- Steam turbines in renewable energies.
- Molten salts in Concentrated Solar Power and High Temperature Thermal storage.

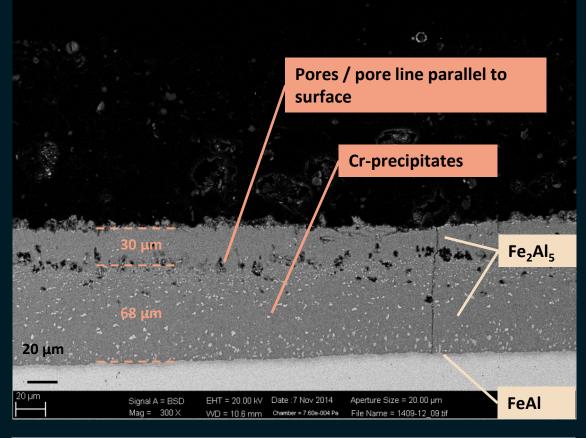
Advantages

- Low cost.
- Environmentally friendly.
- Non-hazardous (REACH).
- Slurry deposition by spraying or brushing.
- Drying and heat treatment in air.



ALUMINIDE DIFFUSION COATING





Heat treatment: 5h at 650°C in air, Al particle size 32 μm

Heat treatment: 20h at 650°C in air, Al particle size 32 μm

Figure: Features of interest.

Coating layers

Fe₂Al₅ layer: Thickness

FeAl layer: yes/no, thickness

Pores

Pores

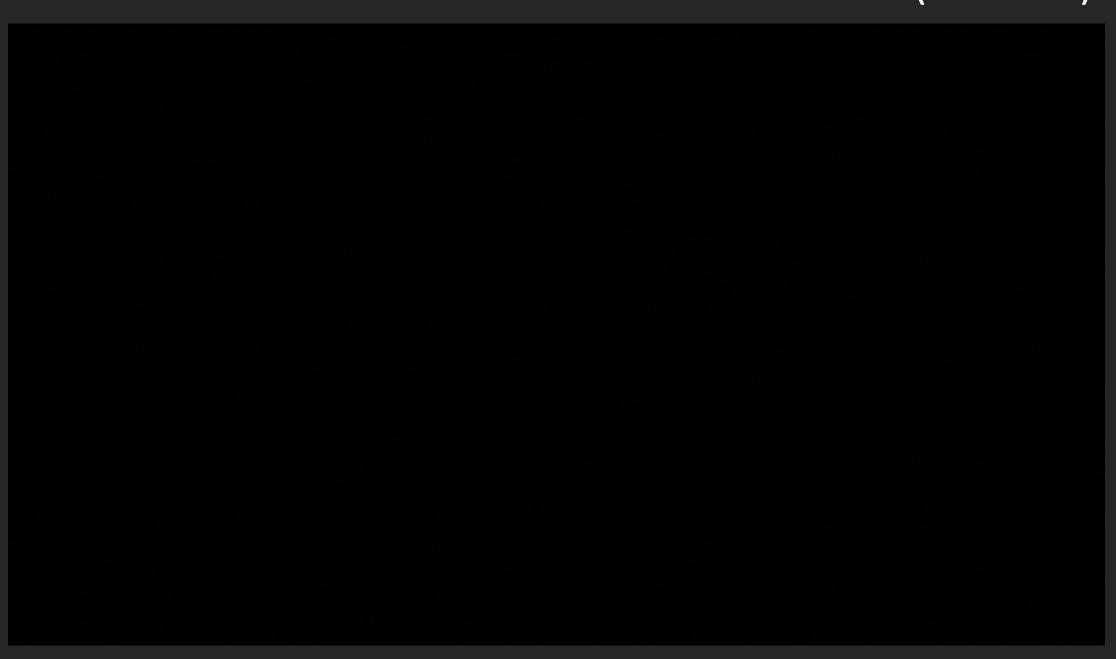
Pores in the Fe₂Al₅ layer: Concentration in %

Pore line parallel to surface: yes/no, distance to surface

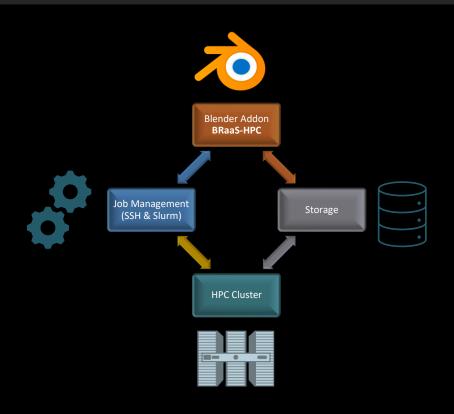
Data Challenges

- Fraunhofer provided: ~200 images (100 for training, 100 for testing).
- Overlapping features of interests.
- Manual analysis of microscopic images is slow and subjective.
- Manual labeling = very time-consuming
- The feature of interests are small and noisy.
- Supervised learning requires labeled data.

