INTEL

Georg Zitzlsberger

Bayncore

SEIKIT-LEARNWITHINTEL

MACHINE LEARNING - LAYERS

Models & Networks

+Intel® DAAL
Frameworks

+Intel® MKL

Hardware

SCIKIT LEARN

* VialIntel® Distribution for Python* « For:

.fewm

* Available via Anaconda*, Docker*, Linux* * Classification
packages (RPM/APT) or stand-alone R .
; : . egression
installation

* Scikit Learn using Intel® DAAL * Clustering

* NumPy and SciPy using Intel® MKL * Dimensionality reduction

. Model selection

’ @ * Preprocessing

for sciFy
0.18.2 W linux-64, zlib, sqlite_tcl tk A set of python modules for
win-64, openssl, &, mkl, machine learning and data
7 0sx-64 openmp, icC_TT, mining I
numoy_scipy, tbh,
@aal, pydaal ;Jﬁ Replaced by daal4py
! scipy 0.191 W W Iin_ux-64. zlib, sqlite, tcl, tk, SciPy: Scientific Library for |

A5 gpenssloz_mkl____Byihon

G:o

mm DATAANALYTICS ACCELERATIIN lIBRARY
[INTEL DAAll

SCIKIT LEARN - INTEL" DAAL

* Directly integrated into Scikit Learn

.ﬂewm

* Currently implements (2019)

« PCA (full SVD)
sklearn.decomposition.PCA

e K-Means
sklearn.cluster.KMeans

* Linear & ridge regression (not Kernel ridge regression)
sklearn.linear model.LinearRegression &
sklearn.linear model.Ridge

« Pairwise distances (metrics: cosine & correlation) ;
sklearn.metrics.pairwise.pairwise distances

SCIKIT LEARN - INTEL" DAAL
O learn

* Automatically turned on for Intel version of Scikit Learn (e.g conda module
scikit-learn)

* Find out what is currently covered by Intel DAAL:
import daaldpy.sklearn.monkeypatch.dispatcher as daaldisp
for k,v in daaldisp. mapping.items () :
print (k)

 Workin progress — not all configurations are supported yet, e.g..
DAAL < 2019.4 PCA only optimized fit, using DAAL's SVD
(svd solver != ‘full’)

« Automatic fallback te Scikit Learn algorithm if not covered by Intel DAAL

@ | -

SCIKIT LEARN - INTEL" DAAL
Q@ tearr

import daaldpy.sklearn
daaldpy.sklearn.patch sklearn()

 Disable DAAL:
daaldpy.sklearn.unpatch sklearn ()

SCIKIT LEARN - INTEL" DAAL

Find implementation here:
.../site-packages/daaldpy/sklearn $ 1s
cluster

decomposition

ensemble

__1nit .py

linear model
monkeypatch/dispatcher.py (start here)
neighbors

___pbyceche

svm

ut,l 1 Shpy

» : =) ’/’ﬂ K
(ﬁmml 8

.ﬂewm

INTEL” DAAL PERFORMANCE
WITH SCIKIT-LEARN ® tewin

Python* Performance as a Percentage of C++ Intel® Data Analytics Acceleration Library

(Intel® DAAL) for Intel® Xeon Phi™ Product Family (Higher is Better) '
¥ Python* Performance as a Percentage of C++ Intel® Data Analytics Acceleration Library
5
(Intel® DAAL) on Intel® Xeon® Processors (Higher is Better) .
90%
80% . . .
2 Python* Performance as a Percentage of C++ Intel” Data Analytics Acceleration Library
0% 100% (Intel® DAAL) on Intel® Core™ i5 Processors (Higher is Better)
60% 90% W pip/scikit-learn Wintel Python
50% 80% 100%
40% 70% !
30% o0% %
50%
20%
40%
109
0% 30% f
0% 20% 0%
1 core 64 cores :
10%
1K x 200K o
s 0%
Correllation Distance Yeore 32 cores 1 3
= — | 1K 200K .
Correllation Distance
= =]
X | 1 core 2 cores 1 core 2 cores 1 core 2 cores 1 core 2 cores
TKx 50K 1K x 50K TMx25 MMx25
Correllation Distance Cosine Distance Linear Regression (Training) Ridge Regression (Training}
= e
i — — - NS z
https://software.intel.com/en-us/d pution-for-pytho atur s
. > = ; = 57

