
Deep Learning Training on Nvdidia
GPUs with Tensorflow

Georg Zitzlsberger georg.zitzlsberger@vsb.cz

12-11-2019

mailto:georg.zitzlsberger@vsb.cz

Agenda

History

Difference Machine vs. Deep Learning

Neuronal Networks

Programming

Parallelism

Questions

History
In a nutshell:

I 1950: Perceptron

I By Frank Rosenblatt (funded by US Office of Naval Research)
I 20x20 input photocells
I Electro-mechanic
I Not capable enough for multi-class patterns (only one layer)

(Image: Cornell Aeronautical Laboratory)

I First AI winter (1974-1980)
I 1989:

Yann le Cun’s Theoretical Framework for Back-Propagation
I Second AI winter (1987-1993)
I 2012:

Dawn of Deep Neuronal Networks with AlexNet
I What’s next? AI winter or Singularity?

ML Tribes

(Image: Nvidia)

Difference Machine vs. Deep Learning

(Image: Nvidia)

Machine Learning: Feature Engineering

(Image: Intel)

Deep Learning: Data Engineering

(Image: Intel)

Why Now?

(Image: Nvidia)

I Big Data:
Large amounts of data are available

I Recent Deep Network Development:
New Deep Learning methodologies evolved (2010 onwards)

I Hardware:
Modern systems are fast enough and have the memory needed

Neuronal Networks
Inspired by biology:

(Image: Intel)

Artificial Neuronal Networks

(Image: Intel)

Activation Function

(Image: Afshine Amidi1)

I Adds non-linearity
I ReLU is currently the most popular (est. 2010)

I Easy to compute its derivation
I Mitigates vanishing/exploding gradient problem

(even better here: Leaky ReLU)
1https://stanford.edu/˜shervine/teaching/cs-229/cheatsheet-deep-learning

https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-deep-learning

Deep Neural Network
Example of a ”Deep” Neural Network:

(Image: Intel)

I Layers can have different number of neurons
I Input and output formats can be arbitrary
I There can be multiple (hundreds) of hidden layers
I Typically output is combined with softmax function (probabilistic output)
I Example shows fully connected network, which is a special case

Deep Neural Network Operation

(Image: Intel)

1. Random weights
2. Get a random batch of training data
3. Forward propagation
4. Calculate cost (loss)
5. Backward propagation
6. Update weights and bias
7. Goto step 2.

Deep Neural Network: Forward Propagation

Example for one digit (image):

(Image: Intel)

Deep Neural Network: Cost Function

Example of a cost (or loss) function:

(Image: Intel)

I How far off are we from the ground truth?
I Example has labeled data (different if non-labeled data)

Deep Neural Network: Backward Propagation
How weights are updated:

(Image: Intel)

I From back to front (problem: vanishing gradient for deep networks)
I Changes of the weights are usually dampened/controlled by changing the learning rate

Deep Neural Network: Stochastic Gradient Descent
How to find the best weight updates:

(Image: blog.datumbox.com)

I Gradient descent methods, e.g.:
I Stochastic Gradient Descent (SGD)
I Adaptive Moment Estimation (ADAM)

I Example: only two weights (θ1, θ2) with cost in 3rd dimension
I Multiple (local) minima are possible

Training - Find the Best Weights

(Image: Nvidia)

I Data sets separated into training, validation, and testing sets
I Training data set is repeatedly used for training (over epochs)
I Validation data: Track the performance of the network during training
I Testing data set: Final independent performance validation

Deep Network Examples

AlexNet:
I Won ImageNet Challenge 2012
I 5 conv. + 3 fully connected layers
I 60 million parameters

ResNet:
I Won ImageNet Challenge 2015
I Mitigates vanishing gradient

problem
I 25 million parameters

(Image: Krizhevsky, et al.) (Image: He, et al.)

An overview of more CNNs can be found here

https://www.jeremyjordan.me/convnet-architectures/

Image Classification Errors

(Image: principlesofdeeplearning.com)

I Trend: More layers
I Error (performance) converges
I Ensemble networks were used last

Programming

How to ”program” Deep Neural Networks is different:
I In two phases:

I Training (time consuming)
I Inference (usage)

I High quality and quantity training (and
validation/testing) data is needed

I Output is probabilistic
I Programming with frameworks:

I TensorFlow
I CNTK
I Theano
I PyTorch
I Caffe{2}
I . . .

Keras

(Image: keras.io)

Programming

Example of AlexNet2 with Keras:
from keras import Sequential
from keras . layers import Conv2D , MaxPooling2D ,

BatchNormalization , ZeroPadding2D , Dropout ,
Activation , Flatten , Dense

def alexnet (n_classes =5):
model = Sequential ()
model .add(Conv2D (64 , 11, strides =4))
model .add(ZeroPadding2D (2))
model .add(Activation (’relu ’))
model .add(MaxPooling2D (pool_size =3,

strides =2))
model .add(Conv2D (192 , 5))
model .add(ZeroPadding2D (2))
model .add(Activation (’relu ’))
model .add(MaxPooling2D (pool_size =3,

model .add(Conv2D (384 , 3))
model .add(ZeroPadding2D (1))
model .add(Activation (’relu ’))

model .add(Conv2D (256 , 3))
model .add(ZeroPadding2D (1))
model .add(Activation (’relu ’))
model .add(MaxPooling2D (pool_size =3,

strides =2))

model .add(Flatten ())
model .add(Dropout (0.5))
model .add(Dense (4096 ,

input_shape =(6 * 6 * 256 ,)))
model .add(Activation (’relu ’))
model .add(Dropout (0.5))
model .add(Dense (4096))
model .add(Activation (’relu ’))
model .add(Dense (n_classes))
model .add(Activation (’softmax ’))

return model

if __name__ == ’__main__ ’:
amodel = alexnet (10)
amodel . summary ()

2A variant of the original AlexNet

Training vs. Inference

(Image: Nvidia)

Development & Deployment

(Image: Nvidia)

How to get Started?

