

Three ingredients to success

DATACENTER

GATEWAY

EDGE

Vision

Vision

Vision

Optimised Frameworks

% tools

https://software.intel.com/en-us/parallel-studio-xe

https://www.intelnervana.com/

Intel® VTune™ Amplifier

SPEED UP DEVELOPMENT

using open AI software

TOOLKITS App developers

Open source platform for building E2E Analytics & Al applications on Apache Spark* with distributed TensorFlow*, Keras*, BigDL

OpenVINO

Deep learning inference deployment on CPU/GPU/FPGA/VPU for Caffe*, TensorFlow*, MXNet*, ONNX*, Kaldi*

NAUTA

Open source, scalable, and ex ensible distributed deep learning platform built on Kubernetes (BETA)

LIBRARIES Data scientists

Pvthon

- Scikitlearn
- Pandas
- NumPy

• Cart

Random

R

• e1071

Distributed

- MlLib (on Spark)
- Mahout

Intel-optimized Frameworks Ö Caffe2

And more framework optimizations underway including PaddlePaddle*, Chainer*, CNTK* & others

Intel® Distribution for Pvthon*

Intel distribution optimized for machine learning

Intel® Data Analytics **Acceleration Library** (DAAL)

High performance machine learnina & data analytics library

Intel® Math Kernel **Library for Deep Neural Networks (MKL-DNN)**

Open source DNN functions for CPU / integrated graphics

Open source compiler for deep learning model computations optimized for multiple devices (CPU, GPU, NNP) from multiple frameworks (TF, MXNet, ONNX)

DEPLOY AI ANYWHERE INTEL® AI HARDWARE

DEVICE

OPTIMIZED FRAMEWORKS & SOFTWARE

(intel)

XEON

PLATINUM

inside"

ALSPECIALIZATION

Multi-Purpose Foundation for AI Data-Parallel Media, Graphics, HPC & AI

Multi-Function & Real-time Deep Learning Inference

Deep Learning Inference

Deep Learning **Training**

Media & Vision DI Inference at the Edge

Visit:

All products, computer systems, dates, and figures are preliminary based on current expectations, and are subject to change without notice. 1Unified software stack development in progress DL=Deep Learning

inte

2ND GENERATION INTEL® XEON® SCALABLE PROCESSOR formerly known as Cascade Lake

Begin your AI journey efficiently, now with even more agility...

- ✓ IMT Intel® Infrastructure Management Technologies
- √ ADQ Application Device Queues
- ✓ SST Intel® Speed Select Technology

Built-in Acceleration with Intel® Deep Learning Boost...

deep learning infernce throughput!1

Throughput (ima/s)

Hardware-Enhanced Security...

- ✓ Intel® Security Essentials
- ✓ Intel® SecL: Intel® Security Libraries for Data Center
- ✓ TDT Intel® Threat Detection Technology

Based on Intel internal testing: 1X,5.7x,14x and 30x performance improvement based on Intel® Optimization for Café ResNet-50 inference throughput performance on Intel® Xeon® Scalable Processor. See Configuration Details 3 sults are based on testing as of 7/11/2017(1x) ,11/8/2018 (5.7x), 2/20/2019 (14x) and 2/26/2019 (30x) and may not reflect all publically available security updates. No product can be absolutely secure

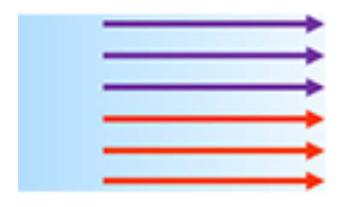
INTEL® FPGA FOR AI

FIRST TO MARKET TO ACCELERATE EVOLVING AI WORKLOADS

- PRECISION
- LATENCY
- SPARSITY
- ADVERSARIAL NETWORKS
- REINFORCEMENT LEARNING
- NEUROMORPHIC COMPUTING

٠.,

DELIVERING AI+ FOR FLEXIBLE SYSTEM LEVEL FUNCTIONALITY


- AI+I/O INGEST
- AI+ NETWORKING
- AI+ SECURITY
- AI+ PRE/POST PROCESSING
- ...

- = RNN
- LSTM
- SPEECH WL

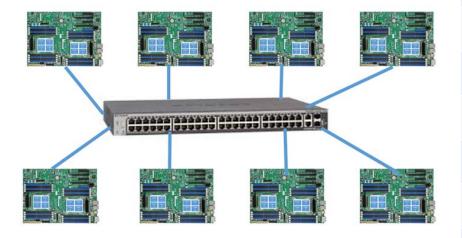
Enabling real-time AI in a wide range of embedded, edge and cloud apps

PERFORMANCE - 'IT'S ALL ABOUT PARALLELISM'