SYNTHETIC DATA GENERATION FOR SEM IMAGES (Blender)



RENDERING-AS-A-SERVICE ON HPC CLUSTER



Distributed rendering using Blender addon and HPC cluster.

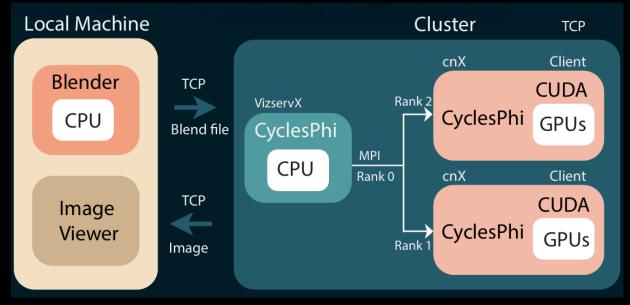


Figure: Distributed rendering using Blender and HPC cluster.

Resource Type	Execution Time per Task	Total time (array Size = 100)	Efficiency
Local CPU (i7-13650HX)	~20 seconds	1980 seconds	Sequential
Cluster CPU	~12 seconds	65 seconds	Parallel
Cluster GPU	~7 seconds	45 seconds	Parallel

DATA PREPROCESSING

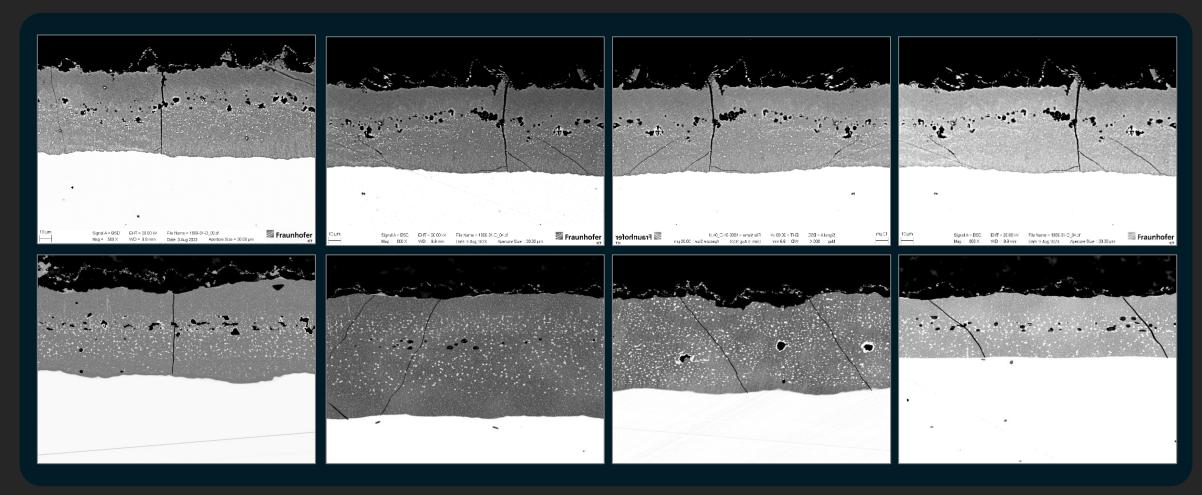


Figure: Example of data augmentation. The **first row** contains example of data augmentation of **real** SEM images, while **second row** shows examples of augmented **synthetic** SEM images.