Model Zoos make it easy to start:
I Use existing models
I Use pre-trained models for transfer learning

Model Zoo examples:
I Tensorflow: here

I PyTorch: here

I Caffe (BVLC): here

I . . .

Pretrained models are also available (e.g. for object detection with Tensorflow)

https://github.com/tensorflow/models
https://pytorch.org/docs/stable/torchvision/models.html
http://caffe.berkeleyvision.org/model_zoo.html
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md

Parallelism

Parallelism can be found in:
I Low level operations in the network
I Parallelized networks
I Distributed training

(Image: Ben-Nun, et al.)

Parallelism: Low Level Operations
Deep Networks consist of different building blocks:

I Fully connected (dense) layer
I Convolution layer
I Pooling layer
I Recurrent Neuronal Network layer (RNN):

Temporal information (e.g. Long-Short-Term Memory [LSTM])
I Batch normalization
I Activation functions

(Images: Ben-Nun, et al.)

Excursion: Convolution

(Image: Nvidia)

I Not fully connected (except if kernel is size of input)
I Convolutions can reduce the data
I Boundaries need handling (e.g. padding)

Excursion: RNNs

(Image: medium.com)

I Principle: Unroll cell over time
I Different types exist:

I RNN (original)
I GRU (Gated Recurrent Units)
I LSTM (Long Short Term Memory)

(Image: medium.com/dprogrammer.org)

Math Involved

I Forward Propagation:
I Inner product, vector- and matrix-matrix multiplications
I Operations like activation functions, pooling, etc.

I Backward Propagation:
I Differentiation
I Solvers (SGD, ADAM . . .)

⇒ Linear Algebra (BLAS)

Implemented in3:
I Nvidia:

NVIDIA CUDA R© Deep Neural Network library (cuDNN)
I Intel:

Intel R© Math Kernel Library for Deep Neural Networks (MKL-DNN)

3cuBLAS, cuFFT, MKL and more are also used

https://developer.nvidia.com/cudnn
https://github.com/intel/mkl-dnn

Parallelized Networks

Networks themselves can be parallelized:
I Data parallelism

I Model parallelism

I Layer pipelining

I Hybrid parallelism

(Images: Ben-Nun, et al.)

Parallelized Networks: Data Parallelism

I Also called pattern parallelism and bunch mode
I Nowadays called: minibatch
I Across cores, sockets and nodes (multiple GPUs)

Excursion: Minibatch

(Image: Intel)

I Back-propagation is very expensive compared to forward-propagation
I Group training data in batches (so-called minibatch) of size N
I N = trainingsize

#batches

I A minibatch allows parallel forward-propagation

Minibatch Performance

(Image: Ben-Nun, et al.)

I A higher mini-batch size increases performance
I However:

I The larger the batch, the worse the training performance
I The more memory is needed to store the parameters (problem for GPUs)

I Sweet spot needs to be found empirically

Parallelized Networks: Model Parallelism

I Different network operations are executed on different cores
I Saves memory as model is distributed
I Could have significant communication needs
I Different approach: TreeNets with DNN ensembles

To mitigate communication needs:
I Redundant computations
I Special optimizations:

I Fully connected layers: Cannon’s matrix
I Convolutions: Locally Connected Networks (LCNs)

Parallelized Networks: Layer Pipelining

I Shares ideas from data and model parallelism
I Overlapping computations:

I Widely used
I Deep Stacking Network (DSNs)

I Partition by layers:
I Only a subset of parameters per core (similar to model parallelism)
I Layer boundaries define communication points
I Caching can be exploited (parameters stay on same core)
I Problem: Balancing of computational load is difficult

Parallelized Networks: Hybrid

I Depends highly on the network topology
I E.g. AlexNet:

I Convolutions are the most time critical part
I Fully connected layer has most parameters (inbalance)
I Solution:

Data parallelism for convolutions and model parallelism for fully connected layers

Distributed Training

What if one node (GPU) is not enough?
I Model Consistency
I Parameter Distribution and Communication:

Centralization and Compression (e.g. FP16)
I Training Distribution:

Model Consolidation and Optimization Algorithms

(Image: Ben-Nun, et al.)

Distributed Training: Model Consistency

(Image: Ben-Nun, et al.)

Distributed Training: Libraries

Different backends:

I Message Passing Interface (MPI)
I Nvidia Collective Communications Library (NCCL)
I Intel Machine Learning Scaling Library Intel MLSL

(uses MPI)

(Image: Intel (MLSL))

Strategies vary among frameworks:
I Tensorflow Horovod (NCCL + MPI)
I PyTorch supports MPI, NCCL and Gloo (default)

https://github.com/intel/MLSL
https://github.com/horovod/horovod

Questions

Q&A

IT4Innovations National Supercomputing Center

VŠB – Technical University of Ostrava
Studentská 6231/1B
708 00 Ostrava-Poruba, Czech Republic
www.it4i.cz

www.it4i.cz

	History
	Difference Machine vs. Deep Learning
	Neuronal Networks
	Programming
	Parallelism
	Questions

