Description
While the development of fully-fledged quantum computers remains a major challenge, noisy intermediate-scale quantum (NISQ) computers offer an alternative route towards quantum advantage in the areas of quantum chemistry, optimization problems, many-body physics, and machine learning. Particularly promising candidates are variational quantum algorithms (VQAs) which exploit NISQ devices in a hardware-efficient manner to prepare and variationally optimize trial solutions to given tasks [M. Cerezo et al., Nat. Rev. Phys. 3, 625 (2021)t]. In this talk, I will introduce the basic concepts of VQAs, discuss the applications of VQAs and give an overview of our research activity focused on the development of VQAs.