METHODOLOGY

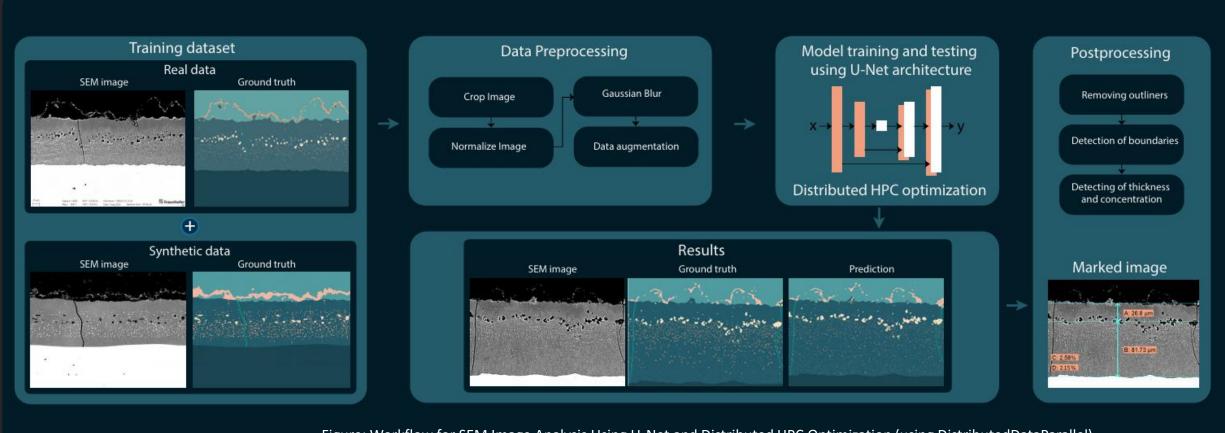
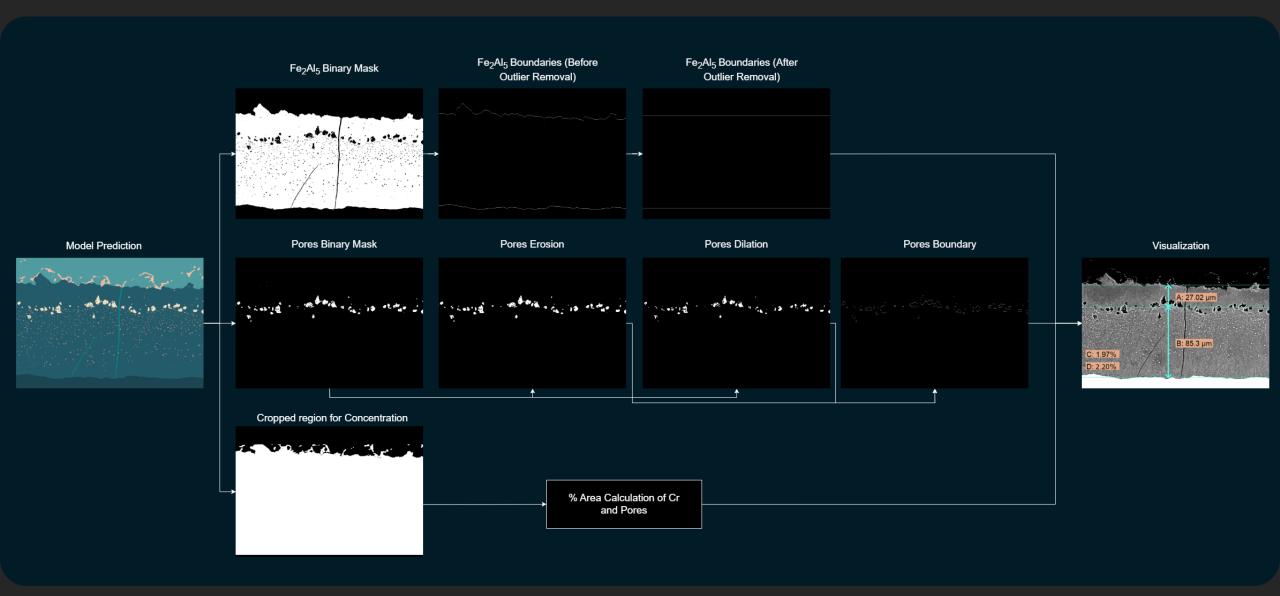


Figure: Workflow for SEM Image Analysis Using U-Net and Distributed HPC Optimization (using DistributedDataParallel).

POSTPROCESSING TO MEASURE FEATURES



RESULTS

Figure: Post processing on model predictions to analyse features of interest.

Configuration	Training Time (s)	Speedup
Single GPU	9880	1x
8 GPUs	1577	~6.26x

Table: Training Time and Speedup Comparison.

