VSB TECHNICAL | IT4INNOVATIONS ||||| UNIVERSITY | NATIONAL SUPERCOMPUTING OF OSTRAVA | CENTER

Deep Learning Training on Nvdidia GPUs with Tensorflow

12-11-2019

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

Agenda

History

Difference Machine vs. Deep Learning

Neuronal Networks

Programming

Parallelism

Questions

History

In a nutshell:

▶ 1950: Perceptron

- ▶ By Frank Rosenblatt (funded by US Office of Naval Research)
- 20x20 input photocells
- Electro-mechanic
- Not capable enough for multi-class patterns (only one layer)

(Image: Cornell Aeronautical Laboratory)

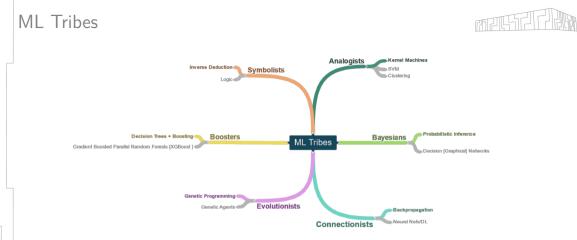
- ▶ First AI winter (1974-1980)
- ▶ 1989:

Yann le Cun's Theoretical Framework for Back-Propagation

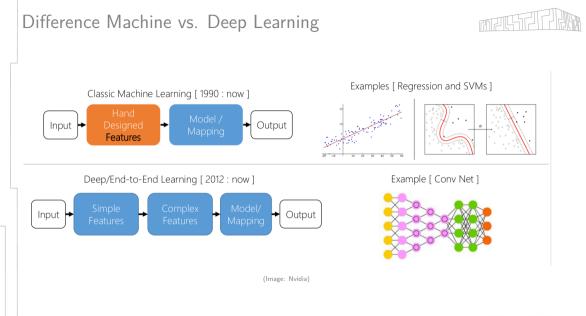
- Second AI winter (1987-1993)
- ► 2012:

Dawn of Deep Neuronal Networks with AlexNet

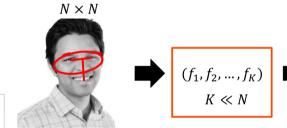
What's next? Al winter or Singularity?



Tribe	Origins	Master Algorithm	
Symbolists	Logic, philosophy	Inverse deduction	
Connectionists	Neuroscience	Backpropagation	
Evolutionaries	Evolutionary biology	Genetic programming	
Bayesians	Statistics	Probabilistic inference	
Analogizers	Psychology	Kernel machines	



Machine Learning: Feature Engineering

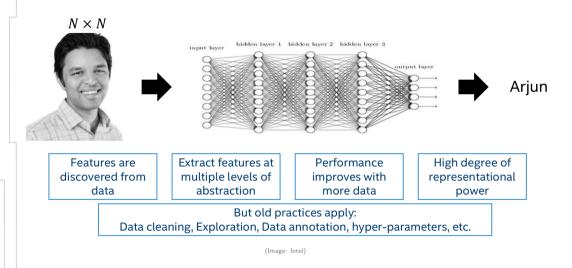


!! Takes lot of time

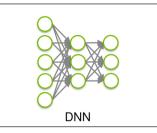
(Image: Intel)

SVM

Deep Learning: Data Engineering



VSB TECHNICAL IT4INNOVATIONS UNIVERSITY OF OSTRAVA CENTER



(Image: Nvidia)

Big Data:

Large amounts of data are available

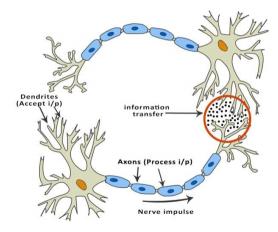
- Recent Deep Network Development: New Deep Learning methodologies evolved (2010 onwards)
- Hardware:

Modern systems are fast enough and have the memory needed

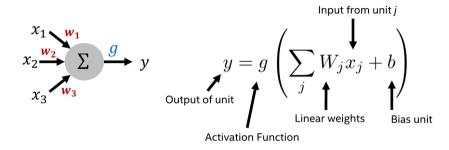
VSB TECHNICAL | IT4INNOVATIONS UNIVERSITY | NATIONAL SUPERCOMPUTING OF OSTRAVA | CENTER

Neuronal Networks

Inspired by biology:

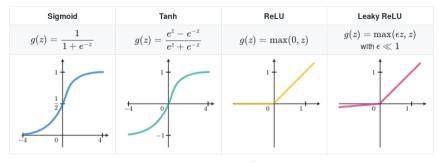


Artificial Neuronal Networks



(Image: Intel)

Activation Function

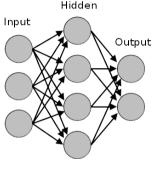


(Image: Afshine Amidi¹)

- Adds non-linearity
- ▶ ReLU is currently the most popular (est. 2010)
 - Easy to compute its derivation
 - Mitigates vanishing/exploding gradient problem (even better here: Leaky ReLU)

 $[\]mathbf{1}_{\texttt{https://stanford.edu/-shervine/teaching/cs-229/cheatsheet-deep-learning}$

Deep Neural Network Example of a "Deep" Neural Network:

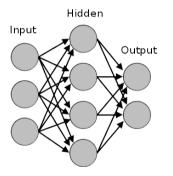


(Image: Intel)

- Layers can have different number of neurons
- Input and output formats can be arbitrary
- ▶ There can be multiple (hundreds) of hidden layers
- Typically output is combined with softmax function (probabilistic output)
- Example shows fully connected network, which is a special case

VSB TECHNICAL IT4INNOVATIONS UNIVERSITY OF OSTRAVA CENTER

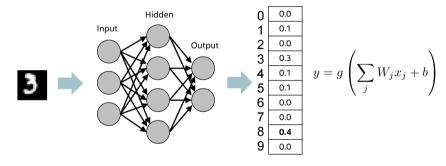
Deep Neural Network Operation



- 1. Random weights
- 2. Get a random batch of training data
- 3. Forward propagation
- 4. Calculate cost (loss)
- 5. Backward propagation
- 6. Update weights and bias
- 7. Goto step 2.

Deep Neural Network: Forward Propagation

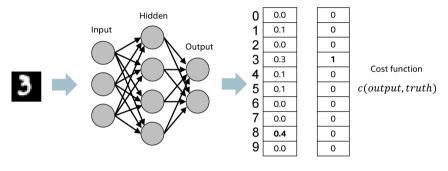
Example for one digit (image):



Deep Neural Network: Cost Function

SUPERCOMPLITING

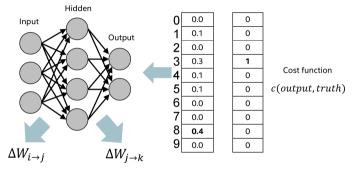
Example of a cost (or loss) function:



- How far off are we from the ground truth?
- Example has labeled data (different if non-labeled data)

Deep Neural Network: Backward Propagation

How weights are updated:

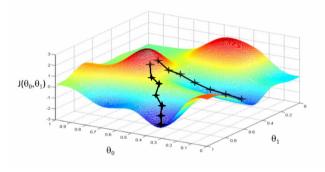


(Image: Intel)

- From back to front (problem: vanishing gradient for deep networks)
- Changes of the weights are usually dampened/controlled by changing the learning rate

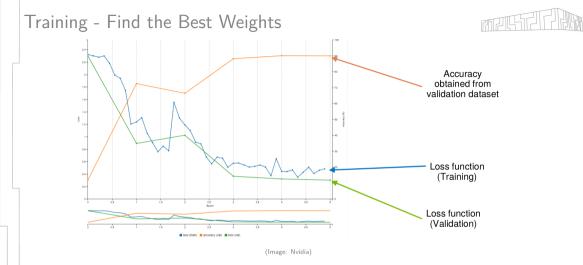
VSB TECHNICAL | IT4INNOVATIONS |||| UNIVERSITY | NATIONAL SUPERCOMPUTING OF OSTRAVA | CENTER

