30–31 Oct 2023
IT4Innovations
Europe/Prague timezone

Magneto-elastic properties calculation via computational high-throughput approach

31 Oct 2023, 11:20
20m
atrium (IT4Innovations)

atrium

IT4Innovations

Studentská 6231/1B 708 00 Ostrava-Poruba
User's talk Users' talks User's Talks V

Speaker

Dominik Legut (IT4I)

Description

Magnetostriction is a physical phenomenon in which the process of magnetization induces a change in shape or dimension of a magnetic material. Nowadays, materials with large magnetostriction are used in many electromagnetic microdevices as actuators and sensors. By contrast, magnetic materials with extremely low magnetostriction are required in applications such as for electric transformers. Magneto-elasticity is also interesting and related phenomena, the change of the exchange upon the various tensile or compressive loadings or an inverse as the external magnetic field can induces sample shape and lenght change. Here, we determine in a number of examples materials from simple bcc Fe, to those of lower symmetry like YCo where by using MAELAS (in house developed code, see www.md-esg.eu/software [1-3]) anisotropic magnetostriction coefficients, magnetoelastic constants, and isotropic volume exchange striction in an automated way by employing accurate DFT calculations. The behavior of the magneticrystalline anisotropy energy and magnetostrictive coefficients under general external magnetic field could be visualized as a relative length change using our MAELASviewer tool[4]. To verify accuracy and our approach in general we present a number of examples of each crystal symmetry class with calculated magnetostriction and magnetoelastic constants and compare them with recorded data. Particularly, we shed a light on the origin of the magnetostriction of tetragonal phase of FePt.[5]

References:
1. P. Nieves, S. Arapan, SH. Zhang, A. Kadzielawa, RF. Zhang, D. Legut, MAELAS: MAgneto-ELAStic properties calculation via computational high-throughput approach, Comp. Phys. Comm. 264, 107964 (2021), doi:10.1016/j.cpc.2021.107964
2. P. Nieves, S. Arapan, SH. Zhang, A. Kadzielawa, RF. Zhang, D. Legut, MAELAS 2.0: A new version of a computer program for the calculation of magneto-elastic properties, Comp. Phys. Comm. 271, 108197 (2022), doi:10.1016/j.cpc.2021.108197
3. P. Nieves, S. Arapan, SH. Zhang, A. Kadzielawa, RF. Zhang, D. Legut, Automated calculations of exchange magnetostriction, Comp. Mater. Sci 224, 112158 (2023), doi:10.1016/j.commatsci.2023.112158
4. P. Nieves, MAELASviewer: An Online Tool to Visualize Magnetostriction et al., Sensors, 20 6436 (2020), doi:10.3390/s20226436
5. D. Legut, T. Das, P. Nieves, Origin of Larger Magnetostriction and Anisotropy Energy in L1$_0$-FePt, Int. J. Eng. Sci. (under review)

Primary author

Dominik Legut (IT4I)

Presentation materials

There are no materials yet.