-t - -

https://software.intel.com/en-us/distribution-for-python/features

DAAL4PY - THE PYTHONIC DAAL

.fewm

« Higher Abstraction layer « For:
. - PCA
Use Intel® DAAL . SUM
 Documentation: « Naive Bayes
https://intelpython.github.io/daal4py/ « SVD
« KMEANS

* Linear Regression
* Multivariate/Univariate Outlier

Detection
im Fre-processing Transfarmation
Business -])
Scientific + Decompression *+ Aggregation * Summary * Machine * Hypothesis * Forecasting
Engineering « Filtering « Dimension Statistics Learning testing + Decislon Trees
Web/Social = Mormalization Reduction » Clustering, * Parameter * Model E1c
Estimation Errors

« Simulation

https://intelpython.github.io/daal4py/

 DEMO- K-MEANS (COLOR QUANTIZATION)

EXCURSION: COLOR QUANTIZATION

.14 745 600 pomts (plxels) in dlmen5|on 3(RGB)

EXCURSION: K-MEANS - AN ITERATIVE ALGORITHM

COLOR QUANTIZATION WITH K-MEANS

* Group colors into clusters (n_clusters)

Quantized image (64 colors, K-Means)

* RGB yields 3D feature vectors

* Select a smaller but representative sample (for fitting):
ca. 1000 random pixel

* Centroids define color palette

print("Fitting model on a small sub-sample of the data")

té = time()

image_array_sample = shuffle(image array, random_state=8)[:1868]

kmeans = KMeans(n_clusters=n_colors, random_state=8).fit(image array_sample)
print(“"done in &.3fs." ¥ (time(} - t@))

 Example by courtesy of: -
http: //saklt learn orglstable/auto examoles/cluster/olot color quantlza’ﬂon html

-t

http://scikit-learn.org/stable/auto_examples/cluster/plot_color_quantization.html

INTEL" DAAL'S CONTRIBUTION

& Basic Hotspots Hotspots by CPU Usage viewpoint (change) @ INTEL VTUNE AMPLIFIER 2018
4 Collection Log) Analysis Target & Analysis Type & Summary & Bottom-up & Caller/Callee & Top-down Tree = Platform >
Grouping: | Module / Function / Call Stack = \EI CPU Time =
CPU Time v -, Viewing of 3 seletiad stack(s)
Module / Function / Call Stack Effective Time by Utilization =2 | Spin Time 3 | Overhy 54.0% (0.2265 of 0.4185),
Oidie @Poor [Ok @Iideal @ Over | Imbalance or Serial Spinning | Lock Contention Other | Creation | Scheduling | bdaal_thread.solipk blas_avx2 % |-
» libpython3.6m.s0.1.0 1.968s [N Os 0s Os 0s 0s| | Mlibdaal_thread.solfpk_blas_avx2...
» umath.cpython-36m-x86_64-linux-gnu.so 1.373s (D 0s 0s 0s 0s 0s libdaal_thread.salfpk_blas_avx2...
b libtbb.so.2 0.040s I 0.400s 0s 0.128s 0.020s 0.504s ||° I\bdaal_lhread.sD!ka_b\as_avxz...
» multiarray.cpython-36m-x86_64-linux-gnu.so| 0.969s (INIIEIEGD 0s 0s 0Os 0s 0s libdaal core.soldaal threader fu
» libc-dynamic.so 0.959s | NIENED 0s 0s 0s 0s 03 libdaal_thread.sol[TEB parallel_f... ||
i : .] Jl |
4 I!bdaﬁj_cnre S0 0.862s 0s 0s 0s 0s o ! libthb.s0.2/[TBB Dispatch Loop]...
» libmkl_tbb_thread.so 0s 0s 0s 0.1505 0s 1LizE r | libdaal_thread.so![Stitch point fra...
» :!Ep':?dwa:-f'so o.607s (NN 0s 0s 0s 0s libtbb.s0.21[TBB Scheduler Inter...
» il m |_vml_avx2.s0 0s 0s 0s 0s 0s S libdaal_thread.so!_daal_threader...
] 0.432s (D 0s 0s Os 0s 0s .
libdaal_core.soldaal::algorithms:...
0.418s (D 0s 0s 0s 0s 0s N
| libdaal_core.soldaal:algorithms::...
» fpk_blas_avx2_dgemm_kernel 0 2.410s (D 0s 0s 0s 0s 0s
7 libdaal core.soldaal::algorithms::...
fpk_blas_avx2_dgemm_kernel_0_b0 0.008s | 0s 0s Os 0s 0s .
— libdaal_core.so!daal::algorithms::..
» libintic.$: — 0.376s D 0s 0s 0s 0s 0s ans.cpython-36m-xB6_64
» libmkl_rt.so 0.104s @ 0s 0s 0s 0s 0s means.cpython-36m-x86