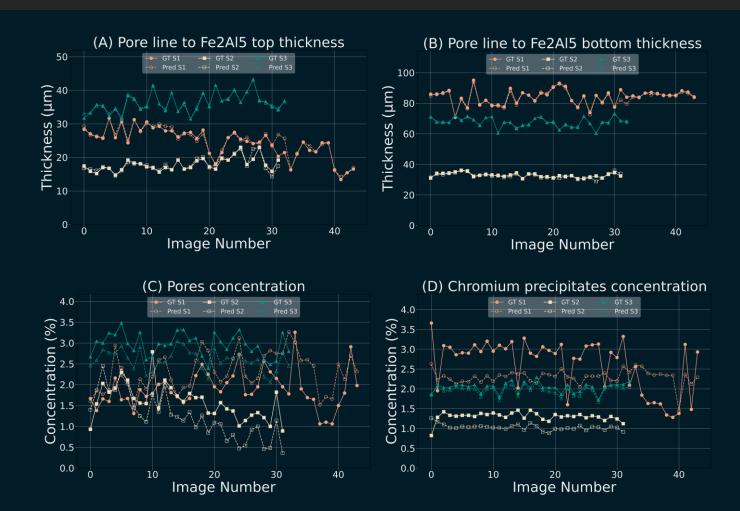


Figure: Comparison of Predicted and Ground Truth Thickness and Concentration for ${\rm Fe_2Al_5}$ Top, ${\rm Fe_2Al_5}$ Bottom, Pores, and Chromium Precipitate.

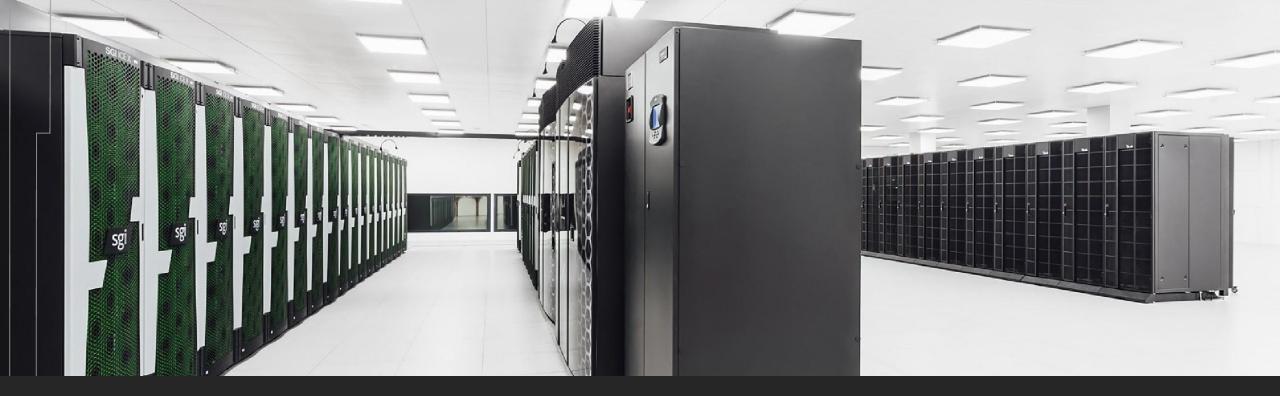
Conclusions

Key Takeaways:

- **Synthetic data generation in Blender** can effectively address limitations of small datasets and enables the creation of masks for supervised learning.
- **Deep learning models** demonstrate high accuracy in segmenting coating microstructures.
- **HPC infrastructure** significantly enhances computational efficiency.
- A combined Weighted Dice and Weighted Soft Cross-Entropy (SCCE) **loss function** outperformed other loss strategies, particularly for **classes with imbalance** such as pores and precipitates.
- Among the tested architectures (U-Net, DeepLab, and Swin UNETR), U-Net delivered the best overall
 performance across most feature classes.

Future Work:

- Implement advanced segmentation architectures, such as FNOSeg3D, to further improve model accuracy.
- Investigate coatings after **extended heat exposure** (1350 hours at 650 °C in air) to assess long-term performance.
- Expand the methodology to include other coating systems for broader applicability.



Thank you

Khyati Sethia Khyati.sethia@vsb.cz

IT4Innovations National Supercomputing Center
VSB – Technical University of Ostrava
Studentská 6231/1B, 708 00 Ostrava-Poruba, Czech Republic
www.it4i.cz

Thanks to:

- European Union under the REFRESH Research Excellence For REgion Sustainability and High tech Industries.
- Ministry of Education, Youth and Sports of the Czech Republic through the e-INFRA CZ (ID:90254).
- Fraunhofer Innovation Platform "Applied Artificial Intelligence for Materials & Manufacturing" at VSB-Technical University of Ostrava.