30–31 Oct 2023
IT4Innovations
Europe/Prague timezone

MoS2 crystallization via Reactive Molecular Dynamics Simulations

31 Oct 2023, 10:30
20m
atrium (IT4Innovations)

atrium

IT4Innovations

Studentská 6231/1B 708 00 Ostrava-Poruba
User's talk Users' talks Users' Talks IV

Speaker

Ilia Ponomarev (Czech Technical University in Prague)

Description

Molybdenum disulfide, $MoS_2$, is a layered material from transition metals dichalcogenide (TMD) family[1]. Applications of TMDs range from tribological coatings[2,3] to electronics[4], optics[5] and catalysis[6].

TMD films are commonly prepared as an amorphous material. Tribological applications rely on a natural tendency of TMDs to crystallize during sliding. Catalysis applications might benefit from creating specific defects[7-10]. Electronics applications might require achieving very high crystallinity in tricky conditions, e.g. $MoS_2$ on polymer film for flexible stretchable photodetectors[11].

Several computational studies were recently dedicated to $MoS_2$ crystallization, employing ab initio methods[12,13] and reactive molecular dynamics with REBO[14] and ReaxFF[15,16] empirical potentials. However, ab initio methods are computationally expensive, while classical MD methods strongly depend on the quality of the force field.

We recently developed a ReaxFF force field for the Mo-S-(C-O) system[17,18]. This parameterization, unlike others, matches DFT energies in a wide range of configurations and reproduces crystallization of $MoS_2$ in melt-quench simulations[17] and during simulated sliding[18] at reasonable temperatures and pressures.

In this study we apply our ReaxFF to exploring crystallization of $MoS_2$. We study the kinetics and mechanism of crystallization depending on setup, temperature, load, density, sliding, stoichiometry, impurities. Our goal is to provide valuable insights that would enable a more intelligent approach to material design for a wide variety of applications.

References
[1] A. R. Lansdown, Ed., Chapter 1 History. Elsevier, 1999. doi: https://doi.org/10.1016/S0167-8922(99)80004-2.
[2] M. R. Vazirisereshk et al, Lubricants, vol. 7, no. 7, 2019, doi: 10.3390/LUBRICANTS7070057.
[3] T. Vitu et al, Wear, vol. 480–481, Sep. 2021, doi: 10.1016/j.wear.2021.203939.
[4] R. H. Kim et al, Nanoscale, vol. 11, no. 28, pp. 13260–13268, 2019, doi: 10.1039/c9nr02173f.
[5] M. Timpel et al, Npj 2D Mater. Appl., vol. 5, no. 1, Art. no. 1, Jul. 2021, doi: 10.1038/s41699-021-00244-x.
[6] G. Pacholik et al, J. Phys. Appl. Phys., vol. 54, no. 32, 2021, doi: 10.1088/1361-6463/ac006f.
[7] J. Hu et al., Nat. Catal., vol. 4, no. 3, p. 242+, Mar. 2021, doi: 10.1038/s41929-021-00584-3.
[8] H. Xu et al, Micromachines, vol. 12, no. 3, pp. 1–23, 2021, doi: 10.3390/mi12030240.
[9] D. N. Nguyen et al, J. Phys. Chem. C, vol. 120, no. 50, pp. 28789–28794, 2016, doi: 10.1021/acs.jpcc.6b08817.
[10] W. Kong et al, Int. J. Hydrog. Energy, 2023, doi: https://doi.org/10.1016/j.ijhydene.2023.04.318.
[11] J. K. Wuenschell et al, J. Appl. Phys., vol. 127, no. 14, 2020, doi: 10.1063/1.5112785.
[12] S. Peeters et al, Appl. Surf. Sci., vol. 606, Dec. 2022, doi: 10.1016/j.apsusc.2022.154880.
[13] F. Saiz, J. Appl. Phys., vol. 133, no. 10, Mar. 2023, doi: 10.1063/5.0139013.
[14] P. Nicolini et al, ACS Appl. Mater. Interfaces, vol. 10, no. 10, pp. 8937–8946, 2018, doi: 10.1021/acsami.7b17960.
[15] R. Chen et al, J. Phys. Chem. C, vol. 124, no. 50, pp. 27571–27579, Dec. 2020, doi: 10.1021/acs.jpcc.0c08981.
[16] R. Chen et al, J. Vac. Sci. Technol. A, vol. 38, no. 2, p. 022201, 2020, doi: 10.1116/1.5128377.
[17] I. Ponomarev et al, J. Phys. Chem. C 2022, 126, 22, 9475–9481, doi: 10.1021/acs.jpcc.2c01075.
[18] A. Bondarev et al, ACS Appl. Mater. Interfaces, Dec. 2022, doi: 10.1021/acsami.2c15706.

Primary author

Ilia Ponomarev (Czech Technical University in Prague)

Co-author

Dr Tomas Polcar (Czech Technical University in Prague)

Presentation materials

There are no materials yet.