P+

python (TID: 6261)

TBB Worker Thread (TID: ...
TBB Worker Thread (TID: ...
python (TID: 6280)

sh (TID: 6280)

sh (TID: 6291)

uname (TID: 6291)

& | Threas -
& [Running
& ww CPU Time
& s Spin and Overhead...
[@ CPU Sample 'l

Thread

& CPU Usage
& s CPU Time |
& s Spin and Overhead...

CPU Usage R
— —

FILTER 100.0% x Any Process % | Thread Any Thread - Module Any Module - Any Utilizatior % User functions + 1 - Show inline functio > Functions only -

INTEL MATH KERNEL lIBRARY
< lmm MKll

SCIKIT LEARN - INTEL” MATH KERNEL LIBRARY
(INTEL" MKL} o).

* Not directly integrated into Scikit Learn but
NumPy (BLAS level1-3, LAPACK, FFT, random number generators)
* SciPy (BLAS level 1-3, LAPACK)

* Intel MKL used indirectly by Scikit Learn
- Use it directly

Intel MKL directly used by NumPy & SciPy
- Combine Scikit Learn with using NumPy & SciPy

" ﬁ
intel' All 17

SCIKIT LEARN - INTEL" MKL FOR N

mkl info:
libraries = [
library dirs
define macros

>>> import numpy

>>> numpy .show_config()
blas mkl info:
libraries = ['mkl_rt', 'pthread']
library dirs = [‘../envs/intel/lib"']
define macros = [('SCIPY MKL H',
None), ('HAVE CBLAS', None)]
include dirs
[‘../envs/intel/include']
blas opt info:
libraries = ['mkl_rt', 'pthread']
library dirs = [‘../envs/intel/lib']
define macros = [('SCIPY MKL H',
None), ('HAVE CBLAS', None)]
include dirs
[‘../envs/intel/include'] "

include dirs
lapack mkl info:
libraries
library dirs

[

include dirs
lapack opt info:

libraries = [

library dirs

Ineludé serits

B a
®-

-t oo

("HAVE CBLAS', None)

define macros =
('HAVE_CBLAS', None)

define macros
("HAVE CBLAS', None)

UMPY

.fewm

'mkl rt', 'pthread']
[‘../envs/intel/1lib"']

[('SCIPY MKL H', None),
]

[‘../envs/intel/include"']

'mkl rt', 'pthread']
[‘../envs/intel/1lib"']

[('SCIPY MKL H', None),
]

[‘../envs/intel/include"']

'mkl rt', 'pthread']
[‘.../envs/intel/1lib"']

[('SCIPY MKL H',.None),
]

[m/envs/igbel/include']

e
&

s

SCIKIT LEARN - INTEL™ MKL FOR SCIPY

>>> import scipy blas mkl_info:

.fewm

. . libraries = ['mkl rt', 'pthread']
> sc:.py.show_conf:.g() library dirs = [‘?/envs/intel/lib']
lapack_mkl_info: define macros = [('SCIPY MKL H',

libraries = ['mkl_rt', 'pthread'] None) , ('HKVE CBLAS', None)]_ -
library dirs = [‘../envs/intel/1lib'] include dirs =
define macros = [('SCIPY MKL H', [‘m/envs/ingel/include']
None), ('HAVE CBLAS', None)] blas opt info:
include dirs = Iibrgries = ['mkl rt', 'pthread']
[‘m/envs/intel/include‘] library dirs = [‘?/envs/intel/lib']
Ry o=xet e) AP A e define macros = [('SCIPY MKIL H',
libraries = ['mkl_rt', 'pthread'] None) , ('HXVE CBLAS', None)]_ -
library dirs = [‘../envs/intel/lib"'] include dirs =
define macros = [('SCIPY MKL H', .

[‘../envs/intel/include']

None), ('HAVE CBLAS', None)]
include dirs =
[‘.../envs/intel/include'] "

SCIKIT LEARN - INTEL” MATH KERNEL LIBRARY
(INTEL" MKL} o).

Control the number of threads:

* Environment variable (static):
$MKL_NUM THREADS=2

* Dynamically in Python script:
import ctypes
mkl rt = ctypes.CDLL('libmkl rt.so')
mkl rt.MKL Set Num Threads (2) # Set the amount
print (“# threads: %s\n" $ mkl rt.MKL Get Max Threads())

s P : : o
intel' All 20

SCIKIT LEARN - INTEL” MATH KERNEL LIBRARY
(INTEL" MKL} .

More control over the threads: P y—

« Set/get number of threads

’

Search document 0, Threading Control

.
* Set by MKL dom FFT, BLAS, VML - -
e O a I n] y y mes Developer Reference for Intel® Intel® MKL provides functions for OpenMP* threading control, discussed in this section

Math Kernel Library 2018 - C

IMPORTANT
o If Intel MKL operates within the Intel® Threading Building Blocks (Intel TBB) execution environment, the
ome

[Al lOW d n a m i C C h a n e Of th read s environment variables for OpenMP* threading control, such as orp_nuM_THREZDS, and Intel MKL functions
y g discussed in this section have no effect. If the Intel TBB threading technology is used, control the number of
Getting Help and Support threads through the Intel TBB application pragramming interface. Read the documentation for the

* Set/get number of stripes (only 7GEMM) = T

t specify the number of Intel TBB threads
Motational Conventions

to find out how

If Intel® MKL operates within an OpenMP* execution environment, you can control the number of threads for Intel MKL
using OpenMP* run-time library routines and emvironment variables (see the OpenMP* specification for details).
Additionally Intel MKL provides optional threading contral functions and environment variables that enable you to specify
. . > Overview the number of threads for Intel MKL and to control dynamic adjustment of the number of threads independently of the
[Al lOWS C h a n ge S d u rI n g r u n tI m e OpenMP* settings. The settings made with the Intel MKL threading control functions and environment variables do not

> affect OpenMP* settings but take precedence over them.

BLAS and Sparse BLAS Routines
If nane of the threading control functions is used, Intel MKL enviranment variables may control Intel MKL threading. For
> LAPACK Routines details of those environment variables, see the Infel MKL Developer Guide.

° A A * You can specify the number of threads for Intel MKL function domains with the mkl_set_num_threads or
re a I n g e a u I S p e n > Deep Neural Network Functions mid_domain_set_num_threads function. While m1_set_num_tnreads speciies the number of threads for the entire
Intel MKL, m1_domain_set_num_threads does it for a specific function domain_ The following table lists the function

domains that support independent threading control. The table alsa provides named constants to pass to threading control
functions as a parameter that specifies the function domain.