Core 4 Core 3 Core 2 Core 3 Core 4 Fadd ALU

Levels of Parallelism

Node


Socket

Core / Thread-Level

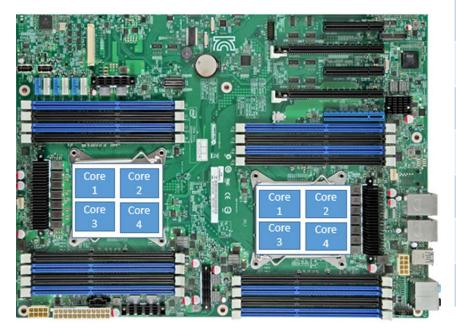
(Hyperthreading)

GPU-CPU

Instruction (by CPU internals)

Levels of Parallelism

Node


Socket

Core / Thread-Level

(Hyperthreading)

GPU-CPU

Instruction (by CPU internals)

Levels of Parallelism

Node

Socket

Core / Thread-Level

(Hyperthreading)

GPU-CPU

Instruction (by CPU internals)

Core 1 Core 2 Core 3 Core 4

Levels of Parallelism

Node

Socket

Core / Thread-Level

(Hyperthreading)

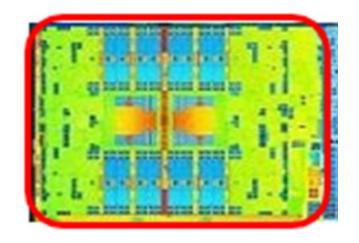
GPU-CPU

Instruction (by CPU internals)

Core 1 Core 2 Core 3 Core 4

Levels of Parallelism

Node


Socket

Core / Thread-Level

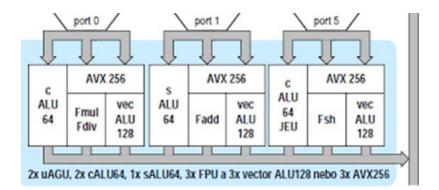
(Hyperthreading)

GPU-CPU

Instruction (by CPU internals)

Levels of Parallelism

Node


Socket

Core / Thread-Level

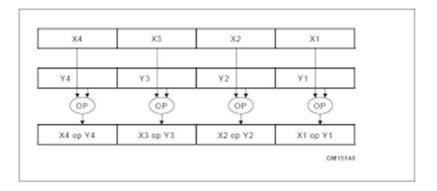
(Hyperthreading)

GPU-CPU

Instruction (by CPU internals)

Levels of Parallelism

Node


Socket

Core / Thread-Level

(Hyperthreading)

GPU-CPU

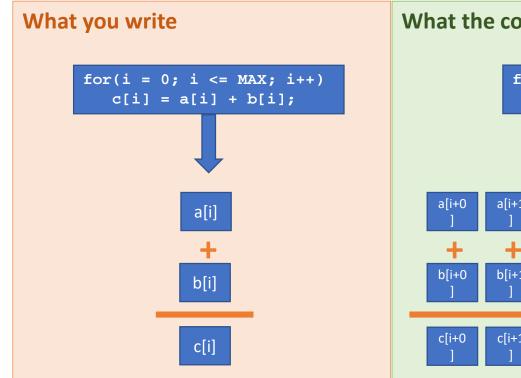
Instruction (by CPU internals)

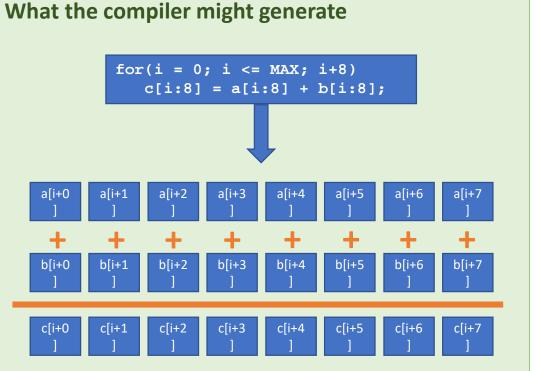
SSE2 128 bit AVX 256 bit AVX512 512 bit

Levels of Parallelism

Node

Socket


Core / Thread-Level


(Hyperthreading)

GPU-CPU

Instruction (by CPU internals)

What is vectorization?

INTEL® DEEP LEARNING BOOST (DL BOOST)

FEATURING VECTOR NEURAL NETWORK INSTRUCTIONS (VNNI)

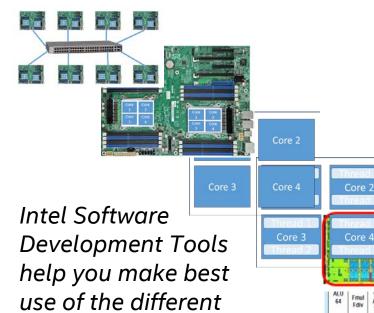
Current AVX-512 instructions to perform INT8 convolutions: vpmaddubsw, vpmaddwd, vpaddd

NEW AVX-512 (VNNI) instruction to accelerate INT8 convolutions: vpdpbusd

Levels of Parallelism

Node

Socket


Core / Thread-Level

(Hyperthreading)