Deep Neural Network: Stochastic Gradient Descent How to find the best weight updates:



(Image: blog.datumbox.com)

- Gradient descent methods, e.g.:
 - Stochastic Gradient Descent (SGD)
 - Adaptive Moment Estimation (ADAM)
- Example: only two weights (θ_1, θ_2) with cost in 3rd dimension
- Multiple (local) minima are possible



- Data sets separated into training, validation, and testing sets
- Training data set is repeatedly used for training (over epochs)
- Validation data: Track the performance of the network during training
- Testing data set: Final independent performance validation

Deep Network Examples

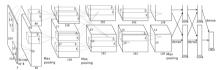
AlexNet:

- Won ImageNet Challenge 2012
- ▶ 5 conv. + 3 fully connected layers
- 60 million parameters

ResNet:

- Won ImageNet Challenge 2015
- Mitigates vanishing gradient problem
- 25 million parameters

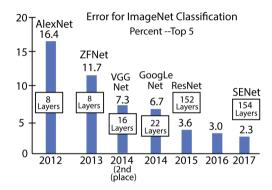
(Image: He, et al.)



(Image: Krizhevsky, et al.)

An overview of more CNNs can be found Phere

Image Classification Errors



(Image: principlesofdeeplearning.com)

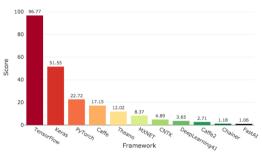
- ► Trend: More layers
- Error (performance) converges
- Ensemble networks were used last

VSB	TECHNICAL	IT4INNOVATIONS
hal	UNIVERSITY	NATIONAL SUPERCOMPUTING CENTER
ada.	OF OSTRAVA	CENTER

Programming

How to "program" Deep Neural Networks is different:

- In two phases:
 - Training (time consuming)
 - Inference (usage)
- High quality and quantity training (and validation/testing) data is needed
- Output is probabilistic
- Programming with frameworks:
 - TensorFlow
 - CNTK Keras
 - Theano
 - PyTorch
 - ▶ Caffe{2}
 - ▶ ...



Deep Learning Framework Power Scores 2018

(Image: keras.io)

Programming

Example of AlexNet² with Keras:

```
from keras import Sequential
from keras, lavers import Conv2D, MaxPooling2D,
 BatchNormalization, ZeroPadding2D, Dropout,
 Activation, Flatten, Dense
def alexnet(n_classes=5):
    model = Sequential()
    model.add(Conv2D(64, 11, strides=4))
    model.add(ZeroPadding2D(2))
    model.add(Activation('relu'))
    model.add(MaxPooling2D(pool_size=3.
                           strides=2))
    model.add(Conv2D(192, 5))
    model.add(ZeroPadding2D(2))
    model.add(Activation('relu'))
    model.add(MaxPooling2D(pool_size=3.
    model.add(Conv2D(384. 3))
    model.add(ZeroPadding2D(1))
    model.add(Activation('relu'))
    model.add(Conv2D(256. 3))
    model.add(ZeroPadding2D(1))
    model.add(Activation('relu'))
    model.add(MaxPooling2D(pool size=3.
```

strides=2))

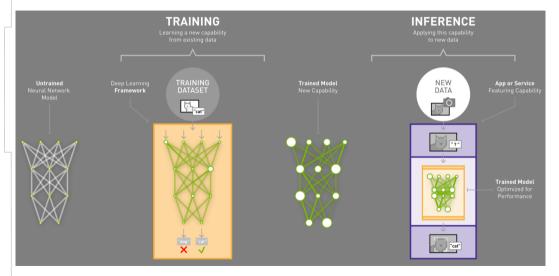
```
return model
```

```
if __name__ == '__main__':
    amodel = alexnet(10)
    amodel.summary()
```