* Intel Threading Building Blocks* rr——

> Extended Eigensolver Routines

(Intel TBB) also possible using -m tbb ... e

Basic Linear Algebra Subroutines (BLAS)

% ScalAPACK Routines

XL DOMAIN BLA
B “ » MEL_DOMAIN BLAS

https://software.intel.com/en-us/mkl-developer-reference-c-threading-control

SCIKIT LEARN - INTEL™ MKL PERFORMANCE

Seconds Seconds

(numpy) random) (numpy) random_intel) Python* FFT Performance as a Percentage of C/Intel® Math Kernel Library (Intel® MKL)

for Intel® Core™ i5 Processor (Higher is Better)

Distribution

Mpip/numpy Eintel Python

= u 0

normal (O, 1) 0.834 0.081 Intel® Distribution for Python* Performance Speedups for
Select Math Functions on Intel® Core™ i5 Processors

gamma (521 1) 1 399 0267 m Speedup with Intel Python vs pip/numpy N

40 37.6X

beta (0.7, 2.5) 3.677 0.556 i

uniform (-1. 1) 0.357 0.034 o0% I 5B

0%

35
. g 30 1
randint (0. 100) 0.228 0.053 g 23.6X :
poisson (7.6) 2.990 0.052 % e E—
l% 15 2D FFT 3D FFT

hypergeometric - ...
(214,97, 83) 11.353 0.517 i " _—

1.3X 1.3X 1.3X 13X 1.3X 1.3X -
|

0 ==} E— — — — —
array-array array-scalar array*array array*scalar array+array array+scalar erf exp invsqrt log10
Math functions (Array size = 1M)

Configuration: Intel® Core™ i7-7567U CPU @ 3.50GHz (1 socket, 2 cores per socket, 2 threads per core), 32GB DDR4 @ 2133MHz
Software: Stock: CentOS Linux release 7.3.1611 (Core), python 3.6.2, pip 9.0.1, numpy 1.13.1, scipy 0.19.1, scikit-learn 0.19.0. Intel® Distribution for Python* 2018 Gold: mkl 2018.0.0 intel_4, daal
2018.0.0.20170814, numpy 1.13.1 py36_intel_15, openmp 2018.0.0 intel_7, scipy 0.19.1 np113py36_intel_11, scikit-learn 0.18.2 np113py36_intel_3

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using
specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance
tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more information go to
‘Benchmark Source: Intel Corporation.
. intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations
include SSE2, SSE3, and SSSE3 instruction sets and other optimizations, Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured
by Intel. Microprocéssor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer 1o the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice revision #20110804. *Other]
brands and names are the property of their respective owners.

https://software.intel.com/en-Us

» 2 = 5
-t . »

https://software.intel.com/en-us/distribution-for-python/features

DEMO KERNEL PRINCIPAL COMPONENT
ANALYSISJKERNEL PcAl

KERNEL PRINCIPAL COMPONENT ANALYSIS [PBA]

Original space Projection by PCA

« Kernel used: Radial Basis Function (RBF) N Do pa®
N N T’_OleC iCl)I;l]1 l rigina S]:Siagrmc*?g?’c\?lr\r} ?Egﬁ ransfrorm
* Project data points to kernel space e TRT f
(non-linear to linear transformation) (7
« Kernel space allows linear separation * aso])
(e.g. via linear classification, linear SVM, etc.) ot princial component n space masced by 6
kpca = KernelPCA(kernel="rbf", fit_inverse_transform=True, gamma=18)
X_kpca = kpca.fit_transform(X)
X_back = kpca.inverse_transform(X_kpca)
pca = PCA()
X_pca = peca.fit_transform(X)
. Example by courtesy ofr . - g

http://scikit-learn. or;z/stabie/auto examples/decomposmon/lolot kernel pca.html

@D Al |

http://scikit-learn.org/stable/auto_examples/decomposition/plot_kernel_pca.html

INTEL" MKL'S CONTRIBUTION

& Basic Hotspots Hotspots by CPU Usage viewpoint (change) @ INTEL VTUNE AMPLIFIER 2018
4 Collection Log) Analysis Target & Analysis Type & Summary & Bottom-up & Caller/Callee & Top-down Tree = Platform >
Grouping: | Module / Function / Call Stack =