GPU-CPU

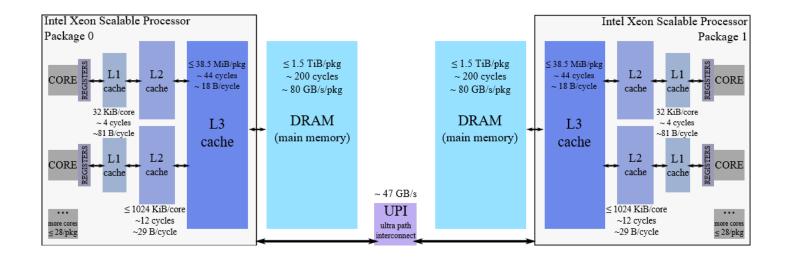
Instruction (by CPU internals)

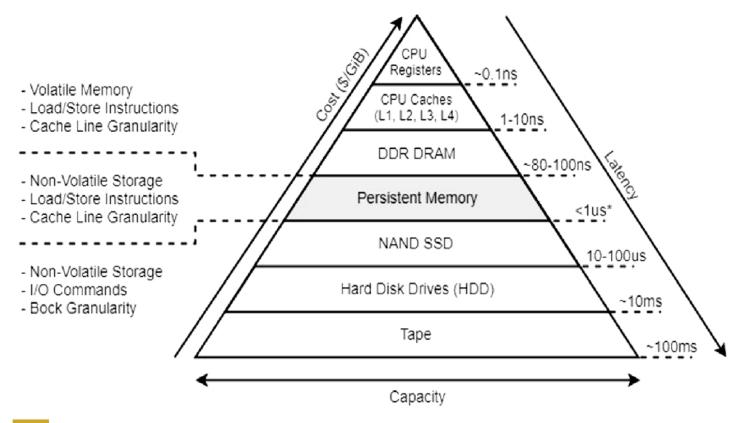
Data (Vectorisation)

levels of parallelism

	Intel® Xeon® processor 64-bit	Intel® Xeon® processor 5100 series	Intel® Xeon® processor 5500 series	Intel® Xeon® processor 5600 series	Intel® Xeon® processor code-named Sandy Bridge EP	Intel® Xeon® processor code-named Ivy Bridge EP	Intel® Xeon® processor code-named Skylake EP	Intel® Xeon® processor code-named Cascade Lake Platinum 9200
Core(s)	1	2	4	6	8	12	28	56
Threads	2	2	8	12	16	24	56	112
SIMD Width	128	128	128	128	256	256	512	512

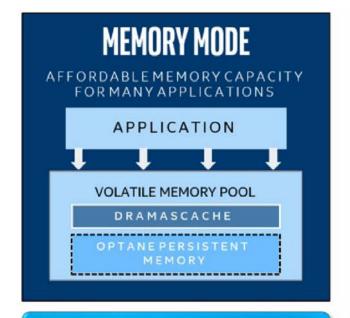
YET ANOTHER VIEW . . .


PERFORMANCE - 'IT'S ALL ABOUT MEMORY'

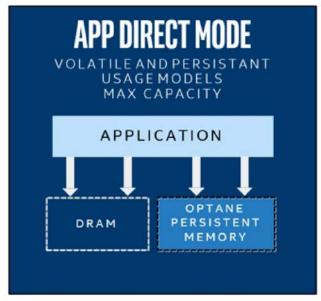

What does a 2 sockets system looks like?

Motherboard Processor 0 Processor 1 **QPI/UPI** Processin Processin DRAM DRAM g unit g unit

Memory Hierarchy


Latency estimates for different storage and memory devices

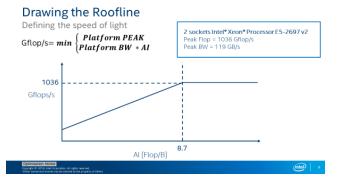
Intel® Optane™ DC Persistent Memory



- non-volatile, high-capacity memory
- near DRAM latency,
- affordable
- physically and electrically compatible with DDR4 interfaces and slots

Intel® Optane™ DC Persistent Memory

Legacy Workloads



Optimized Workloads

Performance: A summary

- Product of CPU Parallelism AND Memory
 - See Advisor Roofline Model which combines
 - Peak Flops
 - Peak Bandwidth

https://software.intel.com/en-us/advisor

- See Performance Optimisation and Productivity Project which combines
 - Global Efficiency,
 - Parallel Efficiency,
 - Computational Efficiency

https://software.intel.com/en-us/download/parallel-universe-magazine-issue-37-july-2019

Some factors in deciding 'What plaform/architecture should I use?'

Factor

Cost

Performance

Accuracy

Power

Ease of Programming

Portability

Summary

Intel CPU offers multiple levels of parallelism

To get best performance you need to use these levels in your applications

Intel Libraries and Optimised Frameworks provide these 'automatically'