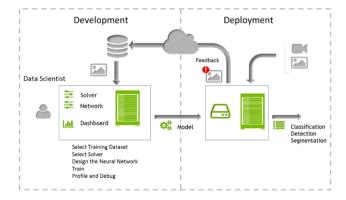
Input	Conv	Pool	Conv	Pool	Conv	Conv	Conv Pool	Ъ	ñ	Softmax	
-------	------	------	------	------	------	------	-----------	---	---	---------	--

²A variant of the original AlexNet

Training vs. Inference



Development & Deployment



(Image: Nvidia)

How to get Started?

Model Zoos make it easy to start:

- Use existing models
- Use pre-trained models for transfer learning

Model Zoo examples:

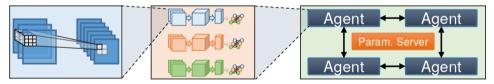
- ► Tensorflow: ► here
- ▶ PyTorch: ▶ here
- ► Caffe (BVLC): ► here
- ▶ ...

Pretrained models are also available (e.g. for biject detection with Tensorflow)

Parallelism

Parallelism can be found in:

- Low level operations in the network
- Parallelized networks
- Distributed training

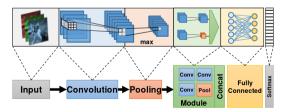


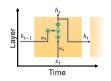
(Image: Ben-Nun, et al.)

Parallelism: Low Level Operations

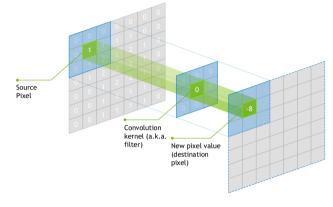
Deep Networks consist of different building blocks:

- Fully connected (dense) layer
- Convolution layer
- Pooling layer
- Recurrent Neuronal Network layer (RNN): Temporal information (e.g. Long-Short-Term Memory [LSTM])
- Batch normalization
- Activation functions





Excursion: Convolution

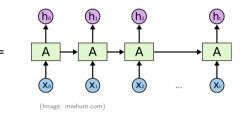


(Image: Nvidia)

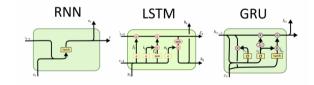
- Not fully connected (except if kernel is size of input)
- Convolutions can reduce the data
- Boundaries need handling (e.g. padding)

VSB	TECHNICAL	IT4INNOVATIONS		
կլ	UNIVERSITY	NATIONAL SUPERCOMPUTING CENTER		
	OF OSTRAVA	CENTER		

Excursion: RNNs



- ▶ Principle: Unroll cell over time
- Different types exist:
 - ► RNN (original)
 - GRU (Gated Recurrent Units)
 - LSTM (Long Short Term Memory)



(Image: medium.com/dprogrammer.org)

VSB TECHNICAL IT4INNOVATIONS UNIVERSITY OF OSTRAVA CENTER

Math Involved

- Forward Propagation:
 - Inner product, vector- and matrix-matrix multiplications
 - Operations like activation functions, pooling, etc.
- Backward Propagation:
 - Differentiation
 - Solvers (SGD, ADAM ...)
- \Rightarrow Linear Algebra (BLAS)

```
Implemented in<sup>3</sup>:
```

- ► Nvidia: NVIDIA CUDA[®] Deep Neural Network library (► cuDNN)
- ► Intel:

Intel[®] Math Kernel Library for Deep Neural Networks (MKL-DNN)

 $^{^{3}}$ cuBLAS, cuFFT, MKL and more are also used

Parallelized Networks

Networks themselves can be parallelized:

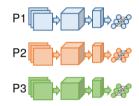
- Data parallelism
- Model parallelism

(Images: Ben-Nun, et al.)