CPU Time v

Module / Function / Call Stack Effective Time by Utilization » | Spin Time
Oide @Poor 0Ok W@ideal @ Over Imbalance or Serial Spinning | Lock Contention Other Creation | Scheduling omkl intel_thread.solMKL LAPY, |-

i libiomp5.sol[CpenMP dispatcher...
KL LAPACK]@dlatrd 0.056s 0s 0.008s 0s 0s libiomp5.s0!__kmp_fork_cal+0x...
IMKL LAPACK]@dormar 0s 0Os Os 0s 0s /1| libiomps.so![OpeniMP fork]+0x1...
{ ¥ [MKL BLAS]@dsyr2k 0s 0s 0s 0s 05 [libmki_rtsolDSYEVR+0xb6 - [u...
bk [MKL BLAS]@dsyrk 0s 0s 0.012s 0s 0 flapack.cpython-36m-x86_64-li...
» [MKL LAPACK]@dQE"f_lm 0s Os 0s 0s o ! libpython3.6m.so.1.0lcall_functio...
» gemm_omp_driver_v2 0s 0s 0s 0s o: decomp.pyleigh+0x1d5 - decom...
> [MKL BLAS]@dgemv_omp : 0s 0s Os 0s o libpython3.6m.so.1.0call_functio...
P [MKL SERVICE]@threader_d_6i_1o 0s 0s 0s 0s o kernel_pca.py!_fit_transform+0x
¥ [MKL SERVICE]@threader_d_1i_1o os 0s us 0 o I\bpython3.ﬁm:;0,zlﬂlcal\ functio
MKL BLAS]@d 0s 0s 0s 0s 0s -
[l |@dcopy | kemel_pca.py!fit+0x15 - kemel_...
» [MKL LAPACK]@dlacpy 0s 0s Os 0s 0s
libpython3.6m.so0.1.0!PyObject_... |7
[MKL LAPACK]@dlange 0s 0s Os 0s 0s .
KL LAPACK @dlaset 0 0 e e e kernel_pca.py!fit_transform+0x9..,
] LAPACK]@dsy1dS 0005 e s e e os| | bpython3.6m.so.1.0'call_functiggl

o:+ & Threas &

E OMP Master Thread #0 (T... & [Running
£ OMP Worker Thread #1 (T ... & wa CPU Time
& s Spin and Overhead...
[@ CPU Sample
& CPU Usage

& s CPU Time
& s Spin and Overhead...

CPU Usage TR R T T

FILTER 100.0% x Any Process - | Thread Any Thread > | Module Any Module e Any Utilizatio > User functions + 1 - Show inline functic = Functions only =

SCIKIT LEARN WITH INTEL PERFORMANCE LIBRARIES

Guidelines for performance:
« Always use the latest Intel® Distribution for Python* (e.g. via Anaconda*)

« Other sources can have Intel MKL enabled NumPy or SciPy, too

« But quality of optimization varies (e.g. missing functions)

* Integration is in flux - Intel engineers keep adding new extensions/improvements
» Characteristics of performance libraries (Intel MKL & Intel DAAL) :

« Larger data set needed, esp. large number of features and samples (not always visible
with toy data sets)

* Intel MKL heavily used in NumPy‘/Sc_:iPy, Intel DAAL can add additional performance

i@ All 27

SCIKIT LEARN WITH INTEL PERFORMANCE LIBRARIES

Guidelines for performance - for advanced users:
 Enable/disable Intel DAAL:

* Fallback might use Intel MKL with different implementation

* Intel DAAL might have optimizations for special cases

* Evaluate multi-core scalability with using Intel MKL:

* Vary number of threads to be used by Intel MKL

« Consider using -m TBB for alternative threading model

iﬂt@ All 28

LEGAL DISCLAIMER & OPTIMIZATION NOTICE

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS". NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY
EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests,
such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to
any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products.

Copyright © 2019, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks of Intel
Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture
are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the

specific instruction sets covered by this notice.
Notice revision #20110804