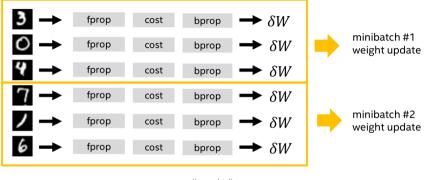
Layer pipelining

- Hybrid parallelism

Parallelized Networks: Data Parallelism

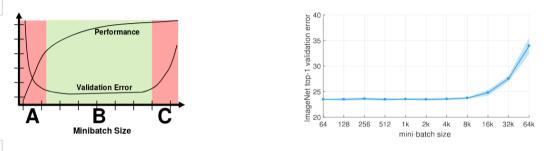


- Also called pattern parallelism and bunch mode
- Nowadays called: minibatch
- Across cores, sockets and nodes (multiple GPUs)



- Back-propagation is very expensive compared to forward-propagation
- ▶ Group training data in batches (so-called *minibatch*) of size N
- $N = \frac{training_{size}}{\#_{batches}}$
- A minibatch allows parallel forward-propagation

Minibatch Performance



(Image: Ben-Nun, et al.)

- A higher mini-batch size increases performance
- However:
 - ▶ The larger the batch, the worse the training performance
 - ▶ The more memory is needed to store the parameters (problem for GPUs)
- Sweet spot needs to be found empirically

Parallelized Networks: Model Parallelism



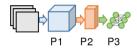
- Different network operations are executed on different cores
- Saves memory as model is distributed
- Could have significant communication needs
- Different approach: TreeNets with DNN ensembles

To mitigate communication needs:

- Redundant computations
- Special optimizations:
 - Fully connected layers: Cannon's matrix
 - Convolutions: Locally Connected Networks (LCNs)

		IT4INNOVATIONS
hal	UNIVERSITY OF OSTRAVA	NATIONAL SUPERCOMPUTING
ada.	OF OSTRAVA	CENTER

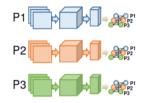
Parallelized Networks: Layer Pipelining



Shares ideas from data and model parallelism

- Overlapping computations:
 - Widely used
 - Deep Stacking Network (DSNs)
- Partition by layers:
 - ▶ Only a subset of parameters per core (similar to model parallelism)
 - Layer boundaries define communication points
 - Caching can be exploited (parameters stay on same core)
 - Problem: Balancing of computational load is difficult

Parallelized Networks: Hybrid



- Depends highly on the network topology
- ► E.g. AlexNet:
 - Convolutions are the most time critical part
 - Fully connected layer has most parameters (inbalance)
 - Solution:

Data parallelism for convolutions and model parallelism for fully connected layers

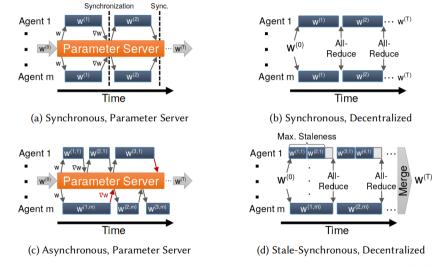
Distributed Training

What if one node (GPU) is not enough?

- Model Consistency
- Parameter Distribution and Communication: Centralization and Compression (e.g. FP16)
- Training Distribution: Model Consolidation and Optimization Algorithms

(Image: Ben-Nun, et al.)

Distributed Training: Model Consistency



Distributed Training: Libraries

Different backends:

- Message Passing Interface (MPI)
- Nvidia Collective Communications Library (NCCL)
- Intel Machine Learning Scaling Library Intel MLSL (uses MPI)

Strategies vary among frameworks:

- ► Tensorflow ► Horovod (NCCL + MPI)
- ▶ PyTorch supports MPI, NCCL and Gloo (default)

Q&A

IT4Innovations National Supercomputing Center

VŠB – Technical University of Ostrava Studentská 6231/1B 708 00 Ostrava-Poruba, Czech Republic www.it4i.cz VSB TECHNICAL | IT4INNOVATIONS ||||| UNIVERSITY | NATIONAL SUPERCOMPUTING OF OSTRAVA | CENTER

